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Preface

Iain Chalmers and Doug Altman edited the first edition of this book, which was 
 published in 1995 and called simply Systematic Reviews. Their foreword focused on the 
“poor scientific quality of [traditional] reviews of clinical research” and the “disregard 
of scientific principles,” which may harm decision- making and patient outcomes [1]. 
Systematic reviews allow a more objective appraisal by systematically identifying, 
 scrutinizing, and synthesizing the relevant studies. Today, more than a quarter of 
a century and two editions later  [1, 2], systematic reviews and meta- analyses have 
become widely established, with thousands of such studies published every year. 
Also, their function has broadened, from the scientific synthesis of evidence to inform 
clinical practice, the main concern in 1995, to becoming part of the methods toolkit 
to address a wide range of questions, including evaluation of interventions, diagnosis 
and  prognosis, prevalence and burden of disease, and discovery research.

This broader role is reflected in the current third edition. Of the 27 chapters, 12 
are new, covering systematic reviews of prediction models, genetic association 
studies, and prevalence studies. The focus on methods has become stronger too, with 
new chapters dealing with missing data, network meta- analysis, and dose–response 
meta- analysis. These changes explain the book’s new title (Systematic Reviews in 
Health Research, rather than in Health Care) and revised structure. The first chapter 
discusses the rationale, history, and strengths and limitations of systematic reviews 
and meta- analysis. This introductory chapter is followed by a section on principles 
and procedures (six chapters), a section on meta- analysis (seven chapters), and one 
on systematic reviews and meta- analysis of specific study designs (six chapters). 
Two chapters cover Cochrane (formerly the Cochrane Collaboration) and systematic 
reviews and meta- analyses in guideline development and the GRADE approach 
(Grading of Recommendations Assessment, Development and Evaluation). The 
book ends with an outlook on innovations in and the future of systematic reviews 
and meta- analysis (two chapters) and a section on software (three chapters). The 15 
chapters that made the journey from the second to the third edition have all been 
thoroughly updated. Nevertheless, all chapters will age, some more quickly than 
others. The book’s website (www.systematic-reviews3.org) will be our antidote to 
premature aging, by offering updates of some chapters (for example, those on soft-
ware packages) and highlighting references to recent critical articles and instru-
ments, new software, and other developments.

The intended audience will be similar to that for the popular second edition [2]: 
methodologically inclined clinicians, epidemiologists, health services researchers, and 
public health specialists interested in conducting high- quality systematic reviews and 
meta- analyses. The book will also be of interest to doctoral and other students in the 
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health sciences. Indeed, we see this book as an excellent resource for teaching and will 
provide exercises and computer practicals on the companion website. 

On the long journey from the second to the third edition, we lost our dear friend, 
collaborator, and co- editor, Douglas Graham Altman. Doug sadly died, aged 69, on 
June 3, 2018. He made essential contributions to this third edition, helping define focus 
and content and co- authoring several chapters. On the following pages, we reprint Iain 
Chalmers’ wonderful tribute to Doug’s visionary role in developing systematic reviews 
and clarifying the role of meta- analysis [3]. We miss you very much, Doug, and dedi-
cate this book to you.

Last but not least, huge thanks to all contributors to this book. They made it 
possible by patiently and stoically updating their chapters over several years. Many 
thanks to our project managers and editors in Bern, Carole Dupont, Chris Ritter, and 
 Geraldine Wong, who supported us so well on this long journey. A big thank- you also 
to the editors at Wiley, Jennifer Seward, Samras Johnson V, and Ella Elliot, for their 
brilliant help and their patience.

The first edition of this book was applauded for its “simple and often humorous” 
discussion and its “intuitively appealing explanations” [4]. We hope you will agree that 
the third edition continues in this tradition.

Bern and Bristol, April 2022
Matthias Egger, Julian P.T. Higgins, George Davey Smith
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Tribute

Professor Doug Altman (1948–2018) co- edited the first and second editions of this 
book. Here, Sir Iain Chalmers, founder of The Cochrane Collaboration and the 
James Lind Alliance, reflects on Altman’s seminal contributions to the concept of 
systematic reviews and the role of meta- analysis.

Doug Altman’s Prescience in Recognizing 
the Need to Reduce Biases before Tackling 
Imprecision in Systematic Reviews
Iain Chalmers

RECOGNITION OF SHARED INTERESTS AND THE ORIGINS OF A 
FRIENDSHIP

I came to know Doug Altman during the 1980s when we were both members of the 
editorial team at the British Journal of Obstetrics and Gynaecology. I was working at the 
National Perinatal Epidemiology Unit at that time; Doug was at the Division of Med-
ical Statistics at the Medical Research Council’s Clinical Research Centre. Our meet-
ing at the BJOG was the beginning of what became a very close friendship.

Doug and I shared an interest in trying to improve the quality of the manuscripts 
submitted to the BJOG. We commissioned three papers providing reporting guide-
lines for those submitting reports of controlled trials, assessments of screening and 
diagnostic tests, and observational studies – early examples of an interest that would 
become manifested in Doug’s creation of the EQUATOR Network (Enhancing the 
QUAlity and Transparency Of health Research).

We also discovered that we had both become interested in the scientific quality 
of reviews of research evidence, and the potential for statistical synthesis of estimates 
derived from several similar studies. I had used this approach in a review of four 
randomized comparisons of different ways of monitoring fetuses during labour [1], 
the results of which prompted a very large further controlled trial that confirmed the 
results of the meta- analysis [2].

Doug’s interest in the scientific quality of reviews of research evidence had been 
stimulated by two papers published in the late 1970s by Richard Peto [3, 4]. These led 
Doug to prepare a seven- page typescript entitled “Evaluating a series of clinical trials 
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of the same treatment” for presentation at the 1981 meeting of the International Epi-
demiological Association in Edinburgh [5]. Over the next two years Doug extended the 
material in the 7- page typescript to a 40- page typescript with the same title [6].

DOUG’S PIONEERING CONCEPTUALIZATION OF SYSTEMATIC 
REVIEWS AND THE ROLE OF META- ANALYSIS

Doug’s 1983 paper is important in the history of systematic reviews because of his 
prescience of what is important in the science of research synthesis. Unfortunately, 
it has been hidden from view because it was never formally published. I think Doug 
first showed me “the almost final version of [his] 1983 paper (complete with hand-
written corrections)” at the end of 1986. He said he intended to finalize and submit it 
for publication, but that did not happen. As he admitted more than two decades later, 
“I wish I had published my ideas back in 1983” [7]. Since 2011, the typescripts of both 
papers [5, 6] have been available in the James Lind Library, and the shorter paper, with 
an accompanying commentary by Doug, is also available in the Cochrane Methods sup-
plement to the Cochrane Database of Systematic Reviews [8].

In both these papers Doug touched on issues that would become more widely 
recognized as important by the 1990s. In particular, he made clear that techniques of 
statistical synthesis – “meta- analysis” – were but one element in a science of research 
synthesis, and usually not the most important. He made clear that, although statistical 
synthesis could address those elements of between- study variability due to random 
variation, it could not deal with other sources of variability – differences in entry cri-
teria, study populations, the methods used to generate comparison groups, baseline 
differences between treatment groups, degrees of blindness achieved, and variations 
in and deviations from treatment protocols. Doug comments at the beginning of a 
nine- page section on “Combining the data” in the longer paper that “Since the main 
purpose of the paper is to discuss the whole issue of whether or not to combine trials 
rather than to carry out a comparison of the available methods, not all of the possible 
statistical methods will be described” [6]. Both his papers stressed the likely impor-
tance of publication bias and he regretted the lack (then) of hard evidence of the bias 
and the challenges this posed. He makes the important and too often neglected point:

Although the problem of possible publication bias may appear to be a major 
restriction on the validity of combining the results from several trials, it is impor-
tant to realise that any such bias applies to the interpretation of individual 
studies, although this is always ignored and each study’s results taken at face 
value. ([6], p. 25)

Toward the end of his 1983 paper, Doug presciently identified two desirable devel-
opments that would become widely appreciated by the end of the decade. First, the use 
of individual patient data:

In view of the non- statistical problems in the combination of results from different 
trials, the choice of statistical method is unlikely to matter greatly, but methods 
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which make use of the raw data are definitely preferable to the combination of 
probabilities. The pooled estimate of relative risk should be presented with its 
confidence interval. ([6], p. 33)

Secondly, there is a paragraph in a section of the paper entitled “Ethical consider-
ations” that anticipates developments in thinking and practice during the 1980s and 
1990s, which Doug selected for attention after re- reading his paper over 30 years after 
drafting it [8]. Here’s the paragraph that had struck him:

[it] is important to consider whether the results of a series of studies of the 
same treatment should be accumulated on a regular basis in order to mon-
itor the current state of knowledge about those treatments. Further trials 
might then be dependent on the combined significance of already completed 
trials but using a stricter level of statistical significance (say P < 0.001) than is 
usually applied in single trials. Even without such information trials should 
perhaps not be given ethical committee approval unless the researchers had 
analysed the results of published trials in the way suggested in order to dem-
onstrate that there was still uncertainty about the efficacy of the treatment, 
and the range of uncertainty encompassed clinically relevant benefit. Further, 
power calculations for a new trial could be conditional on the results of pub-
lished trials. ([6], p. 27)

THE ORIGINS OF SYSTEMATIC REVIEWS IN HEALTH RESEARCH: 
META- ANALYSIS IN CONTEXT

Following wider recognition of the need to improve the scientific quality of reviews [9–
11], the opening of the Cochrane Centre in Oxford in October 1992 helped to generate 
interest in the science of research synthesis [12]. I was delighted that Richard Smith, 
editor of the British Medical Journal, recognized this and proposed an all- day meeting 
run jointly by the BMJ and The Cochrane Centre. I was very glad that he accepted that 
the title of the meeting would refer to systematic reviews, and not to meta- analysis, as 
had been proposed originally. The meeting was held at the Royal Institution on 7 July 
1993. Eight presentations covered the development of systematic reviews; doubts 
about them and the challenge of finding relevant studies; rationale and practicalities; 
and assessing, updating, and disseminating systematic reviews.

Based on the presentations made at the meeting, a series of articles about 
systematic reviews began in the 3 September 1994 issue of the BMJ. In his “Editor’s 
Choice” column, Richard Smith noted that systematic review was “one of the most 
valuable tools in assessing new treatments and technologies” [13]. He was even more 
supportive in his Editor’s Choice column a few weeks later:

Systematic reviews provide the highest quality evidence on treatment.  .  . 
The author of a systematic review poses a clear question, gathers all relevant 
trials (whether published or not), weeds out the scientifically flawed, and then 
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amalgamates the remaining trials to reach a conclusion. Every stage in the pro-
cess is crucial, and an article in the journal by Kay Dickersin and her colleagues 
shows how a careful Medline search for randomised controlled trials will not 
detect all such trials even in the journals indexed in Medline. [14]

Richard Smith went on to point out that systematic reviews are also important 
because – by amalgamating data from similar trials – they can increase the statistical 
power of treatment comparisons [14]. These succinct explanations of the rationale for 
systematic reviews made by the Editor- in- Chief of one of the world’s most prominent 
medical journals were heartening to those of us calling for improvements in the 
scientific quality of reviews of research.

The BMJ’s series of articles on systematic reviews was well received and 
 Richard Smith proposed that I should edit a compilation of the articles as a  
book. I accepted, on condition that Doug Altman would co- edit it with me, 
and I was very glad that both Richard and Doug agreed  [15]. The contents and  
contributors  to the book are shown in Figure T.1 and in the James Lind Library 
at https://www.jameslindlibrary.org/chalmers- i- altman- dg- 1995. The book intro-
duces and illustrates systematic reviews; discusses data collection for them; pres-
ents contrary stances on the value of using meta- analysis to generate overall 
summary statistics; provides guidelines for assessing the trustworthiness of 
reviews; describes how systematic reviews are being prepared, updated, and dis-
seminated by the international network of people who together constitute the 
Cochrane Collaboration; and concludes with a classified bibliography for further 
reading. The book is dedicated to Thomas C. Chalmers, “in appreciation of his 
many pioneering contributions to the science of reviewing health research, and in 
particular, for the first clear demonstration of the dangers of relying on traditional 
reviews of research to guide clinical practice.”

Doug’s and my Preface in the book provided an opportunity to explain why we 
had used the term “systematic review” rather than the more technical neologism 
“meta- analysis”:

Use of the term ‘systematic review’ implies only that a review has been prepared 
using some kind of systematic approach to minimising biases and random errors, 
and that the components of the approach will be documented in a materials and 
methods section. Other terms – particularly ‘meta- analysis’ – have caused con-
fusion because of the implication that a systematic approach to reviews must 
entail quantitative synthesis of primary data to yield an overall summary sta-
tistic (meta- analysis). As we hope this book will help to make clear, this is not 
the case. In addition to those circumstances in which statistical synthesis (meta- 
analysis) of results of primary research is not advisable, there will be others in 
which it is quite simply impossible. It is just as important to take steps to control 
biases in reviews in these circumstances as it is to do so in circumstances in which 
meta- analysis is both indicated and possible. [15]

Doug reiterated this point in his 2013 commentary on “Twenty years of meta- 
analysis and evidence synthesis methods.” He wrote:

https://www.jameslindlibrary.org/chalmers-i-altman-dg-1995
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As time went on we have realized that there are many hidden problems, nuances, 
extensions, and so on. And there have been big changes in strategy. The biggest 
impact probably came from the early realization that the statistical analysis is a 
relatively simple part of a rather complex set of actions which we now label as a 
systematic review. [8]

FIGURE T.1 The contents and contributors to the first edition of the book on systematic reviews
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The issue was dealt with nicely in the title chosen for the second edition of the book, 
namely Systematic Reviews in Health Care: Meta- Analysis in Context [16]. I am grate-
ful to the editors of the third edition of the book (Egger, Davey Smith, and Higgins) 
for inviting me to draw attention to the pioneering thinking and unpublished writing 
about research synthesis by their and my much- loved, late- lamented co- editorial col-
league, Doug Altman.

Note

This text was published previously as Chalmers I. Doug Altman’s prescience in rec-
ognising the need to reduce biases before tackling imprecision in systematic reviews. 
Journal of the Royal Society of Medicine 2020; 113 : 119–122.
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Systematic Reviews in 
Health Research
An Introduction
Matthias Egger, Julian P.T. Higgins, and George Davey Smith

The volume of data that needs to be considered by practitioners and researchers is con-
stantly expanding. In most areas, it has become impossible for the individual to read, criti-
cally evaluate, and synthesize the state of current knowledge, let alone keep updating this 
on a regular basis. Reviews have become essential tools for anybody who wants to keep 
up with the new evidence that is accumulating in their field of interest. Reviews are also 
required to identify areas where the available evidence is insufficient and further studies 
are needed. In 1987, Cynthia Mulrow drew attention to the poor quality of traditional 
reviews, pointing out that “current medical reviews do not routinely use scientific methods 
to identify, assess, and synthesize information” [1]. In response to this situation, methods 
and guidance on systematically reviewing studies were developed to produce explicitly for-
mulated, reproducible, and up- to- date summaries of the effects of health care interven-
tions. The focus was initially on randomized controlled trials (RCTs), but soon expanded 
to other study designs. This is illustrated by the sharp increase, since around 2005, in the 
number of reviews that used formal methods to synthesize evidence (Figure 1.1).

This chapter aims to clarify terminology and scope, provide some historical 
background, introduce the potentials, promise, and limitations of systematic reviews 
and meta- analysis, and give an overview of the topics covered in this book.

1.1 SYSTEMATIC REVIEW, META- ANALYSIS, OR 
EVIDENCE SYNTHESIS?

A number of terms are used to describe the process of systematically reviewing and 
integrating research evidence, including “systematic review,” “meta- analysis,” “over-
view,” and “pooling.” In the foreword to the first edition of this book, Chalmers and 
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Altman [2] defined systematic review as a review that was prepared using a “systematic 
approach to minimizing biases and random errors documented in a materials and 
methods section.” A systematic review may, or may not, include a meta- analysis: “a 
statistical analysis of the results from independent studies, which generally aims to 
produce a single, typical estimate of a treatment effect” [3].

The distinction between systematic review and meta- analysis is essential because 
it is always appropriate and desirable to review a body of data systematically. In con-
trast, it may sometimes be inappropriate, or even misleading, to pool results from sepa-
rate studies statistically [4]. Indeed, reviewers often find it hard to resist the temptation 
of combining studies even when such meta- analysis is questionable or inappropriate. 
According to the Royal Society [5], “evidence synthesis” describes the process of syn-
thesizing information from a range of sources and disciplines to inform policymak-
ing. Such an evidence synthesis typically includes several systematic reviews and 
meta- analyses, or may involve the statistical synthesis of a range of different types of 
e vidence (see also discussion of triangulation of evidence in Chapter 19).

Other types of reviews that have emerged in recent years include “scoping 
reviews,” “rapid reviews,” and “umbrella reviews”  [6]. Scoping reviews describe 
or map key concepts, types of evidence, and gaps in a defined research area [7]. In 
rapid reviews, time is gained by using less rigorous processes to identify studies [8]. 
Umbrella reviews, which are meta- reviews (or “overviews”) of systematic reviews and 
meta- analyses, reflect the explosion in the number of such publications and address 
the fact that systematic reviews and meta- analyses addressing the same question may 
reach opposite conclusions [9] (see also Chapter 7).
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FIGURE 1.1  Number of publications concerning meta- analysis, 1987–2020. Results from 
MEDLINE search using text word and medical subject heading (MESH) “meta- analysis” and text 
word “systematic review.”
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1.2  THE SCOPE OF META- ANALYSIS

An important distinction can be made between meta- analysis of RCTs and meta- 
analysis of observational studies of interventions (Chapter 15) or etiology (Chapter 19). 
Consider a set of high- quality trials that examined the same intervention in comparable 
patient populations: each trial should provide an unbiased estimate of the same under-
lying treatment effect. The variability observed between the trials can be attributed 
to random variation, and meta- analysis should provide an equally unbiased estimate 
of the treatment effect with increased precision. A fundamentally different situation 
typically arises in observational epidemiological studies, for example case–control 
studies, cross- sectional studies, or cohort studies. Due to confounding and selection 
bias, these studies may produce estimates of causal associations that deviate from the 
underlying causal associations beyond what can be attributed to chance. Combining a 
set of observational studies will thus often provide spuriously precise, biased estimates 
of causal associations. The thorough consideration of heterogeneity between obser-
vational study results, particularly of possible confounding and bias, will generally 
provide more insights than the mechanical calculation of an overall measure of effect.

The fundamental difference between observational studies and RCTs does not 
mean that the latter are immune to bias. Publication bias and other reporting biases (see 
Chapter 5) may distort the evidence from both trials and observational studies [10]. Bias 
may also be introduced if trials’ methodological quality is inadequate (Chapter 4) [11]. 
For both RCTs and observational studies, it is crucial to understand the limitations of 
meta- analysis and the importance of exploring heterogeneity and sources of bias.

1.3 HISTORICAL NOTES

Efforts to compile summaries of research for medical practitioners are not new [12–
14]. In 1753, James Lind included a “Critical and Chronological View of what has been 
published on the subject” in his “Treatise of the Scurvy.” He argued:

Before the subject could be set in a clear and proper light, it was necessary to 
remove a great deal of rubbish. [15]

This illustrates an important function of systematic reviews, namely the central role of 
sound eligibility criteria for the studies to be included, the critical appraisal of studies 
(see Chapter 4), and, more generally, the problem of research waste created by poor- 
quality studies [14, 16].

The statistical basis of meta- analysis reaches back to the seventeenth century 
when, in astronomy and geodesy, intuition and experience suggested that combina-
tions of data might be better than attempts to choose among them (Box 1.1). In the 
twentieth century, the distinguished statistician Karl Pearson (Figure  1.3) was, in 
1904, the first medical researcher reporting the use of formal techniques to combine 
data from different studies. The rationale for pooling studies put forward by Pearson in 
his account on serum inoculations against enteric fever is still one of the main reasons 
for undertaking meta- analysis today:
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Box 1.1 From Laplace and Gauss to the First Textbook 
of Meta- Analysis

Keith O’Rourke
Astronomers long ago noticed that observations of the same objects differed even 
when made by the same observers under similar conditions. The calculation of the 
mean as a more precise value than a single measurement appeared by the end of the 
seventeenth century [17]. By the late 1700s probability models were used to represent 
the uncertainty of observations. Laplace decided to report these models as the truth, 
together with the “probability of some error,” the concept at the heart of maximum 
likelihood estimation [18]. Laplace’s method of combining and quantifying uncer-
tainty in the combination of observations required an explicit probability distribu-
tion for errors. Gauss drew on empirical experience and argued that a probability 
distribution corresponding to what is today referred to as the Normal or Gaussian 
distribution would be best. This remained speculative until Laplace’s discovery of 
the central limit theorem – that for large sample sizes the error distribution will 
always be close to Normally distributed. Most statistical techniques used today 
in meta- analysis follow from Gauss’s and Laplace’s work. Airy disseminated their 
work in his 1861 “textbook” on “meta- analysis” for astronomers (Figure 1.2), which 
included the first formulation of a random effects model to allow for heterogeneity 
in the results [19]. Airy offered practical advice and argued for the use of judgment 
to determine what type of statistical model should be used.

FIGURE 1.2  Title page of the first “textbook” of meta- analysis, 1861.



 Systematic Reviews in Health Research 5

Many of the groups . . . are far too small to allow of any definite opinion being 
formed at all, having regard to the size of the probable error involved. [20]

Such techniques were not widely used in medicine for many years to come. In  contrast 
to medicine, the social sciences and, in particular, psychology and educational research 
soon became interested in the synthesis of research findings. In the 1930s, 80 experi-
ments examining the “potency of moral instruction in modifying conduct” were system-
atically reviewed [21]. In 1976 the psychologist Glass coined the term “meta- analysis” 
in a classic paper entitled “Primary, secondary and meta- analysis of research” [22]. 
Three years later, the British physician and epidemiologist Archie Cochrane drew 
attention to the fact that people who want to make informed health care decisions do 
not have ready access to reliable reviews of the available evidence [23]. In the 1980s, 
meta- analysis became increasingly popular in medicine, particularly in cardiovascular 
disease [24, 25], oncology [26], and perinatal care [27]. In the 1990s, the foundation 
of the Cochrane Collaboration (see Chapter 21) facilitated numerous developments, 
many of which are covered in this book.

1.4  WHY DO WE NEED SYSTEMATIC REVIEWS? 
THE SITUATION IN THE 1980s

A likely scenario in the 1980s, when discussing the discharge of a patient who had 
suffered an uncomplicated myocardial infarction, is as follows: a keen junior doctor 
asks whether the patient should receive a beta- blocker for secondary prevention of 

FIGURE 1.3  Distinguished statistician Karl Pearson (1857–1936) is seen as the first medical 
researcher to use formal techniques to combine data from different studies. Source: Wikimedia 
Commons / CC BY 4.0.
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a future cardiac event. After a moment of silence, the consultant decides that this 
question should be discussed in detail at the Journal Club on Thursday. The junior 
doctor (who now regrets that he asked the question) is told to present the relevant 
literature. It is late in the evening when he makes his way to the library. The MED-
LINE search identifies four clinical trials [28–31]. When reviewing the conclusions 
from these trials (Table 1.1), the doctor finds them to be confusing and contradic-
tory. His consultant points out that the sheer amount of research published makes 
it impossible to keep track of and critically appraise individual studies. She recom-
mends a good review article. Back in the library, the junior doctor finds a report 
that the BMJ published in 1981  in a “Regular Reviews” section [32]. This review 
concluded:

Thus, despite claims that they reduce arrhythmias, cardiac work, and infarct 
size, we still have no clear evidence that beta- blockers improve long- term survival 
after infarction despite almost 20 years of clinical trials. [32]

The junior doctor is relieved. He summarizes the article in the Journal Club, and the 
patient is discharged without a beta- blocker.

1.5 TRADITIONAL REVIEWS

Traditional reviews have several disadvantages. First, the classical review is subjective 
and prone to bias and error [33]. Mulrow showed that among 50 reviews published 
in the mid- 1980s in prominent general medicine journals, 49 did not specify the 
sources of information used and failed to perform a standardized assessment of 
the studies’ methodological quality [1]. Indeed, our junior doctor could have con-
sulted a review published in the European Heart Journal in the same year. This one 

TABLE 1.1  Conclusions from four randomized controlled trials of beta- blockers 
in secondary prevention after myocardial infarction.

“The mortality and hospital readmission rates were not significantly different in the two 
groups. This also applied to the incidence of cardiac failure, exertional dyspnoea, and 
frequency of ventricular ectopic beats.”
Reynolds (1972) [28]

“Until the results of further trials are reported long- term beta- adrenoceptor blockade 
(possibly up to two years) is recommended after uncomplicated anterior myocardial 
infarction.”
Multicentre International Study (1977) [29]

“The trial was designed to detect a 50% reduction in mortality and this was not shown. 
The non- fatal reinfarction rate was similar in both groups.”
Baber et al. (1981) [30]

“We conclude that long- term treatment with timolol in patients surviving acute myocardial 
infarction reduces mortality and the rate of reinfarction.”
Norwegian Multicenter Study Group (1981) [31]
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concluded that “it seems perfectly reasonable to treat patients who have survived 
an infarction with timolol”  [34]. Without being guided by a formal framework, 
reviewers will inevitably disagree about issues as basic as what types of studies it is 
appropriate to include and how to balance the quantitative evidence they provide. 
Selective inclusion of studies that support the author’s view is common. In contro-
versial areas, the conclusions drawn from a given body of evidence may be associ-
ated more with the specialty of the reviewer than with the available data [35]. Also, 
studies supporting prevailing opinion and positive studies are cited more frequently 
than unsupportive studies [36–38].

Once a set of studies has been assembled, authors might count the number of 
studies supporting various sides of an issue and choose the view receiving the most 
votes. Such “vote counting” is problematic, since it ignores sample size, the size of 
the effect or association, and sometimes even the research design. Thus, it is hardly 
surprising that reviewers using traditional methods often reach opposite conclu-
sions  [1] and miss small but potentially relevant differences  [39]. By systematically 
identifying, scrutinizing, tabulating, and perhaps integrating all relevant studies using 
meta- analysis, systematic reviews allow a more objective appraisal, which can help 
resolve uncertainties when the original research, classical reviews, and editorial com-
ments disagree.

The advent of systematic reviews and meta- analyses does not mean that narra-
tive reviews and opinion pieces have no place  [40]. Narrative reviews can be help-
ful to provide clarification, insight, and opinion on broader (policy) issues  [41], to 
develop a conceptual framework, or to track the development of an idea (as we do in 
this chapter) [42]. However, whenever possible, they should draw on well- conducted 
systematic reviews.

1.6  LIMITATIONS OF A SINGLE STUDY

A single study often fails to detect or exclude a modest but relevant difference in the 
effects of two therapies. A trial may thus show no statistically significant treatment 
effect when, in reality, such an effect exists – it may produce a false- negative result. 
A classic study from the 1970s found that so- called negative RCTs often lack the 
statistical power to exclude meaningful clinical effects  [43]. Although sample sizes 
have increased [44], the problem of underpowered clinical trials continues [45]. Often 
the required sample size may be difficult to achieve. An intervention that reduces 
mortality from myocardial infarction by 10% could delay thousands of deaths each 
year in the UK alone. Over 10 000 patients in each treatment group would be needed 
to detect such an effect with high certainty [46].

The meta- analytic approach is an attractive alternative to such a large, expen-
sive study. Data from patients in trials evaluating the same or a similar drug in sev-
eral smaller, but comparable, studies are considered. Methods used for meta- analysis 
employ a weighted average of the results in which the larger trials have more influence 
than the smaller ones (Chapter  9). Comparisons are made exclusively between 
patients enrolled in the same study. In this way, the necessary number of patients may 
be reached, and relatively small effects can be detected or excluded with confidence.
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Systematic reviews also contribute to gauging the applicability of study results. 
The findings of a particular study will, a priori, apply only to patients with the same 
characteristics as those investigated in the trial. If several trials in different groups of 
participants show similar results, we can conclude that the effect of the intervention 
under study has some generality. Meta- analyses of the individual participant data (IPD 
meta- analysis, see Chapter 12) from several trials are particularly useful to answer 
questions about whether effects vary among subgroups – e.g. among men and women, 
older and younger patients, or participants with different severities of the disease. 
Further, a single trial typically will examine the efficacy of one or two interventions. 
However, for a given condition, for example depression, several treatment options will 
be available, and doctors need to choose between them. Network meta- analysis (see 
Chapter 13) allows the simultaneous comparison of multiple interventions.

1.7  A MORE TRANSPARENT AND THOROUGH APPRAISAL

An important advantage of systematic reviews is that they render the review process 
transparent. In traditional reviews, it is often not clear how the conclusions follow 
from the data examined. In a well- presented systematic review, it should be pos-
sible for readers to replicate the quantitative component of the argument. The data 
included in meta- analyses must be presented in full or made available to facilitate 
this. The increased openness required leads to the replacement or underpinning of 
vague descriptors such as “some evidence of a trend,” “a weak relationship,” and “a 
strong relationship with reproducible estimates and their confidence intervals” [47]. 
Performing a systematic review mandates a thorough examination of studies’ quality 
or risk of bias (see Chapters 4 and 5), and meta- analysis forces reviewers to scruti-
nize the data.

1.8  THE EPIDEMIOLOGY OF RESULTS

The tabulation, exploration, and evaluation of results are important components of 
systematic reviews (see Chapter 2). This can be taken further to explore sources of 
heterogeneity and test new hypotheses that were not posed in individual studies, 
for example using meta- regression techniques (see Chapter  10). In such “meta- 
epidemiology of results,” the findings of an original study replace the individual as 
the unit of analysis [48, 49]. For example, a meta- regression analysis of RCTs of pre-
ventive home visits in older people showed that functional decline was reduced in 
trials that used comprehensive geriatric assessments but not in other trials [50]. How-
ever, although the studies included may be controlled experiments, the meta- analysis 
itself is subject to many biases inherent in observational studies. Aggregation or eco-
logical bias is also a problem unless IPD are available (see Chapter 12). Nevertheless, 
systematic reviews can lead to the most promising or urgent research question and 
may permit a more accurate calculation of the sample sizes needed in future studies 
(see Chapter 24).
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1.9  WHAT WAS THE EVIDENCE IN 1981?

What conclusions would our junior doctor have reached had he had access to a meta- 
analysis? Figure 1.4 shows the results from a meta- analysis that included 33 randomized 
comparisons of beta- blockers versus placebo or alternative treatment in patients with 
myocardial infarction [51]. These trials were published from 1967 to 1997. The combined 
risk ratio indicates that beta- blockade starting after the acute infarction reduced 
subsequent premature mortality by an estimated 20% (risk ratio 0.80). Cumulative 
meta- analysis is a useful way to show the evidence available in 1981 and at other points 
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FIGURE 1.4  Forest plot showing mortality results from trials of beta- blockers in secondary 
prevention after myocardial infarction. Trials are ordered by year of publication. The black square 
and horizontal line correspond to the trials’ risk ratio and 95% confidence intervals. The area of 
the black squares reflects the weight each trial contributes in the meta- analysis. The diamond 
represents the combined relative risk with its 95% confidence interval, indicating a 20% reduction 
in the odds of death. See Chapter 2 for a detailed description of forest plots. Source: Adapted from 
Freemantle et al. [51].



10 Systematic Reviews in Health Research 

in time: the meta- analysis is updated whenever a new relevant trial becomes available. 
This allows the retrospective identification of the point in time when a treatment effect 
first became convincing. Here a beneficial effect became evident by 1981 (Figure 1.5). 
Subsequent trials in a further 15 000 patients simply confirmed this result, suggesting 
that the further studies may have been superfluous if not unethical [50].

Similarly, Lau et al. showed that for the trials of intravenous streptokinase in acute 
myocardial infarction, a convincing reduction in total mortality was demonstrated 
already by 1973 [49] (Figure 1.6). At that time, 2432 patients had been randomized in 
eight small trials. The results of the subsequent 25 studies, which included the very 
large GISSI- 1 and ISIS- 2 trials [51, 52] and enrolled a total of 34 542 additional patients, 
increased the strength of the evidence until the first mega- trial appeared in 1986, nar-
rowing the confidence intervals around an essentially unchanged estimate of about 
20% reduction in the risk of death. Interestingly, at least one country licensed strep-
tokinase for use in myocardial infarction before GISSI- 1 [51] was published, whereas 
many national authorities waited for this trial to appear, and some waited a further two 
years for the results of ISIS- 2 [52] (Figure 1.6).

The concept of cumulative meta- analysis has since been expanded to “living systematic 
reviews,” where a review is continually updated as new relevant evidence becomes avail-
able (Chapter 23). The approach may be applied to any systematic review and may involve 
updating meta- analyses. Living systematic reviews require a longer- term commitment and 
appropriate funding. They became essential in the response to the COVID- 19 pandemic, 
with many such reviews and updates published in 2020 and 2021 [52, 53].

0.8 1 20.5

    “ 
 1997
 1995
 1993
    “   
 1992
 1990
 1988
    “   
 1987
 1985
    “   
 1984
    “   
    “   
    “   
    “   
    “   
    “   
 1982
    “   
 1981
    “   
    “   
    “   
 1980
    “   
 1979
 1975
    “ 
 1974
 1972
 1967

Year

Relative Risk (95% Confidence Interval)

FIGURE 1.5  Cumulative meta- analysis of controlled trials of beta- blockers after myocardial 
infarction. The data correspond to Figure 1.4. A statistically significant (P < 0.05) beneficial effect 
on mortality became evident in 1981.
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1.10  AN EXERCISE IN MEGA- SILLINESS?

Systematic reviews and, in particular, meta- analysis received a mixed reception initially. In 
1978, the controversial psychologist Hans Eysenck [54] described an early meta- analysis of 
psychotherapy trials as an “exercise in mega- silliness” [55]. The authors of meta- analyses 
of perinatal care were dismissed as terrorists (“an obstetrical Baader- Meinhof gang”) [56]. 
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FIGURE 1.6  Cumulative meta- analysis of randomized controlled trials of intravenous 
streptokinase in myocardial infarction. The number of patients randomized in a total of 33 trials 
and national authorities licensing streptokinase for use in myocardial infarction are also shown.
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To some clinicians objecting to the findings of meta- analyses, “a tool has become a 
weapon” [57], while others “still prefer the conventional narrative review article” [58]. On 
closer inspection, many of the criticisms concerned shortcomings in the dissemination 
and quality of medical research, including publication bias and other reporting biases 
(see Chapter 5), or the low quality of the studies included in meta- analyses, the “garbage 
in, garbage out” problem (Chapter 4). These problems affect any review [59], but well- 
conducted systematic reviews and meta- analyses make them visible and address them 
(see Chapters 4 and 5). Another common criticism is the lack of attention to heteroge-
neity in the results of studies included in meta- analyses, followed by the uncritical calcu-
lation of a summary effect. We share this concern, but emphasize that some practitioners’ 
inappropriate use of a method does not mean the method itself is flawed.

The misguided “mass production” of systematic reviews and meta- analyses is a 
serious threat to evidence synthesis [60]. In 2010, Bastian and colleagues asked “How 
will we ever keep up?” and pointed out that 75 trials and 11 systematic reviews are 
published each day [40]. Since then, the problem has become much worse (Figure 1.1). 
The quality of many reviews is poor and some duplicate the work of others, contrib-
uting to research waste [61]. A study of systematic reviews indexed in MEDLINE in 
2014 found that the majority did not consider the risk of biases when interpreting 
results, and about a third used inappropriate statistical methods  [62]. The pressure 
to publish (or perish) and the fact that systematic reviews and meta- analyses are 
popular with editors undoubtedly contributes to this situation. Systematic reviews and 
meta- analyses are cited more than other studies and help increase a journal’s impact 
factor [63]. There is agreement that the incentive structure in academia and culture 
must change. The San Francisco Declaration on Research Assessment (DORA), which 
many academic institutions have signed, calls for the journal impact factor to be aban-
doned, emphasizing the content of a paper rather than publication metrics [64]. With 
this book, we want to help improve systematic reviews and meta- analyses and support 
DORA’s emphasis on content and quality.

1.11  CONCLUSIONS

For many questions, systematic reviews, including if appropriate a formal meta- 
analysis, are superior to the narrative approach to reviewing research. In addition to 
providing a precise estimate of the overall effect of interventions in some instances, 
appropriate examination of heterogeneity across individual studies can produce useful 
information to guide rational and cost- effective decisions. Systematic reviews are also 
important to demonstrate areas where the available evidence is insufficient and where 
new, adequately sized trials are required.
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Systematic reviews allow a more objective appraisal of the evidence than narrative 
reviews and may thus contribute to resolving uncertainty when original research, 
experts, and commentators disagree. Systematic reviews are also essential to decide 
whether new research studies are warranted and to identify specific questions to be 
addressed in future studies. As will be discussed in subsequent chapters, poorly con-
ducted reviews and meta- analyses may be biased due to exclusion of relevant studies, 
the inclusion of inadequate studies, or the inappropriate statistical combination of 
studies. Such bias can be minimized if a few basic principles are observed. This chapter 
introduces these principles and gives an overview of the practical steps involved in 
performing a systematic review. We will focus on systematic reviews of controlled 
trials, although the principles apply equally to other quantitative research studies such 
as cohort studies, case–control studies, and cross- sectional studies. We stress that the 
present chapter can only serve as an elementary introduction. Readers who want to 
perform systematic reviews should consult the ensuing chapters and consider working 
with a major research synthesis organization like Cochrane (see Chapter 21).

2.1  DEVELOPING A REVIEW PROTOCOL

Systematic reviews should be viewed as observational studies of the evidence. The 
steps involved, summarized in Box 2.1, are similar to any other research undertaking: 
formulation of the problem to be addressed, collection and analysis of the data, and 
interpretation of the results. Likewise, a detailed study protocol that clearly states the 
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Box 2.1 Steps in Conducting A Systematic Review

1. Formulate review question
2. Define inclusion and exclusion criteria

Consider PICO and other criteria:
• Participants
• Interventions, exposures, tests, or other factors of interest
• Comparators
• Outcomes
• Study designs and methodological features

3. Prepare protocol
• Cover points 1–2 and methods for 4–8 in as much detail as possible
• Prespecify potential sources of heterogeneity to be explored

4. Locate studies (see also Chapter 3)
Develop search strategy considering the following sources:
• Electronic databases
• Checking of reference lists
• Handsearching of key journals
• Personal communication with experts in the field

5. Select studies
• Have eligibility assessed by >1 observer
• Develop strategy to resolve disagreements
• Keep log of excluded studies, with reasons for exclusions

6. Assess risk of bias or study quality (see also Chapter 4)
• Consider assessment by >1 observer
• Use domain- based assessments or simple checklists rather than  

numeric scales
7. Collect data

• Design and pilot data collection form
• Consider data extraction from reports by >1 observer
• Consider possibility of collating individual participant data

8. Analyze and present results (see also Chapters 8–14)
• Tabulate characteristics and results of individual studies
• Examine forest plot
• Explore possible sources of heterogeneity
• Consider meta- analysis of all studies or subsets of studies
• Perform sensitivity analyses, examine funnel plots
• Make list of excluded studies available to interested readers
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question to be addressed, the criteria for selecting relevant studies, and the methods 
to identify and analyze information should be written in advance. This is impor-
tant to avoid bias being introduced by decisions that are influenced by the data. For 
example, studies that produced unexpected or undesired results might be inappro-
priately excluded by post hoc changes to the inclusion criteria. Similarly, unplanned 
data- driven subgroup analyses are likely to produce spurious results [1–3], and lack of 
clarity on primary and secondary outcomes for the review leads to the possibility of 
selective reporting of those the reviewers consider as most favorable. The review pro-
tocol should ideally be written by a group of reviewers with expertise in the content 
area and the science of research synthesis, and should be registered on a publicly 
accessible resource such as PROSPERO [4].

2.1.1 Objectives and Eligibility Criteria

The formulation of detailed objectives is at the heart of any research project. For 
reviews on the effects of health care interventions, a review question is often artic-
ulated using a PICO framework. This mnemonic refers to specifying the participants 
(P), interventions (I), comparators (C), and outcomes (O) of interest. Variations of this 
framework are applicable to reviews of different types of questions. For example, an 
objective to summarize evidence on the prevalence of a particular disease may only 
need to specify the types of participants and the disease of interest (see also the chap-
ters on systematic reviews of other specific study designs later in this book).

As with patient inclusion and exclusion criteria in clinical studies, eligibility cri-
teria can then be defined for the types of studies to be included. These criteria relate 
to the review objectives (e.g. participants, interventions being compared) and to the 
kinds of studies to be included (e.g. study design, length of follow- up). They should 
be selected with a view to the combinability of studies in a synthesis. It is not always 
necessary to use every component of the review question (e.g. all elements of PICO) 
as criteria for including studies. The reporting of particular outcome measures from a 
controlled trial, for example, can be influenced by the results for that outcome. Thus 
specifying that outcome data must be available for the study to be eligible for the 
review may result in a biased subset of included studies. While it will not be possible 

9. Interpret results (see also Chapter 21)
• Consider limitations, including publication and related biases
• Consider strength of evidence, including amount of evidence and quality 

of studies
• Consider consistency of evidence across studies
• Consider applicability
• Consider meaningful presentation of findings (e.g. using absolute risks rather 

than relative risks)
• Consider economic implications
• Consider implications for future research
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to include the study in a meta- analysis, the potential impact of the study’s omission 
can at least be considered.

Features of the design and rigor of research studies can influence the results [5–7], 
as discussed in Chapters 4 and 10. Questions about the effects of interventions would 
ideally be addressed only using controlled trials with proper randomization of inter-
ventions to participants that report on all initially included participants according 
to the intention- to- treat principle, and that use an objective, preferably blinded, out-
come assessment. However, assessing whether studies were well performed can be a 
subjective process, especially since the information reported is often inadequate for this 
purpose [8–10]. Therefore, it may be preferable to define only basic inclusion criteria in 
relation to study design features and to perform a detailed assessment of each included 
study’s merits as part of the review itself (see Section 2.1.3).

2.1.2 Literature Search

The search strategy for identification of the relevant studies should be clearly delin-
eated. As discussed in Chapter 3, the starting point is usually a search of bibliographic 
databases. The main bibliographic databases in health research are MEDLINE and 
Embase, although regional databases and subject- specific databases may also be impor-
tant. Conference proceedings, PhD theses, and the bibliographies of review articles, 
monographs, and the located studies should also be scrutinized, as should relevant 
online study registries (such as http://clinicaltrials.gov) where these are relevant to 
the research question. The search should be extended to include unpublished studies 
where possible, as their results may differ systematically from published studies. As 
discussed in Chapter 5, a systematic review that is restricted to published evidence 
may produce distorted results due to publication bias. Colleagues, experts in the field, 
contacts in relevant organizations, and other informal channels can be important 
sources of information on unpublished and ongoing studies.

Identifying controlled trials for systematic reviews is more straightforward than 
identifying other types of studies. Randomized trials and controlled trials are specif-
ically tagged in MEDLINE and Embase, partly due to Cochrane’s painstaking efforts 
to check the titles and abstracts of hundreds of thousands of MEDLINE and Embase 
records, which were then re- tagged as controlled trials if appropriate. Furthermore, 
Cochrane has identified thousands of reports of controlled trials by manual searches 
(“handsearching”) of journals, conference proceedings, and other sources. All trials 
identified in the re- tagging and handsearching projects are included in the Cochrane 
Central Register of Controlled Trials (CENTRAL), which is available in the Cochrane 
Library (see Chapter 21). This register currently includes over a million records and 
is clearly the best single source of published trials for inclusion in systematic reviews. 
Searches of MEDLINE and Embase are, however, still required to identify trials that 
were published recently (see Chapter 3).

Registration of all research studies when they are established (and before their 
results become known) would reduce the risk of publication bias  [11, 12]. Several 
registers are available for clinical trials (see Chapter  5) and these are an important 
source of information about ongoing and completed trials. One Cochrane group has 
proposed to include only trials that have been registered at inception, which should 



  Principles of Systematic Reviewing 23

substantially reduce the risk of publication bias, although it may risk excluding rele-
vant, high- quality studies that were not registered [13].

2.1.3 Selection of Studies, Assessment of Methodological Quality, 
and Data Extraction

Decisions regarding the inclusion or exclusion of individual studies often involve 
some degree of subjectivity. Therefore, it is useful to have two observers checking the 
eligibility of candidate studies, with disagreements being resolved by discussion or a 
third reviewer.

Before incorporating individual studies into syntheses, it is important to consider the 
extent to which their results can be trusted. Even though randomized controlled trials 
provide the best evidence of the effects of medical interventions, they are not immune 
to bias. Studies relating methodological features of trials to their results have shown 
that several features can be associated with effect sizes [7]. Inadequate concealment of 
treatment allocation, resulting, for example, from the use of open random number ta-
bles, is on average associated with larger treatment effects, as is a lack of blinding of 
outcome assessors, particularly when the outcome assessment involves judgment [14].

Many tools are available to assess the risk of bias or the methodological quality of 
research studies, particularly for controlled trials [15] and epidemiological association 
studies [16]. Empirical evidence [17, 18] and theoretical considerations [19] suggest 
that although summary quality scores may in some circumstances provide a useful 
overall assessment, numeric scales should not generally be used to assess the quality 
of trials in systematic reviews. Rather, as discussed in Chapter 4, the relevant meth-
odological aspects should be identified and assessed individually. Again, independent 
assessment by more than one observer is desirable.

Two independent observers should extract data from reports of studies so that 
errors can be avoided. A standardized data extraction form is needed for this purpose. 
Data extraction forms should be carefully designed, piloted, and revised if necessary. 
Electronic data collection forms are the norm these days. They facilitate the combination 
of data extraction and entry into one step and the automatic detection of inconsistencies 
between data recorded by different observers. However, programming and revising 
electronic forms can be time- consuming, although a growing number of systematic 
review software systems are now available to support this process (see Chapters 6 and 23).

Direct contact with the authors of the included studies is a useful supplement to extract-
ing data from study reports. Such contacts may lead to the collation of individual participant 
data and a collaborative re- analysis of the original data. This approach is widely considered 
to be the gold standard approach to meta- analysis and is discussed in Chapter 12.

2.2  PRESENTING, COMBINING, AND INTERPRETING RESULTS

Once studies have been selected, critically appraised, and data extracted, the char-
acteristics of included studies should be presented in tabular form. Table 2.1 shows 
the characteristics of the long- term trials included in a systematic review of the effect 
of beta- blockade in secondary prevention after myocardial infarction (we mentioned 



A
ut

ho
r

Ye
ar

D
ru

g
St

ud
y 

Co
nc

ea
lm

en
t 

D
ou

bl
e-

bl
in

d
M

or
ta

lit
y 

(N
o.

/t
ot

al
 n

o.
)

TABLE 2.1  Characteristics of long- term trials comparing beta- blockers with control.

Author Year Drug Study 
duration 
(years)

Concealment 
of treatment 
allocation

Double- blind Mortality (No./total no.)

Beta-blocker Control

Barber 1967 Practolol 2 Unclear Unclear 33/207 38/213

Reynolds 1972 Alprenolol 1 Yes Yes 3/38 3/39

Ahlmark 1974 Alprenolol 2 Unclear Unclear 5/69 11/93

Wilhelmsson 1974 Alprenolol 2 Unclear Yes 7/114 14/116

Multicentre International 1975 Practolol 2 Unclear Yes 102/1533 127/1520

Yusuf 1979 Atenolol 1 Unclear Yes 1/11 1/11

Andersen 1979 Alprenolol 1 Unclear Yes 61/238 62/242

Rehnqvist 1980 Metroprolol 1 Unclear Unclear 4/59 6/52

Baber 1980 Propranolol 0.75 Unclear Yes 28/355 27/365

Wilcox (atenolol) 1980 Atenolol 1 Yes Yes 17/132 19/129

Wilcox (propanolol) 1980 Propranolol 1 Yes Yes 19/127 19/129

Hjalmarson 1981 Metoprolol 2 Unclear No 40/698 62/697

Norwegian Multicentre 1981 Timolol 1.4 Unclear Yes 98/945 152/939

Hansteen 1982 Propranolol 1 Unclear Yes 25/278 37/282

Julian 1982 Sotalol 1 Yes Yes 64/873 52/583

BHAT 1982 Propranolol 2.1 Yes Yes 138/1916 188/1921

Taylor 1982 Oxprenolol 4 Done Yes 60/632 48/471

Manger Cats 1983 Metoprolol 1 Unclear Yes 9/273 16/280

Rehnqvist 1983 Metroprolol 3 Unclear Yes 25/154 31/147



Australian- Swedish 1983 Pindolol 2 Unclear Yes 45/263 47/266

Mazur 1984 Propranolol 1.5 Unclear No 5/101 11/103

EIS 1984 Oxprenolol 1 Unclear Yes 57/853 45/883

Salathia 1985 Metoprolol 1 Unclear Yes 49/416 52/348

Roqué 1987 Timolol 2 Unclear Yes 7/102 12/98

LIT 1987 Metoprolol 1.5 Unclear Yes 86/1195 93/1200

Kaul 1988 Propranolol 0.5 Unclear Yes 3/25 3/25

ASPI 1990 Acebutolol 0.87 Yes Yes 17/298 34/309

Schwartz (high risk) 1992 Oxprenolol 1.8 Unclear No 2/48 12/56

Schwartz (low risk) 1992 Oxprenolol 1.8 Unclear Yes 15/437 27/432

SSSD 1993 Metoprolol 3 Unclear No 17/130 9/123

Darasz 1995 Xamoterol 0.5 Unclear Yes 3/23 1/24

Basu 1997 Carvedilol 0.5 Unclear Yes 2/75 3/71

Aronow 1997 Propranolol 1 Unclear Unclear 44/79 60/79

Source: Adapted from Gøtzsche [24].

Author Year Drug Study 
duration 
(years)

Concealment 
of treatment 
allocation

Double- blind Mortality (No./total no.)

Beta-blocker Control

(Continued)TABLE 2.1 
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this example in Chapter 1 and will return to it later in this chapter) [20]. The review 
included all parallel- group, randomized trials that examined the effectiveness of beta- 
blockers versus placebo or alternative treatment in patients with myocardial infarction. 
The authors searched 11 bibliographic databases, including dissertation abstracts and 
gray literature databases, examined existing reviews, and checked the reference lists of 
each identified study. They identified 31 trials of at least six months’ duration, which 
contributed 33 comparisons of beta- blockers with control groups (Table 2.1) [20].

2.2.1 Standardized Outcome Measure

Individual results must be expressed in a standardized format to allow for comparison 
between studies. Risk ratios or odds ratios are often calculated in controlled trials with 
a binary endpoint (e.g. disease versus no disease, or dead versus alive). The odds ratio 
has convenient mathematical properties, which allow for ease in combining data and 
testing the overall effect for statistical significance. Still, the odds ratio will differ from 
the risk ratio if the outcome is common (see Box 8.1 in Chapter 8). Risk ratios are fre-
quently preferred over odds ratios because they are more intuitively understandable 
to most people [21, 22]. Absolute measures such as the absolute risk reduction or the 
number of patients who need to be treated for one person to benefit  [23] are more 
helpful when applying results of trials in clinical practice (see below). If the outcome 
in a controlled trial is continuous and measurements are made on the same scale (e.g. 
blood pressure measured in mm Hg), the mean difference between the treatment and 
control groups is commonly used. If trials measured outcomes differently, any dif-
ferences between intervention groups may be presented in standard deviation units 
rather than as absolute differences. For example, the efficacy of nonsteroidal anti- 
inflammatory drugs for reducing pain in patients with rheumatoid arthritis was mea-
sured using different scales [24]. The choice and calculation of appropriate summary 
statistics from controlled trials are covered in detail in Chapter 8.

Similar options are available in observational studies of the association between 
an exposure and an outcome. However, in case–control studies, the odds ratio should 
be used as an approximation to the risk ratio. It is common for statistical adjustments 
to be made to these associations to control for potential confounding factors. These 
adjustments might be made, for example, using logistic regression for a binary end-
point or using linear regression for a continuous outcome. The reviewer may not have 
much choice over the measure used and the adjustments made, but will generally have 
access to results that are unadjusted or adjusted for different potential confounders 
(see Chapters 15 and 19).

2.2.2 Graphical Display

Results from each trial are usefully graphically displayed together with their confidence 
intervals in a “forest plot,” a form of presentation developed in the 1980s by Sir Richard 
Peto’s group in Oxford [25]. Figure 2.1 provides the forest plot for the trials of beta- 
blockers in secondary prevention after myocardial infarction, which we discussed in 
Chapter 1 [20]. Each study is represented by a black square and a horizontal line that 
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correspond to the point estimate of the risk ratio and its 95% confidence interval. The 
95% confidence intervals would contain the true underlying effect on 95% of the occa-
sions, if the study were repeated again and again. The solid vertical line corresponds 
to no effect of treatment (a risk ratio of exactly 1). The confidence intervals of most 
studies cross this line. The area of the black squares reflects the weight of the study in 
the meta- analysis (see Section 2.2.4).

A logarithmic scale was used for plotting the risk ratios in Figure 2.1. There are 
several reasons why ratio measures are best plotted on logarithmic scales [26]. Most 
importantly, the value of a risk ratio and its reciprocal, for example 0.5 and 2, which 
represent risk ratios of the same magnitude but opposite directions, will be equidis-
tant from 1. Studies with risk ratios below and above 1 will take up equal space on the 
graph and thus visually appear to be equally important. Also, confidence intervals will 
be symmetric around the point estimate.

2.2.3 Heterogeneity Between Study Results

The thoughtful consideration of heterogeneity between study results is an important 
aspect of systematic reviews (Chapter  10). As already mentioned, this should start 
when writing the review protocol by defining potential sources of heterogeneity and 

Relative risk
(95% confidence interval)

0.1 0.2 0.5 1 2 5 10

Trial (Year)  % Weight Relative risk
  (95% CI)

 0.89 (0.58,1.37) Baber (1967)   2.8
 1.03 (0.22,4.77) Reynolds (1972)   0.2
 0.51 (0.21,1.21) Wilhelmsson (1974)   1.0
 0.61 (0.22,1.68) Ahlmark (1974)   0.7
 0.80 (0.62,1.02) Multicentre International (1975)   9.5
 1.00 (0.07,14.05) Yusuf (1979)   0.1
 1.00 (0.74,1.36) Andersen (1979)   4.6
 0.59 (0.18,1.97) Rehnqvist (1980)   0.5
 1.07 (0.64,1.77) Baber (1980)   2.0
 0.87 (0.48,1.61) Wilcox Atenolol (1980)   1.4
 1.02 (0.56,1.83) Wilcox Propanolol (1980)   1.4
 0.64 (0.44,0.95) Hjalmarson (1981)   4.6
 0.64 (0.51,0.81) Norwegian Multicentre (1981)  11.4
 0.69 (0.42,1.11) Hansteen (1982)   2.7
 0.82 (0.58,1.17) Julian (1982)   4.7
 0.74 (0.60,0.91) BHAT (1982)  14.0
 0.93 (0.65,1.34) Taylor (1982)   4.1
 0.58 (0.26,1.28) Manger Cats (1983)   1.2
 0.77 (0.48,1.24) Rehnqvist (1983)   2.4
 0.97 (0.67,1.40) Australian-Swedish (1983)   3.5
 0.46 (0.17,1.29) Mazur (1984)   0.8
 1.31 (0.90,1.92) EIS (1984)   3.3
 0.79 (0.55,1.13) Salathia (1985)   4.2
 0.56 (0.23,1.36) Roque (1987)   0.9
 0.93 (0.70,1.23) LIT (1987)   6.9
 1.00 (0.22,4.49) Kaul (1988)   0.2
 0.52 (0.30,0.91)APSI (1990)   2.5
 0.55 (0.30,1.02) Schwartz low risk (1992)   2.0
 0.19 (0.05,0.83) Schwartz high risk (1992)   0.8
 1.79 (0.83,3.86) SSSD (1993)   0.7
 3.13 (0.35,27.96) Darasz (1995)   0.1
 0.63 (0.11,3.67) Basu (1997)   0.2
 0.73 (0.58,0.93) Aronow (1997)   4.5

 0.80 (0.74,0.86) Overall (95% CI)

FIGURE 2.1  Forest plot showing total mortality from trials of beta- blockers in secondary 
prevention after myocardial infarction. The black square and horizontal line correspond to the 
risk ratio and 95% confidence intervals (CIs), respectively. The area of the black squares reflects 
the weight each trial contributes to the meta- analysis. The diamond at the bottom of the graph 
represents the combined risk ratio and its 95% CI, indicating a 20% reduction in the risk of death. 
The solid vertical line corresponds to no effect of treatment (risk ratio 1.0), the dotted vertical line 
to the combined risk ratio (0.8). The risk ratio, 95% CI, and weights are also given in tabular form. 
The graph was produced in STATA (see Chapter 25). Source: Adapted from Freemantle et al. [20].
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planning appropriate subgroup analyses. Once the data have been assembled, a simple 
inspection of the forest plot is informative. The results from the beta- blocker trials are 
fairly homogeneous, clustering between risk ratios of 0.5 and 1, with widely overlap-
ping confidence intervals (Figure 2.1). In contrast, trials of BCG vaccination for the 
prevention of tuberculosis  [27] (Figure 2.2) are clearly heterogeneous. The findings 
of the UK trial, which indicate a substantial benefit of BCG vaccination, are not com-
patible with those from the Madras or Puerto Rico trials, which suggest little effect 
or only a modest benefit. There is no overlap in the confidence intervals of the three 
trials. Other graphical representations are particularly useful to detect and investi-
gate heterogeneity. These include funnel plots [28] (Chapter 5), L’Abbé plots [29] (see 
Chapter 8), and Galbraith plots [26].

Statistical measures of heterogeneity assess the extent to which the individual 
study results reflect a single underlying effect, as opposed to a distribution of effects. 
A direct measure of the variability in underlying effects across studies is the het-
erogeneity variance (often represented by tau2, or τ2). A commonly used alternative 
is the I2 statistic, which measures approximately the proportion of variability in 
individual study results that is due to true effect differences (heterogeneity) rather 
than chance [30, 31]. Tests of homogeneity (also called tests for heterogeneity) are 
also available (see Chapter 9). If these measures fail to detect heterogeneity among 
results, then it is assumed that the differences observed between individual studies 
are a consequence of sampling variation and simply due to chance. The I2 statistic 
for the beta- blocker trials is 13.6% and a τ2 test of homogeneity gives P = 0.25; the 
corresponding statistics for the BCG trials are I2 = 92.1% and P < 0.001. Substantial 
heterogeneity between study results, such as is observed here for the BCG trials, 
should not necessarily be seen as a problem for systematic reviews since it provides 
an opportunity for examining why treatment effects differ in different circumstances, 
as discussed below and in Chapter 10.

Trial (Latitude)

Madanapalle   (13)

 Madras      (13)

 Puerto Rico     (18)

 Haiti      (18)

 South Africa    (27)

 Georgia  (33)

 Georgia        (33)

 Chicago       (42)

 Chicago      (42)

 Northern USA  (52)

 Northern USA  (52)

 UK      (53)

 Canada      (55)

Relative risk

0.1 1 10

 Risk ratio (95% CI)

 0.80 (0.52,1.25)

 1.01 (0.89,1.14)

 0.71 (0.57,0.89)

 0.20 (0.08,0.50)

 0.63 (0.39,1.00)

 1.56 (0.37,6.53)

 0.98 (0.58,1.66)

 0.26 (0.07,0.92)

 0.25 (0.15,0.43)

 0.46 (0.39,0.54)

 0.41 (0.13,1.26)

 0.24 (0.18,0.31)

 0.20 (0.09,0.49)

FIGURE 2.2  Forest plot of trials of BCG vaccine to prevent tuberculosis. Trials are ordered 
according to the latitude of the study location, expressed as degrees from the equator. No meta- 
analysis is shown. CI, confidence interval. Source: Adapted from Colditz et al. [27].
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2.2.4 Methods for Estimating A Typical Effect

If, after careful consideration, a meta- analysis is deemed appropriate, the last step consists 
of estimating a typical effect by combining the data. Two principles are important. First, 
simply pooling the data from different studies and treating them as one large study would 
fail to preserve the integrity of each individual study and may introduce bias and confound-
ing. In particular, pooling participants across randomized trials may remove all the benefits 
of randomization. An interesting example of the bias this pooling can introduce appeared 
in a review and “meta- analysis” of observational studies of the role of male circumcision 
in HIV transmission. The reviewers concluded that the risk of HIV infection was lower 
in uncircumcised men [32]. However, the analysis was performed by simply pooling the 
data from 33 diverse studies. A re- analysis stratifying the data by study found that an intact 
foreskin was in fact associated with an increased risk of HIV infection [33]. Confounding 
by study thus led to a change in the direction of the association (a case of “Simpson’s par-
adox,” in epidemiological parlance [34, 35]). The unit of the study must, therefore, always 
be maintained when combining data.

Second, simply calculating an arithmetic mean would be inappropriate. The 
results from small studies are more subject to the play of chance and should be given 
less weight. Methods used for meta- analysis employ a weighted average of the results, 
in which the larger trials generally have more influence than the smaller ones. A 
variety of statistical techniques are available for this purpose (see Chapter 9), which 
can be broadly classified into two approaches [36]. The difference is in whether the 
variability of the results between the studies is considered. The fixed-effect approach 
considers only random variation within studies, and individual studies are weighted 
solely by their precision [37]. The main alternative, the random-effects approach [38, 
39], assumes a model in which different effects underlie the different studies, and 
these differences are taken into consideration as an additional source of variation. 
Effects are assumed to be randomly distributed, and the central point of this distribu-
tion is the focus of the combined effect estimate. Random- effects approaches generally 
give relatively more weight to smaller studies and lead to wider confidence intervals 
than fixed- effects approaches. The use of random- effects models has been advocated 
if there is heterogeneity between study results. This is problematic, however. Rather 
than simply ignoring it after applying some statistical model, the approach to hetero-
geneity should be to scrutinize and attempt to explain it (see Chapter 10).

While neither of the two approaches can be said to be “correct,” a substan-
tial difference in the combined effect calculated by the fixed-  and random- effects 
approaches will be seen only if studies are markedly heterogeneous, as in the case 
of the BCG trials (Table  2.2). Combining trials using a random- effects model indi-
cates that BCG vaccination halves the risk of tuberculosis, whereas fixed- effects anal-
ysis indicates that the risk is only reduced by 35%. The difference is explained by the 
different weight given to the large Madras trial, which showed no protective effect 
of vaccination (41% of the total weight with the fixed- effects model, 10% with the 
random- effects model, Table 2.2). Both analyses are probably misguided. As shown in 
Figure 2.2, BCG vaccination appears to be effective in cooler regions but not in warmer 
regions. This could be due to exposure to certain mycobacteria in the environment act-
ing like “natural” BCG vaccination in warmer regions [40]. In this situation, it is more 
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meaningful to quantify how the effect varies according to latitude than to calculate an 
overall estimate of effect, which will be misleading for either of the approaches (see 
Chapter 10 for further analyses of the BCG trials).

2.2.5 Sensitivity Analysis

There will often be different opinions on the correct method for performing a particular 
meta- analysis. The robustness of the findings to different assumptions should therefore 
always be examined in a thorough sensitivity analysis. This is illustrated in Figure 2.3 
for the beta- blockers after myocardial infarction meta- analysis [20]. First, the overall 
effect was calculated by different statistical methods, using fixed- effects and random- 
effects approaches. It is evident from the figure that the overall estimate is virtually 
identical and that confidence intervals are only slightly wider when using the random- 
effects approach. This is explained by the relatively small amount of between- trial var-
iation present in this meta- analysis.

The methodological quality of the beta- blocker trials was assessed in terms of 
concealment of allocation of study participants to beta- blocker or control groups 
and blinding of patients and investigators (see also Chapter  4)  [20]. Figure  2.3 
shows that the estimated treatment effect was similar for studies with and without 
concealment of treatment allocation. The eight studies that were not described as 

TABLE 2.2  Meta- analysis of trials of BCG vaccination to prevent tuberculosis using 
a fixed- effects and random- effects model (inverse variance method). Note the differ-
ences in the weights allocated to individual studies.

Trial Risk ratio (95% 
confidence interval)

Fixed- effects 
weight (%)

Random- effects 
weight (%)

Madanapalle 0.80 (0.52 to 1.25) 3.20 8.88

Madras 1.01 (0.89 to 1.14) 41.40 10.22

Puerto Rico 0.71 (0.57 to 0.89) 13.21 9.93

Haiti 0.20 (0.08 to 0.50) 0.73 6.00

South Africa 0.63 (0.39 to 1.00) 2.91 8.75

Georgia 0.98 (0.58 to 1.66) 0.31 3.80

Georgia 1.56 (0.37 to 6.53) 2.30 8.40

Chicago 0.26 (0.07 to 0.92) 0.40 4.40

Chicago 0.25 (0.15 to 0.43) 2.25 8.37

Northern USA 0.41 (0.13 to 1.26) 23.75 10.12

Northern USA 0.46 (0.39 to 0.54) 0.50 5.05

UK 0.24 (0.18 to 0.31) 8.20 9.71

Canada 0.20 (0.09 to 0.49) 0.84 6.34

Combined relative risks 0.65 (0.60 to 0.70) 0.49 (0.35 to 0.70)

Source: Adapted from Colditz et. al [27].
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double- blind indicated more benefit than the 25 trials that were, but confidence inter-
vals overlap widely.

Statistically significant results are more likely to get published than nonsignificant find-
ings [41, 42], which can distort the findings of meta- analyses (see also Chapter 5). Whether 
such publication bias is plausible can be examined by stratifying the analysis by study size. If 
publication bias is present, it is expected that the larger published studies will report smaller 
effects because they are more likely to find that small estimates are statistically significant. 
Figure 2.3 shows that this is indeed the case in the beta- blocker example, with the 11 small-
est trials (25 deaths or fewer) showing the largest effect. However, the exclusion of the 
smaller studies has little effect on the overall estimate. Studies varied in terms of length of 
follow- up, but this again had little effect on estimates. Finally, two trials [43, 44] were termi-
nated earlier than anticipated based on the results from interim analyses [45]. The exclusion 
of these trials, however, again affects the overall estimate only marginally.

The sensitivity analysis thus shows that the results from this meta- analysis are 
robust to the choice of the statistical method and to the exclusion of trials of lesser 
quality or of studies terminated early. It also suggests that publication bias is unlikely 
to have distorted the findings.

2.3  INTERPRETING FINDINGS

The risk ratio of death associated with the use of beta- blockers after myocardial infarc-
tion is 0.80 (95% confidence interval 0.74 to 0.86) (Figure 2.1). The relativeriskreduction, 
obtained by subtracting the risk ratio from 1 and expressing the result as a percentage, 

 >2 years (4)

 1-2 years (24)

 <1 year (5)

 >99 deaths (11)

 25-99 deaths (11)

 <25 deaths (11)

 Other (8)

 Double-blind (25)

 No / Unclear (26)

 Yes (7)

 Random effects (33)

 Fixed effects (33)

 Criteria (No of Trials)
Statistical model

Concealment of allocation

Blinding

Trial size

Follow up

 BHAT and APSI (31)

 APSI (32)

 BHAT (32)

 Excluding trials terminated
 early

0.6 0.8 1 1.2

FIGURE 2.3  Sensitivity analyses examining the robustness of the effect on total mortality of beta- 
blockers in secondary prevention after myocardial infarction. The dotted vertical line corresponds 
to the combined relative risk from the fixed- effects model (0.8).
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is 20% (95% confidence interval 14 to 26%). These relative measures of treatment effect 
ignore the underlying absolute risk. The risk of death among patients who have survived 
the acute phase of myocardial infarction varies widely [46]. For example, among patients 
with three or more cardiac risk factors, the probability of death at two years after discharge 
ranged from 24% to 60% [47]. Conversely, two- year mortality among patients with no risk 
factors was less than 3%. The absoluteriskreduction, or risk difference, reflects both the 
underlying risk without therapy and the relative risk reduction associated with therapy.

For an underlying risk of 1% per year, the absolute risk reduction indicates that 
two deaths are prevented per 1000 treated patients (Table 2.3). This corresponds to 
500 patients being treated for one year in order to prevent one death. Conversely, if 
the risk is above 10%, fewer than 50 patients have to be treated to prevent one death. 
Many clinicians would probably decide not to treat patients at very low risk, consid-
ering the large number of patients who would have to be exposed to the adverse effects 
of beta- blockade to prevent one death. Appraising the treatment effect in the form of a 
number needed to treat (NNT), derived from the combination of a patient’s estimated 
risk without treatment with the relative risk reduction with treatment, is a helpful aid 
when making a decision with an individual patient.

This example illustrates the general principle that findings of meta- analyses may 
need to be re- expressed to assist with interpretation and application (see also Chapter 22). 
In this context, it is generally more meaningful to look at absolute rather than relative 
effects on risk when analyzing binary outcomes. A reasonable question is why we do 
not undertake the meta- analysis itself using an absolute effect measure such as the risk 
difference. The problem is that a combined risk difference (and the NNT calculated from 
it) will be essentially determined by the number and size of trials in low, intermediate, 
and high- risk patients. Combined results will thus apply only to patients at levels of risk 
corresponding to the average risk of the trial participants. Meta- analyses are generally 
therefore undertaken using relative effect measures, while absolute measures are used 
when applying the findings to a specific clinical or public health situation.

TABLE 2.3  Beta- blockade in secondary prevention after myocardial infarction. 
Absolute risk reductions and numbers- needed- to- treat for one year to prevent one 
death, NNT(benefit), for different levels of control group mortality.

One- year mortality risk among 
controls (%)

Absolute risk reduction NNT(benefit)

1 0.002 500

3 0.006 167

5 0.01 100

10 0.02 50

20 0.04 25

30 0.06 17

40 0.08 13

50 0.1 10

Calculations assume a constant relative risk reduction of 20%.
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2.4  CONCLUSIONS

Systematic reviews are thorough reviews of previous research and are guided 
largely by methodological rigor, comprehensiveness, and transparency principles. 
The review processes are structured, such that issues of the completeness of the 
evidence identified, the methodological quality of component studies, and the 
combinability of evidence are made explicit. Nevertheless, the systematic reviewer 
must tackle several fundamental questions as part of the exercise. How likely is it 
that publication and related biases have been avoided? Is it sensible to combine the 
individual studies in meta- analysis, or is there heterogeneity between individual 
study results that renders the calculation of an overall estimate questionable? If 
meta- analysis was performed, how robust are the results to changes in assump-
tions? Finally, has the analysis contributed to the process of making rational health 
care decisions? These challenging issues will be considered in more depth in the 
following chapters.
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Identifying Randomized 
 Controlled Trials
Julie Glanville and Carol Lefebvre

The chapter on “Identifying relevant studies for systematic reviews” in the first edition 
of this book, published in 1995, was a review of the evidence relating to the problems 
in identifying reports of randomized controlled trials (RCTs) for systematic reviews of 
health care interventions [1]. It focused on a particular difficulty that existed at that 
time in identifying such studies: only 19 000 reports of RCTs were readily identifiable, 
i.e. indexed as RCTs in MEDLINE, although records for many more reports of trials 
were already included in the database at that time.

By the second (2001) edition of this book [2], the situation had improved dramat-
ically. Since 1994, Cochrane (see also Chapter  21) had, with the support of the US 
National Library of Medicine (NLM), systematically contributed to the re- tagging, as 
reports of trials, of nearly 100 000 additional records in MEDLINE. More importantly, 
the Cochrane Controlled Trials Register, subsequently known as the Cochrane Central 
Register of Controlled Trials (CENTRAL), was launched in 1996 and published and 
updated quarterly in the Cochrane Library [3, 4]. In 2001, CENTRAL contained records 
for more than 250 000 reports of controlled trials from MEDLINE, Embase, and other 
sources, and was recognized as “likely to be the best single source of published trials 
for inclusion in systematic reviews and meta- analyses” [5].

By the time of the third edition of this book, CENTRAL, which is now updated 
monthly, has reached nearly 2 million records or reports of trials [6, 7]. It includes all 
reports of trials that are readily identifiable in MEDLINE, i.e. indexed with Publication 
Type terms Randomized Controlled Trial or Controlled Clinical Trial (about 600 000 
records in August 2021). Further, it includes about 700 000 additional trial records 
from Embase and/or MEDLINE; about 200 000 records from ClinicalTrials.gov; about 
160 000 from the World Health Organization’s International Clinical Trials Registry 
Platform (WHO ICTRP) not already included in ClinicalTrials.gov; and about 140 000 
reports of trials from other sources (see Figure 3.1).
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This chapter describes sources that have contributed to CENTRAL and how they 
are still being searched. We outline some of the supplementary searches that should 
be undertaken in addition to searches of CENTRAL to identify studies for systematic 
reviews. We highlight some newer sources that have become available since the last 
edition of this book. We also provide information about where to identify guidance 
on identifying studies other than RCTs. We explore how searches are structured, how 
search terms are identified, and how interfaces allow search terms and concepts to 
be combined using Boolean operators. Finally, we describe how strategies can be 
tested and how to decide when to stop searching. We conclude with some evidence of 
the role and value of librarians and information specialists as part of the systematic 
review team.

3.1 SEARCHING CENTRAL TO IDENTIFY RANDOMIZED 
CONTROLLED TRIALS

As already noted, CENTRAL consists of records from a wide range of sources, including 
MEDLINE, Embase, CINAHL Plus, handsearching of journals and conference pro-
ceedings, trials register resources, and other sources. CENTRAL should, therefore, be 
searched as the “first port of call” to identify RCTs rapidly for systematic reviews. As 
the records come from various sources, they do not all have the same format and are 
indexed in various ways. Therefore, searches of CENTRAL should be carried out using 
a combination of Medical Subject Heading (MeSH) and free- text terms, including 
synonyms and related terms, aiming for a compromise between high sensitivity and 
adequate precision. Free- text terms are vital, since many thousands of records within 
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FIGURE 3.1  Number of randomized and other controlled trials in PubMed (Randomized 
Controlled Trials and Controlled Clinical Trials) and in CENTRAL (all records) 1961–2020 (data 
gathered August 2021).



38 Systematic Reviews in Health Research 

CENTRAL do not have MeSH terms and will not be retrieved if MeSH- only searches 
are conducted. While methodological search filters to identify specific study types can 
be useful in other databases [8], filters for RCTs should not be used in CENTRAL, nor 
should searches be limited to “human” studies. All records in CENTRAL should be 
reports of trials in humans, even though this may not be apparent from the records. 
Guidance on searching CENTRAL as part of the Cochrane Library is available from 
the Help section on the Cochrane Library home page (see Table 3.1).

TABLE 3.1  Key resources for identifying systematic reviews and reports of trials.

Resource URL

AllTrials https://www.alltrials.net

APA PsycINFO https://www.apa.org/pubs/databases/psycinfo

ClinicalTrials.gov https://clinicaltrials.gov

Cochrane Database of Systematic 
Reviews

https://www.cochranelibrary.com

Drugs@FDA https://www.accessdata.fda.gov/scripts/cder/daf

EMA Online access to clinical data 
(clinical study reports)

https://clinicaldata.ema.europa.eu/web/cdp/home
https://register.ema.europa.eu/identityiq/external/
registration.jsf#/register
https://clinicaldata.ema.europa.eu/web/cdp/search

Epistemonikos https://epistemonikos.org

EU Clinical Trials Register (EUCTR) https://www.clinicaltrialsregister.eu/ctr-search/search
https://www.clinicaltrialsregister.eu/about.html

FDA medical device databases https://www.fda.gov/medical-devices/device-
advice-comprehensive-regulatory-assistance/
medical-device-databases

Finding clinical trials, research 
registers and research results (trials 
registers resource)

https://sites.google.com/a/york.ac.uk/
yhectrialsregisters

Global Index Medicus https://www.globalindexmedicus.net

Google Scholar https://scholar.google.com

Health Canada info on drugs and 
medical devices

https://clinical-information.canada.ca/search/ci-rc

Health Systems Evidence https://www.healthsystemsevidence.org/?lang=en

How CENTRAL is created https://www.cochranelibrary.com/central/central-
creation

International HTA database https://www.inahta.org/hta-database

InterTASC Information Specialists’ 
Sub-Group (ISSG) Search Filter 
Resource

https://sites.google.com/a/york.ac.uk/issg-search-
filters-resource/home

https://register.ema.europa.eu/identityiq/external/registration.jsf#/register
https://www.fda.gov/medical-devices/device-advice-comprehensive-regulatory-assistance/medical-device-databases
https://www.cochranelibrary.com/central/central-creation
https://sites.google.com/a/york.ac.uk/yhectrialsregisters
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TABLE 3.1  (Continued)

Resource URL

Japanese Pharmaceuticals and 
Medical Devices Agency (PMDA)

https://www.pmda.go.jp/english/review-services/
reviews/0001.html
https://www.pmda.go.jp/english/review-services/
reviews/approved-information/drugs/0001.html

KoreaMed https://www.koreamed.org/SearchBasic.php

KSR Evidence https://ksrevidence.com

Latin American and Caribbean 
Health Sciences Literature (LILACS)

https://lilacs.bvsalud.org/en

McMaster PLUS https://plus.mcmaster.ca/mcmasterplusdb

OpenTrialsFDA https://fda.opentrials.net/about

PDQ-Evidence https://www.pdq-evidence.org/en

PROSPERO https://www.crd.york.ac.uk/PROSPERO

PubMed PubReMiner https://hgserver2.amc.nl/cgi-bin/miner/miner2.cgi

ScanMedicine https://scanmedicine.com

Summarized Research in Information 
Retrieval for HTA (SuRe Info)

https://sure-info.org

SveMed+ https://svemedplus.kib.ki.se

Systematic Review Data Repository 
(SRDR+)

https://srdrplus.ahrq.gov

The Cochrane Handbook: Searching 
for Studies chapter – main text

https://training.cochrane.org/handbook/current/
chapter-04

The Cochrane Handbook: Searching 
for Studies chapter – technical 
supplement

https://training.cochrane.org/handbook/current/
chapter-04-technical-supplement-searching-and-
selecting-studies

The Cochrane Handbook: Searching 
for Studies chapter – appendix of 
resources

https://training.cochrane.org/handbook/current/
chapter-04-appendix-resources

The Cochrane Library https://www.cochranelibrary.com

Trip and Trip Pro https://www.tripdatabase.com

Web of Science https://clarivate.com/webofsciencegroup/solutions/
web-of-science

World Health Organization 
International Clinical Trials Registry 
Platform (ICTRP)

https://trialsearch.who.int

This table will be kept up to date on the book’s website (www.systematic-reviews3.org).
Source: Based on [31] and [32].

https://www.pmda.go.jp/english/review-services/reviews/0001.html
https://www.pmda.go.jp/english/review-services/reviews/approved-information/drugs/0001.html
https://training.cochrane.org/handbook/current/chapter-04
https://training.cochrane.org/handbook/current/chapter-04-technical-supplement-searching-and-selecting-studies
https://training.cochrane.org/handbook/current/chapter-04-appendix-resources
https://clarivate.com/webofsciencegroup/solutions/web-of-science
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3.1.1 Where Do CENTRAL Records Come From?

The justification for proposing that CENTRAL should be considered a key source for 
identifying trials for systematic reviews is based on the various projects that have been 
undertaken within Cochrane over the last 30 years to build CENTRAL. For further 
details, see the “How CENTRAL is created” webpage entry in Table 3.1.

3.1.2 The MEDLINE Re- tagging Project

In December 1993, NLM agreed to “re- tag” all MEDLINE records of randomized and 
quasi- randomized trial reports that were not already indexed as such in MEDLINE. 
The two terms for such trials (i.e. the Publication Type terms Randomized Controlled 
Trial and Controlled Clinical Trial) had only been introduced into MEDLINE in 1991 
and 1995, respectively, and many records pre- dated this indexing. The re- tagging 
project resulted in more than 125 000 MEDLINE records, published between 1966 and 
2004, being identified and included in CENTRAL [4, 9, 10]. Today, MEDLINE reports 
of RCTs continue to be identified for and included in CENTRAL.

3.1.3 The Embase Projects

In 1996, Elsevier agreed that reports of trials identified from Embase, whether or 
not they were indexed as trials, could be included in CENTRAL. As with MEDLINE, 
the relevant term for indexing RCTs had not been introduced into Embase until the 
early 1990s (1993). Many records pre- dated this indexing functionality, leading to the 
first Cochrane Embase project. More than a third of a million Embase records were 
scanned and about 100 000 additional trial reports, published between 1974 and 2010, 
were identified [10]. Only reports of trials in Embase, which were not already indexed 
as RCTs in MEDLINE, were of interest. These were then made available in CENTRAL. 
In 2013, a search filter to identify reports of RCTs using textual analysis of records was 
developed, which performs at over 97% sensitivity  [11]. In January 2015, following 
an analysis of selected and rejected records, the search filter for Embase on Ovid was 
improved. It was later translated for Embase.com and implemented in 2018 [12].

3.1.4 Crowdsourcing and Other Initiatives

In an ongoing crowdsourcing project, volunteers assess records retrieved from data-
bases such as Embase.com for relevance to CENTRAL. Two to six people assess 
whether a record is a report of an RCT. By November 2020, a “crowd” of approximately 
19 000  volunteers had helped to identify more than 175 000 reports of RCTs  [13]. 
The latest performance evaluation showed crowd sensitivity (the crowd’s collective 
ability to identify reports of randomized trials correctly) and crowd specificity (correct 
identification of records to be rejected) to be 99.1% and 99.0%, respectively [13]. The 
Australasian Cochrane Centre identified RCTs from the Australasian Medical Index 
1966–2009  [14]. A similar search was undertaken for KoreaMed up to March 2021. 
Searches are also ongoing for CINAHL Plus, ClinicalTrials.gov, and the WHO ICTRP. 
More than 3000 health care journals are being or have been handsearched, and records 
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from the registers maintained by Cochrane Groups and Fields (see Chapter 21) are 
also added to CENTRAL monthly (see Figure 3.2).

3.2 SOURCES TO SEARCH IN ADDITION TO CENTRAL

In addition to searching CENTRAL to identify clinical trials for systematic reviews, it 
is necessary to search other sources. For an overview of these sources, see Box 3.1. This 
includes searching sources not (yet) searched for inclusion in CENTRAL and conduct-
ing supplementary searches of those already searched for CENTRAL. Even highly 
sensitive filters for study design, such as those used to identify RCTs in MEDLINE [1, 
15], Embase [10, 12], and CINAHL Plus [16], can miss relevant studies. If there are not 
too many studies, it is preferable to search MEDLINE and Embase (and other databases) 
with subject searches only and omit study design filters. Reviewers should assess the yield 
of the subject searches to decide whether filters could be omitted to enhance sensitivity.

Box 3.1 Key Sources to Be Searched to Identify Randomized 
Controlled Trials for Systematic Reviews

• The Cochrane Central Register of Controlled Trials (CENTRAL) in the 
Cochrane Library

• MEDLINE and Embase (with the provisos outlined in the text)
• Other databases as appropriate
• Sources of ongoing, completed, published, or unpublished studies, including 

trials registers and regulatory sources
• Journals

CENTRALMEDLINE

Embase

Australasian
Medical
Index

KoreaMed

CINAHL Plus

Handsearching

Cochrane 
Specialized 

Registers

Clinical-
Trials.gov

WHO ICTRP

FIGURE 3.2  Sources contributing reports of randomized controlled trials to CENTRAL.
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• Gray literature, including conference abstracts, proceedings, dissertations 
and theses, etc.

• Websites and general web searching
• Citation sources and reference lists of included/excluded studies from related 

systematic views

There are many other sources in addition to CENTRAL, MEDLINE, Embase, 
and CINAHL Plus that should be searched. These include national, international, 
and regional databases; subject- specific databases; trials register resources and 
regulatory sources; gray literature including conference abstracts, dissertations, and 
theses; citation indexes; web searching; some newer sources focusing specifically 
on systematic reviews; and some newer document types such as pre- prints. Some 
of these sources are discussed below. They are discussed in detail in the Cochrane 
Handbook [17, 18].

3.2.1 Key Sources of Systematic Reviews

The sources listed below are collections of reviews, which in many cases provide 
access to lists of primary studies within those reviews. They offer helpful insights into 
the study identification methods used. See Table 3.1 for websites.

The Cochrane  Database  of  Systematic  Reviews (see also Chapter  21) con-
tains the full text of systematic reviews of relevance to health care, including detailed 
information about the studies assessed as eligible for the reviews and studies assessed 
to be ineligible. The reviews also serve as a useful resource for highly sensitive search 
strategies.

Epistemonikos provides access to the reports of studies included in published 
systematic reviews, overviews, and structured summaries [19]. The reviews are identi-
fied from 10 databases, as well as other sources. Following a search query (which can 
be formulated in nine different languages), the user can select relevant reviews, and 
the system collects all eligible studies reported in those reviews. In August 2021, Epis-
temonikos contained nearly 400 000 systematic reviews identified from databases and 
other sources and classified by human screeners and a machine learning algorithm [19].

The International HTA database contains ongoing and published health tech-
nology assessments (HTAs) commissioned or undertaken by HTA organizations 
worldwide from 1996 to date.

KSR  Evidence is a database of systematic reviews and meta- analyses pub-
lished since 2015. In August 2021, it contained nearly 180 000 records, of which over 
20 000  include a critical appraisal and a short summary with the key message of 
the review.

McMaster University offers a range of evidence databases (some focused on specific 
health care topics such as pain) containing reviews and critically appraised primary 
studies from its McMaster PLUS site. The university also provides Health Systems 
Evidence, a collection of research evidence about health systems and their management.
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PDQ- Evidence is a resource providing access to evidence on health systems, 
which functions similarly to Epistemonikos in that it collects the eligible studies 
within systematic reviews.

PROSPERO is an international register of prospectively registered systematic 
reviews, rapid reviews, and umbrella reviews in health and social care.

The Agency for Healthcare Research and Quality (AHRQ) offers a Systematic 
Review  Data  Repository (SRDR+)  [20] to support the production of systematic 
reviews. It also offers public access to the individual studies included in reviews and 
the data extracted from those studies.

Trip is a search engine for research evidence in PubMed, a range of evidence data-
bases and websites. Trip presents search results in a hierarchical order, starting with 
systematic reviews, evidence summaries, guidelines and guidance, and moving to 
other evidence summaries and individual trials, and to other research.

3.2.2 Databases and Other Sources Not (Yet) Searched for Inclusion 
in CENTRAL

Despite the major efforts to identify and promote access to reports of RCTs from MED-
LINE and Embase over the last 30 years, hundreds of health care databases and other 
sources (many in languages other than English) remain to be systematically searched. 
These include large multinational databases such as APA PsycINFO and Web of 
Science; language- specific or national research databases such as Global Index Medi-
cus, LILACS, and SveMed+; and search engines such as Google Scholar (see Table 3.1 
for websites). They are discussed in detail in the Cochrane Handbook [17, 18, 21].

3.2.3 Trials Registers, Regulatory Agency Sources, and Clinical 
Study Reports

Recent years have seen significant developments in the recording of information 
about ongoing trials. Many countries now have publicly accessible trials registers, and 
a dedicated website has been created by the authors of this chapter (“Finding clinical 
trials, research registers and research results”), which aims to list all international, 
national, and regional trials registers, together with some industry, subject- specific, 
and other registers (see Table 3.1). The WHO ICTRP provides access to a number of 
these resources, as does ScanMedicine, launched in May 2021 by the UK National 
Institute for Health Research (NIHR) Innovation Observatory (see Table 3.1).

Trials registers allow the prospective registration of trials, facilitate following the 
progress of a trial, and may facilitate access to trial results. They are a valuable resource 
for ongoing and completed trials, irrespective of whether the results are ever formally 
published, and can help address publication bias [22] (see also Chapter 5). In many 
countries, investigators are now obliged, by law or by their employers or funders, to 
register their trials in ClinicalTrials.gov (see Table 3.1) or other registers and to post 
their trial results. Trials registers, therefore, are an increasingly important source of 
information, including trial results. In 2011, over 12 000 ClinicalTrials.gov records had 
results in ClinicalTrials.gov, with many of these results not initially available from 
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other sources [23]. By August 2021, over 50 000 of the 400 000 studies in ClinicalTrials.
gov had results posted in the database.

There is extensive research into trial registration and its value and impact [24–
26]. Trials registers are still developing, and at present there is no single resource 
providing access to all trials register records. Hence searching a range of resources 
is required. Of note is that even though ClinicalTrials.gov is part of the ICTRP, both 
resources need to be searched separately to ensure that relevant records are not 
missed due to differences in search interfaces and record content [26, 27]. The extent 
to which this might still be the case with the latest ICTRP interface, released in its 
final version in June 2021, and the current ClinicalTrials.gov interface remains to 
be ascertained. Further guidance on how to search these resources is available else-
where [17, 18, 28].

Regulatory agencies are also an increasingly important source of information 
about trials and their results. Potentially relevant sources (see Table 3.1) include:

• Canada: in April 2019, Health Canada announced that it was starting to make 
clinical information about drugs and devices publicly available on its website.

• European Union (EU): the EU Clinical Trials Register (EUCTR).
• Japan: the Japanese Pharmaceuticals and Medical Devices Agency (PMDA) 

provides access to internal reviews of approved drugs and medical devices (see 
the Reviews section of its website).

• USA: Drugs@FDA provides access to internal reviews by the Food and Drug 
Administration (FDA). Information on devices can be found in the FDA med-
ical device databases.

Clinical study reports (CSRs) are the reports of clinical trials, providing detailed 
information on the methods and results of clinical trials submitted in support of 
marketing authorization applications. Sources include the European Medicines 
Agency (EMA).

Further information on the above is available in the Cochrane Handbook [17, 18, 21].

3.3  SEARCHING FOR STUDIES OTHER THAN RANDOMIZED 
CONTROLLED TRIALS

While considerable progress has been made in identifying studies for systematic reviews 
over recent decades [6, 9], particularly for identifying RCTs [17, 18, 21], identifying 
other types of studies has been less well developed. Detailed guidance exists for diag-
nostic accuracy studies [29], but widely accepted guidance is lacking for many study 
types. This book (see Chapters 15–19) and the Cochrane Handbook [30] include discus-
sions of searching for various types of evidence. Summarized Research in Information 
Retrieval for HTA (SuRe Info, see Table 3.1) [31, 32] provides information relating to 
identifying all types of studies for systematic reviews and HTAs. It provides access to 
current information retrieval methods articles, including structured appraisals, and 
has a section on methods to search for specific aspects of health technologies.
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3.4 BUILDING SEARCH STRATEGIES

Searches to inform systematic reviews usually aim to be extensive, i.e. to find as many 
relevant studies as possible. This emphasis on sensitivity intends to minimize publica-
tion and reporting biases (see also Chapter 5) and compensate for some researchers’ 
failure to fully communicate all aspects of their research in titles and abstracts [22, 
33–35]. As a consequence, reviewers will often tolerate low- precision searches to 
achieve sensitivity [36]. Low precision means looking at far more irrelevant records 
than relevant ones to avoid missing relevant ones. Sensitivity is achieved by using 
few search concepts but a wide range of search terms within each concept to capture 
reporting variation, and by searching a range of databases and other resources.

Searches should be developed to reflect the review question and the purpose and 
scope of the review, as the protocol is developed through discussions among the project 
team. Searches take account of the following:

• The concepts in the review question.
• The search terms that will capture the concepts.
• The bibliographic databases and other sources to be searched and their 

interfaces.

Reviewers should seek advice from a librarian or information specialist with expe-
rience in supporting systematic reviews. Librarians and information specialists offer 
advice and support in several areas, including the sources to search, designing search 
strategies, running the searches, saving, collating and de- duplicating search results, 
and obtaining copies of study reports. They support the use of reference management 
tools and other review production software, ensuring that retractions, errata, and 
comments are handled appropriately and that the study identification process is docu-
mented in compliance with current guidance [37–39]. They advise on the timing of 
any “update” or “top- up” searches to ensure that the review is as current as possible 
when published [17, 18].

3.4.1 Identifying the Concepts in the Review Question

Review questions are typically broken down into concepts, but only some of the 
concepts will inform the structure of the search strategy  [17, 18, 29, 40]. PICO is a 
widely used model for effectiveness questions: Population, Intervention, Comparator, 
Outcomes [41]. Of the four concepts within PICO, only two are typically used for a 
systematic review search strategy, because using many concepts reduces the sensitivity 
of the search and risks missing relevant records. Most effectiveness reviews feature the 
Population and Intervention concepts. Comparators and Outcomes are usually left out. 
Comparators may be too diverse to specify and may involve the absence of treatment 
(“do nothing”). Outcomes may also vary widely, be challenging to capture, or not be 
fully reported. Questions that are not about effectiveness may use different or addi-
tional concepts (for example PICOTS for prognostic studies, see Chapters 17 and 18). A 
study design concept to capture RCTs may be added to the PICO for systematic reviews 
of RCTs, using tested and, ideally, validated search strategies [42–45]. The InterTASC 
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Information Specialists’ Sub- Group (ISSG) Search Filter Resource (see Table 3.1) col-
lates search filters grouped by study design and focus.

Searching databases efficiently requires knowledge of their design and content 
and the available search facilities. A search strategy for trials in CENTRAL via the 
Wiley interface to the Cochrane Library will differ from a search of MEDLINE via the 
Ovid interface, regarding both the concepts and the syntax used to structure searches. 
A Population and Intervention structured strategy combined with an RCT filter in 
MEDLINE will not need an RCT filter when it is run in CENTRAL, since CENTRAL 
only contains randomized or quasi- randomized studies.

3.4.2 Identifying the Search Terms to Capture the Concepts

For each concept, as many applicable search terms as possible should be collected [17, 
18, 46]. Searchers typically build a list of relevant and related search terms that 
describe, for example, the Population and then assess whether any terms should be 
truncated (to capture term variations) or linked to other terms (phrases or words in 
proximity) [17, 18]. For example, a search designed to capture the Population concept 
of women with breast cancer will contain a range of search terms to reflect the ways in 
which the concept is described in the literature: “breast cancer”, “breast neoplasms”, 
“tumors of the breast”, “mammary cancers”, “mammary carcinoma”, etc.

Reviewers can identify search terms in several ways. The records of key papers 
can be identified and scanned for search terms. The strategies from published reviews 
may be a valuable source of search terms. Searchers may also talk to experts or con-
sult online thesauri, dictionaries, and web pages. Increasingly, searchers may use text 
mining (text analysis) tools to assess the concepts and identify search terms [47]. Text 
analysis packages, such as PubMed PubReMiner (Table 3.1), analyze the frequency of 
words and concepts in sets of records [18, 48, 49]. This can reveal frequently occurring 
words and phrases, which could be tested in search strategies, and identify concepts.

Searches make use of the title words, the abstract words, the author keywords, 
and any subject indexing (or thesaurus) terms that individual database producers have 
added to records, such as the MeSH terms added to MEDLINE records. Subject indexing 
schemes, such as MeSH, are often hierarchical, with broader (more general) indexing 
terms having one or more narrower (or more specific) term(s) below them. Subject 
indexing can increase search sensitivity by compensating for authors’ variations when 
describing a concept, and can provide information in addition to that contained in 
the title, abstract, and author keywords. Subject indexing terms should not, however, 
be relied upon as the sole search option. Some databases, such as Science Citation 
Index, do not have a formal subject indexing scheme. Others, such as CENTRAL, have 
a mixed scheme in that many records are MeSH indexed, and others (including all 
those derived from non- MEDLINE sources) are not. In MEDLINE, there are always 
thousands of records that are awaiting indexing and so would not be retrieved by a 
search that relied solely on MeSH. These differences underpin the need for a strategy 
to search title and abstract fields as well as subject indexing terms.

When developing a search term list, it is helpful to collect related terms and 
broader or narrower terms and take account of differences in UK and US English 
spelling and national terminologies, for example “tumor” and “tumour.” Abbreviated 
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and unabbreviated terms and acronyms should feature, and both the generic and brand 
names of products, such as pharmaceuticals, pesticides, or chemicals, should be used. 
Searchers should consider whether vocabulary has changed over time (for example 
third world country, developing country, low- income country). Table 3.2 describes fea-
tures such as truncation, wildcards, and proximity operators that should be consid-
ered, and gives examples for the Ovid and PubMed interfaces.

3.4.3 Combining Search Terms and Concepts

In many database interfaces, search terms and concepts are combined using Boolean 
operators (AND, OR, NOT). The OR operator gathers search terms within the same 
concept and identifies records containing one or more of those search terms. It makes 
the set of search results larger. A Population concept identifying breast cancer records 
will combine search terms as follows:

breast cancer OR breast neoplasms OR mammary cancer OR mammary carci-
noma (and so on).

The AND operator will find records containing all the concepts specified and 
makes a search more focused or narrower, reducing the size of the results set. In 
a Population AND Intervention search, the Boolean operator AND is used to find 
records that contain a Population search term and an Intervention search term. For 
example, to find records reporting on screening for breast cancer, a search would be 
structured as follows:

(breast cancer OR breast neoplasms OR mammary cancer OR mammary carci-
noma (and so on)) AND (mammography OR screening OR screen (and so on)).

The NOT operator excludes records from the search. It should generally be avoided, 
because its use may inadvertently remove relevant records  [17, 18]. For example, 
searching for “(breast AND cancer) NOT (colon AND cancer)” would remove records 
that are only about colon cancer, but also any records that were about both breast can-
cer and colon cancer.

When choosing which concepts to combine using Boolean operators, the most 
specific concept is typically developed and tested first. If only relatively few records 
are identified, or the review team is willing to screen large numbers of records, a 
single concept may be adequate. If there are too many records, the next most specific 
concept may be added via AND to the first concept to keep the number of retrieved 
records manageable. The impact of adding the second concept should be assessed 
in terms of the number of relevant records missed and the reasons for missing 
them. This might lead to the identification of further terms to add to the concepts; 
to the decision to abandon the second concept and try another concept; or to the 
conclusion that several different search combinations are necessary. This multi- 
stranded approach is often required in reviews of diagnostic test accuracy studies 
and other complex topics [17, 18, 29]. The process continues until the strategy seems 
to capture most relevant records.
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3.4.4 When to Stop Searching

Developing a search is iterative, involving the exploration of trade- offs between sen-
sitivity and precision. It is often difficult to decide objectively when a search is 
complete. Searchers typically develop “stopping decisions” based on their experience 

TABLE 3.2  Search syntax.

Option Description Examples in the Ovid interface Examples in the PubMed 
interface

Truncation Database- 
specific symbol 
that specifies 
that a word 
root can be 
expanded to find 
word variants

random$ – finds all words 
beginning with the stem 
“random”
random$3 – finds all word 
variants (with up to three 
letters), e.g. “random,” 
“randomly,” “randomise,” 
“randomize”

Random* – finds all words 
beginning with the stem 
“random”
(Note: if truncation is 
not used in PubMed, the 
interface will carry out 
a degree of automatic 
truncation)

Wildcards Account for 
internal spelling 
variation

“randomi?ed” – identifies 
“randomised” or “randomized”

Not available

Phrases Terms must 
appear next to 
each other

randomized adj trial
“randomized trial”

“randomized trial”
(PubMed does not perform 
adjacency search but uses 
a phrase index. Phrase 
searching turns off the 
automatic term mapping 
to synonyms and MeSH 
terms, unless there are 
zero results in which case 
term mapping will occur)

Proximity 
operators

Terms appear 
near to each 
other or a 
maximum 
distance apart

breast adj3 cancer* – searches 
for “breast” within three words 
of the word cancer or within 
three words of words beginning 
with the word stem “cancer”

Not available

Explosion 
of subject 
headings

Searching a 
single heading 
includes all 
more specific 
(narrower) 
subject heading 
terms

exp Clinical Trial/ – retrieves 
that heading and all the more 
specific (narrower) headings 
such as Controlled Clinical Trial, 
Randomized Controlled Trial etc.

Clinical Trial [mh] – 
retrieves that heading 
and all the more specific 
(narrower) headings such 
as Controlled Clinical Trial, 
Randomized Controlled 
Trial etc.

Headings 
without 
explosion

Searching a 
single heading 
finds only that 
heading

Clinical Trial/ Clinical trial [mh:noexp]
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of developing strategies. Researchers have suggested “stopping rules” based on the 
retrieval of new records: for example, stopping the development process if adding in 
a series of new terms to a search strategy yields no new relevant records, or precision 
falls below a certain cut- off point [50]. Stopping might also be appropriate when the 
removal of terms or concepts results in losing relevant records. Reviews of methods to 
assist with deciding when to stop developing the search reported few formal evalua-
tions of the approaches [36, 51].

Reviewers need to examine whether a strategy is performing adequately. One 
simple performance test is to check whether the search finds the publications that are 
known to be relevant or included in similar reviews [52]. However, this might also sig-
nify that the strategy is biased to known studies and might miss other relevant records. 
Citation searches and reference checking are additional ways to assess performance in 
finding known and unknown studies. Peer review of searches using the Peer Review of 
Electronic Search Strategies (PRESS) Checklist [53] should be routine. If some of the 
PRESS dimensions seem to be missing without adequate explanation or arouse con-
cerns, then the search may not yet be complete. Statistical techniques, such as capture–
recapture [54–57] or the relative recall technique [58, 59], can also be used to assess 
performance.

3.5 CONCLUSIONS

Considerable progress on identifying studies for systematic reviews has been 
made during the lifetime of this chapter, i.e. over three editions and 25 years. This 
includes improved access to reports of trials in MEDLINE and Embase and through 
CENTRAL [6, 9]; improved access to the results of trials before and irrespective of 
publication  [60]; and the establishment of databases providing access to systematic 
reviews and their included studies. More detailed guidance and standards on con-
ducting and reporting systematic reviews and identifying studies [37–39, 52, 61–64] 
have become available. New technologies have enabled more objective approaches 
to building search strategies and designing search filters, such as text mining  [65]. 
Finally, there is greater awareness of the role and value of librarians and information 
specialists as part of the systematic review team [17, 18, 66–71].
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Assessing the Risk of Bias 
in Randomized Trials
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Methodological characteristics of clinical trials are of obvious relevance to systematic 
reviewers. If the primary studies are flawed, then the conclusions of a systematic 
review will be compromised and may be misleading. Following the recommendations 
of organizations such as Cochrane  [1], and the US Institute of Medicine  [2], many 
reviewers formally assess the risk of bias (RoB) (or quality) of the included trials [3]. 
However, the methods for assessing RoB and its incorporation into systematic reviews 
remain a matter of ongoing debate [4, 5].

In this chapter, we discuss the concept of risk of bias and distinguish it from 
quality. We describe different sources of bias that can occur in randomized trials, and 
review the empirical evidence underpinning each source. We compare the composite 
scale and domain- based approaches to RoB assessment. Finally, we outline strategies 
for incorporating RoB assessments into meta- analysis.

4.1  RISK OF BIAS AND QUALITY

Bias refers to a systematic distortion of the study results or conclusions – in other words, 
an underestimation or overestimation of the true intervention effect [6]. In some trials 
bias is trivial, but in others it could be substantial. There is good empirical evidence 
that, on average, particular flaws in the design, conduct, and analysis of randomized 
trials are associated with biased intervention effects (see below). However, it is usually 
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impossible to know whether and to what extent methodological flaws have affected 
the results of a particular trial. For example, lack of participant blinding may result 
in underestimation of an effect in one study but overestimation in another. Also, the 
results of a study may in fact be unbiased despite a methodological flaw. For these rea-
sons, it is more appropriate to consider whether a study is at risk of bias rather than 
claiming with certainty that it is biased.

RoB can be distinguished from quality. In this context, quality refers to the extent 
to which study authors conducted their research to the highest possible standards. 
Some quality standards that have been described in the literature include methods 
that minimize RoB (e.g. blinding participants), obtaining  ethical approval, performing 
a sample size calculation, and reporting a trial in line with recommended guidelines 
(e.g. Consolidated Standards of Reporting Trials [CONSORT] 2010 [7]) [1]. The key 
distinction between RoB and quality is that trialists may have conducted their trial as 
well as was possible, yet an important RoB remains. For example, the results of a trial 
comparing physical therapy with surgery for knee osteoarthritis is unlikely to be free 
of bias due to the inability to blind participants and personnel; however, character-
izing such a trial as being of low quality is overly harsh when all other aspects of trial 
design, conduct, and reporting were performed appropriately. Further, not all markers 
of trial quality are directly associated with biased intervention effects. In addition, it 
is important to distinguish the quality of a study from the quality of the report; poor 
reporting of clinical trials is widespread [8], but a poorly reported study still may have 
been conducted well.

4.2  THE EVIDENCE BASE FOR RISK OF BIAS

Following a landmark study by Schulz et al. in 1995 [9], researchers have used meta- 
epidemiology to identify which methodological features of randomized trials are asso-
ciated with biased results  [10]. In most meta- epidemiological studies, a collection 
of meta- analyses is assembled and the individual trials within each meta- analysis 
are classified into those with or without a particular characteristic. Summary effects 
from the two sets of trials are then compared. For example, investigators may explore 
whether estimated treatment effects such as odds ratios systematically differ in trials 
without double blinding compared with trials with double blinding (Figure 4.1). They 
may quantify the average bias in trials that lack double blinding by calculating the 
ratio of odds ratios (ROR), which divides the pooled odds ratio of trials that lack dou-
ble blinding by the pooled odds ratio of trials with double blinding (ROR = ORwith flaw/
ORwithout flaw) [12]. An important caveat of such studies is that the assessment of meth-
odological characteristics is often entirely based on what is reported in articles, yet 
reported methods do not always reflect actual trial conduct. Despite the wide adop-
tion of CONSORT [7], reporting is often still incomplete [8]. Some well- conducted 
but poorly reported trials will thus be misclassified if quality is assumed to be inad-
equate unless information to the contrary is provided (the commonly used guilty- 
until- proved- innocent approach)  [13]. Despite this limitation, meta- epidemiology 
provides important evidence and we refer to the results of such studies throughout 
this chapter.
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4.3  SOURCES OF BIAS IN RANDOMIZED TRIALS

Bias can occur at various stages throughout a randomized trial, from enrollment and 
allocation to intervention groups, to reporting of the study findings (Figure 4.2). In 
this section, we describe key sources of bias using the framework that underpins the 
revised Cochrane RoB tool for randomized trials  [14]. We also discuss the method-
ological features that may safeguard against each source of bias (Table 4.1) and the 
empirical evidence supporting each feature.

4.3.1 Bias Arising from the Randomization Process

The aim of randomization is to create groups that are comparable with respect to any 
known or unknown prognostic factors such as age or disease severity. If such factors 
are not balanced at the start of the trial, they may wholly or partially account for 
any observed difference in outcomes between intervention groups [15]. The success 
of randomization depends on two interrelated procedures: sequence generation and 
allocation concealment. First, a random allocation sequence must be generated, for 
example by using a computer algorithm or tables of random numbers [16]. Second, 
this sequence must be concealed from investigators enrolling participants by, for 
example, performing randomization centrally at a site remote from trial location, or 
using sequentially numbered, sealed, opaque envelopes [16].

Study
Odds
Ratio (95% CI)

%
Weight

Roos 2000

Tsementzis 1990

Fodstad 1981

Maurice 1978

Subtotal
(I2 = 0.0%, P = 0.906)

NOTE: Weights are from random effects analysis

.25 .5 1 2

Favours control

1.24 (0.83, 1.86) 54.99

1.43 (0.62, 3.29)

1.22 (0.72, 2.08)

12.94

32.07

1.26 (0.93, 1.70) 100.00

0.52 (0.17, 1.54) 59.10

0.57 (0.15, 2.13) 40.90

0.54 (0.23, 1.25) 100.00

Favours experimental

5

Vermeulen 1984

Subtotal (I2 = 0.0%, P = 0.948)

Trials with double blinding

Trials that lack double blinding

FIGURE 4.1  Example of the use of meta- epidemiology to investigate bias due to lack of double 
blinding in a meta- analysis of antifibrinolytic treatment versus control for people with aneurysmal 
subarachnoid hemorrhage [11]. The outcome was hydrocephalus at the end of follow- up, which 
was reported less often in trials without double blinding than trials with double blinding. In other 
words, the trials that lacked double blinding overestimated the benefits of antifibrinolytic treatment 
on this outcome.
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The randomization process can be subverted in several ways. Awareness of 
impending assignments, which can occur, for example, when a random number 
table is openly posted on a bulletin board, can allow selective enrollment of patients 
based on prognostic factors. Extremely ill patients who would have been assigned to 
the experimental group, but who are less likely to recover, may be prevented from 
participating  [16]. Or some patients may deliberately be directed to the “appro-
priate” intervention by delaying their entry into the trial until the desired allocation 
becomes available [17]. An allocation schedule also may be deciphered by opening 
sealed assignment envelopes or holding them against a bright light to reveal the 
 contents [17].

TABLE 4.1  Eligible sources of bias in randomized trials.

Type of bias Possible methodological features that can lead to bias

Bias arising from the 
randomization process

Inadequate generation of a random sequence, 
inadequate allocation concealment, imbalance in baseline 
characteristics that suggests a problem with randomization

Bias due to deviations from 
intended interventions

Unblinded participants, unblinded personnel (clinician/
treatment provider), unbalanced deviations from intended 
interventions that arose because of the trial context

Bias due to missing 
outcome data

Missing/incomplete outcome data (dropouts, losses to 
follow- up)

Bias in measurement of 
outcomes

Unblinded outcome assessor

Bias due to selective 
reporting

Selective reporting of subset of measured outcome domains, 
or of a subset of outcome measurements or analyses for a 
particular outcome domain

Bias arising from the
randomization process

Bias due to deviations from
intended interventions

Bias due to
missing

outcome data

Bias in measurement of
the outcome

Bias due to selective
reporting

Truly
random?

Blinding of participants
and experimenters

Disease?

Disease?

Complete reporting

Omissions
from analysis

Blind
assessment

Concealment of
allocation

Randomization
Treatment

Control

FIGURE 4.2  Sources of bias in randomized trials.
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Evidence from a systematic review of meta- epidemiological studies suggests that 
odds ratios may be exaggerated by 7%, on average, in trials with inadequate or unclear 
sequence generation (Figure 4.3) [18]. Odds ratios also tend to be exaggerated by 10% 
on average in trials with inadequate or unclear allocation concealment  [18]. These 
results are similar to those observed in the more recent ROBES study [12].

4.3.2 Bias Due to Deviations from the Intended Interventions

Following assignment to groups, each intervention should be delivered to and received 
by participants as planned. However, participants may receive additional aspects of 
care, or intended aspects of care may not be delivered. Bias can arise when there 
are systematic differences between groups in such deviations from the intended 
interventions.

Keeping participants, carers, health care providers, and trial personnel unaware 
of the assigned intervention – a process known as blinding or masking – can reduce 
the RoB due to deviations from the intended interventions  [19]. Steps to achieve 
blinding include administering a placebo (inactive) drug, or a “sham” device that 
appears to be functioning, but is actually switched off, to a comparator group [20, 
21]. Successful blinding should prevent knowledge of the intervention assignment 
from influencing receipt of cointerventions other than what is intended, switch-
ing from the intended intervention to the alternative intervention, nonadherence 

Study

Page 2016

Effect estimate (95% CI)

ROR = 0.93 (0.86, 0.99)

ROR = 0.90 (0.84, 0.97)

ROR = 1.07 (0.92, 1.25)

ROR = 1.07 (0.78, 1.48)

ROR = 0.91 (0.64, 1.33)

ROR = 0.77 (0.61, 0.93)

Page 2016

BRANDO 2012

BRANDO 2012 (mortality)

BRANDO 2012 (other objective)

Inadequate more beneficial Inadequate less beneficial

BRANDO 2012 (subjective)

.5 1 1.5 2

Inadequate or unclear sequence generation (vs. adequate)

Inadequate or unclear allocation concealment (vs. adequate)

>20% of participants with missing data (vs. <20%)

Lack of or unclear double blinding (vs. double-blind)

FIGURE 4.3  Results of syntheses of meta- epidemiological studies relating methodological 
aspects of randomized trials to their effect estimates. CI, confidence interval; ROR, ratio of odds 
ratios. A ROR <1 denotes a larger intervention effect estimate in trials with an inadequate or 
unclear (versus adequate) characteristic. Effect estimates for double blinding are subgrouped into 
mortality, other objective outcomes, and subjective outcomes.
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to intervention, or failure to implement some or all intervention components as 
planned [22].

It is not always possible to blind participants, carers, health care providers, and 
trial personnel. However, absence of blinding need not lead to bias in all instances. 
If interest is in the effect of assigning people to an intervention, which is the focus 
of an intention- to- treat (ITT) analysis, then absence of blinding is problematic only 
when it leads to deviations from the intended intervention that arose because of the 
trial context and are not balanced across groups. Such deviations usually arise due 
to an expectation of a difference between the experimental intervention and com-
parator. For example, awareness that trial participants could have been assigned to 
surgery may make some who were assigned to physical therapy feel unlucky, which 
could influence them to seek surgery from a different hospital or self- administer a 
cointervention such as simple analgesics. If all deviations from the intended inter-
vention are consistent with what would occur outside the trial context (for example, 
participants might stop taking the assigned drug intervention because of its toxicity), 
there is a low RoB in the estimate of the effect of assignment to intervention [22]. 
In contrast, if our interest is in the effect of adhering to the intervention, then any 
nonadherence to the intended interventions or imbalances in cointerventions will 
increase the RoB in the effect  [22]. The assessment of possible bias must take the 
type of question the review aims to answer into account, which may range from effi-
cacy to real- world effectiveness [23].

Evidence of bias due to deviations from intended interventions largely comes 
from studies exploring the association of double blinding with intervention effects. The 
term “double blinding” is interpreted in different ways [24]. In the BRANDO study, 
it was defined as blinding of participants and either caregivers or outcome assessors 
or both. The BRANDO study found that lack of or unclear double blinding in trials 
with subjective outcomes was associated with a 23% exaggeration of odds ratios, while 
there was little evidence of such bias in trials of mortality or other objective outcomes 
(Figure 4.3) [25]. In contrast, the MetaBLIND study found no evidence of an average 
difference in estimated treatment effect between trials with and without blinded 
patients or health care providers, which could reflect that blinding is less important 
than is often believed or meta- epidemiological study limitations, such as residual con-
founding or imprecision [26].

4.3.3 Bias Due to Missing Outcome Data

The benefits provided by randomization – that is, to balance distributions of known 
and unknown prognostic factors – are jeopardized when outcome data are missing 
for some participants. Outcome data can be missing for several reasons, such as when 
participants are unable to be contacted because they moved without giving notice, or 
respondents accidentally miss some items in a questionnaire [27]. Also, participants 
who do not fully adhere to the intended intervention may be excluded from the anal-
ysis when, for example, a per- protocol analysis is performed.

Participants whose outcome data are missing are unlikely to be representative of 
all enrolled participants. Some participants assigned to an experimental intervention 
may not return for follow- up if they experience an adverse reaction to a treatment, 
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while others might not return if they are in complete remission [28]. Bias can arise 
when there are systematic differences between groups in the proportions of and rea-
sons for missing outcome data.

To minimize bias due to missing outcome data, outcome data should be obtained 
from as many randomized participants as possible. Analysis performed according to 
the ITT principle [29, 30] requires outcomes to be recorded for all randomized partic-
ipants. Complete outcome data can usually be achieved if the endpoint of interest is 
mortality from all causes. However, ascertaining other outcomes for all participants 
is frequently impossible, and most trials that report using an ITT analysis have data 
missing for some participants [31, 32]. Therefore, having complete data often requires 
that data for some participants need to be imputed: trialists estimate the missing values 
and then analyze the known and estimated data [33].

Empirical evidence of bias due to missing outcome data is conflicting [18]. In one 
meta- epidemiological study, trials using a “modified” ITT analysis had odds ratios that 
were exaggerated by 20% compared with trials using ITT analysis [34]. Modified ITT 
analyses do not comply with the ITT principle, but include patients who received at 
least one dose of the study drug or had at least one assessment [32]. In another study, 
trials with a dropout rate greater than 20% had odds ratios similar to trials with less 
than or equal to 20% dropout (Figure 4.3) [25]. In the ROBES study, trials rated at high/
unclear RoB due to incomplete outcome data (using version 1 of the Cochrane RoB 
tool [35]) had similar effect estimates as trials rated at low RoB (ROR 0.98, 95% cred-
ible interval 0.92, 1.05) [12]. It would be useful to know whether bias varies according 
to different amounts of and reasons for missing data, but this has not yet been explored 
in any meta- epidemiological study.

4.3.4 Bias in Measurement of Outcomes

Procedures for measuring outcomes such as recording events on a case report form 
should be similar regardless of the group to which participants are assigned. However, 
problems can occur if assessors are aware of the assigned intervention. For example, 
participants in an experimental intervention group may be monitored more closely for 
evidence of symptom reduction than participants receiving the comparator, particu-
larly if assessors have a vested interest in the findings. Also, participants receiving the 
comparator may exaggerate the severity of their symptoms, especially if they believe 
they have received an inferior intervention [14].

Blinding assessors to the intervention assignments can reduce the RoB in 
measurement of outcomes. Such blinding might be achieved by having an independent 
physician who was not otherwise involved record events or interpret results of a 
biological test  [36]. If the outcome measure is objective, measurement can always 
be performed by a blinded assessor [19]. However, if the outcome measure is patient 
reported, blinded assessment is only possible when the participants are unaware of 
their assigned intervention.

Some studies investigating bias in measurement of outcomes have found that inter-
vention effect estimates were larger in trials with unblinded assessment of subjective 
outcomes [37–39], although the recent MetaBLIND study found no evidence of such 
an association [26].
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4.3.5 Bias Due to Selective Reporting

Trialists should always provide a complete account of all measured and analyzed out-
comes. However, some trialists report data for only a subset of outcomes, depending 
on the statistical significance, magnitude, or direction of the results [40]. For example, 
participant deaths may be counted and compared between intervention groups, but 
trialists present no data because the effect favored the comparator [41]. This selective 
reporting of results would put a meta- analysis of deaths, which cannot include the 
nonreported data, at RoB. It is similar to publication bias resulting from an entire study 
remaining unpublished because of its unfavorable results (see Chapter 5).

In some cases, the intervention effect estimate that is reported in an article has been 
selected based on the results from multiple measurements or analyses. For example, 
trialists carry out analyses of change scores and post- intervention scores adjusted for 
baseline, yet only report analyses that yielded the most favorable effect estimate [42]. 
Such bias in selection of the reported result typically arises from a desire for findings 
to be sufficiently noteworthy to merit publication. This type of selective reporting puts 
effect estimates from individual primary studies at RoB in the same way as the other 
sources of bias described in this chapter.

Publicly disclosing the prespecified outcomes and analytic methods (for example, 
in a trial protocol or clinical trials register such as http://ClinicalTrials.gov) has been 
recommended to help minimize selective reporting [43]. In theory, such prespecifica-
tion should hold trialists to account to fully report all data, and prevent them from 
cherry picking the most noteworthy results.

Studies that have compared source documentation such as protocols or register 
entries from before the start of a trial with the final trial publication have found many 
discrepancies in the outcomes listed, and in the ways that analyses were planned and 
conducted [44, 45]. A large study of protocols submitted to a Swiss Ethics Committee 
found that 7% of protocol- defined primary outcomes and 19% of secondary outcomes 
were not reported in the corresponding publications [46]. While some of these discrep-
ancies may have been influenced by an attribute of the results such as statistical signif-
icance, others may be legitimate, or due to an unintentional omission [41]. Systematic 
reviewers must try to disentangle such reasons when assessing the RoB due to selective 
reporting, which makes this one of the most challenging sources of bias to assess.

4.4  APPROACHES TO ASSESSING RISK OF BIAS 
IN RANDOMIZED TRIALS

Having outlined several important sources of bias that may affect the results of 
randomized trials, we now consider how systematic reviewers can assess each source in 
the trials included in their review, and outline the advantages and disadvantages of each.

4.4.1 Composite Scale Approach

Many scales have been developed to assess RoB (or quality). Scales combine information 
on a range of components into a single numerical score, which may then be used to 
characterize trials as high or low quality. A search of the literature covering the years 
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up to 1993 identified 25 different quality assessment scales for randomized trials [47], 
a number that had increased to 94 by the year 2007 [48].

Although composite quality scales may provide a useful overall assessment when 
comparing populations of trials, there are many problems with their use in individual 
systematic reviews. Different scales vary considerably in terms of dimensions covered, 
size, and complexity. Many scales include items for which little evidence exists that 
they are in fact related to RoB. For example, the widely used Physiotherapy Evidence 
Database (PEDro) scale assesses whether between- group statistical comparisons or 
both point measures and measures of variability are reported  [49]. Some scales do 
not cover all of the most important sources of bias in randomized trials (i.e. those that 
are supported by empirical evidence); the commonly used scale developed by Jadad 
et  al.  [50] does not include an item on allocation concealment. Calculating a sum-
mary score assumes that each item in a scale deserves equal weight, whereas some 
features may be more important  – that is, more bias inducing  – than others. Also, 
the combination of individual responses into an overall score is meaningful only if 
all items relate to the same underlying construct. A recent study of the psychometric 
properties of the PEDro scale showed that it lacked construct validity  [51]. Finally, 
reporting a quality score does not provide a transparent account of the problems iden-
tified in a trial.

Unsurprisingly, different scales often reach discordant conclusions. Jüni et  al. 
re- analyzed a meta- analysis of 17 trials comparing low molecular weight heparin 
to standard heparin for thromboprophylaxis in general surgery patients  [52]. Each 
of 25 different quality assessment scales was used to stratify trials into high or low 
quality, and the results of stratified analyses differed depending on the scale used. 
While risk ratios of high- quality trials suggested that low molecular weight heparin 
was not superior to standard heparin when using certain scales, with other scales the 
opposite was the case [52]. Further, in a meta- epidemiological study the PEDro scale 
and Cochrane domain- based approach led to different sets of trials of adequate quality, 
and different combined treatment estimates from meta- analyses of these trials [53].

4.4.2 Domain- Based Approach

A preferable alternative to the composite scale approach is to judge RoB within sepa-
rate specified bias domains and to record the information on which each judgment is 
based: the domain- based approach. This is more transparent to users of a systematic 
review than a single quality score. The most popular domain- based tool in use is the 
Cochrane RoB tool for randomized trials [54].

4.4.2.1  Cochrane Risk of Bias tool for Randomized Trials

Originally released in 2008 [55] and revised slightly in 2011 [35], the Cochrane RoB 
tool provided a systematic way to organize and present the available evidence relating 
to RoB in randomized trials. The default (and recommended) application was to 
examine six evidence- based domains: random sequence generation, allocation con-
cealment, blinding of participants and personnel, blinding of outcome assessment, 
missing outcome data, and selective reporting. Each domain could be judged as being 
at either low, high, or unclear RoB, and rationale (such as verbatim quotes from the 
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journal article) could be provided to support each judgment. An “other bias” domain 
was also available to record additional concerns defined by the systematic reviewers. 
This flexibility inherent in the tool meant different teams implemented it in different 
ways [56]. An example of how assessments are typically presented in tables and figures 
is shown in Table 4.2 and Figure 4.4.

TABLE 4.2  Example of a completed Cochrane risk of bias table for a trial compar-
ing physiotherapy to glucocorticoid injection for shoulder pain.

Bias Reviewers’ 
judgment

Support for judgment

Random 
sequence 
generation

Low risk Quote: “Treatment allocation was according to the study 
number. Numbers were issued in a predetermined random 
sequence, in blocks of 10 by general practice, generated by 
a random number table.”
Comment: An adequate method was used to generate the 
allocation sequence

Allocation 
concealment

Low risk Quote: “The number corresponded with that on a sealed 
envelope issued to the patient by the nurse. Participants 
were instructed not to open the envelope until the nurse 
had left. The envelope contained information instructing 
the participant to either make an appointment with one of 
the trial physiotherapists or to return to their GP for a local 
steroid injection.”
Comment: An adequate method was used to conceal the 
allocation sequence

Blinding of 
participants 
and personnel

High risk Comment: Given the nature of the interventions, participants 
were not blind to treatment, and may have had different 
expectations about the benefits of each intervention

Blinding of 
outcome 
assessment 
(self- reported 
outcomes)

High risk Comment: Unblinded participants who may have had 
different expectations about the benefits of the intervention 
they received self- reported some outcomes

Blinding of 
outcome 
assessment 
(objective 
outcomes)

Low risk Quote: “Outcome assessments were performed by the study 
nurse, who was unaware of the treatment allocation.”
Comment: Assessor of objective outcomes was likely blinded 
to the intervention

Incomplete 
outcome data

Low risk Quote: “The completion rate of the trial at six months 
was 95% (196/207) with the following reasons for loss to 
follow- up: five other medical complications, two personal 
problems, four could not be contacted/refused visit. Intention 
to treat analysis was used.”
Comment: The amount and reasons for dropout are unlikely 
to have affected the results



TABLE 4.2  (Continued)

Bias Reviewers’ 
judgment

Support for judgment

Selective 
reporting 
(reporting 
bias)

Unclear risk Comment: Outcome data were fully reported for all 
outcomes reported in the methods section of the publication, 
but without a trial protocol it is unclear whether other 
outcomes were measured but not reported based on the 
results

Other bias Low risk Comment: No other sources of bias were identified

Source : Reproduced from [57]. The source trial is [58].
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FIGURE 4.4  Example presentation of risk of bias assessments (using the 2011 Cochrane risk 
of bias tool for randomized trials) for studies in a Cochrane review of therapeutic ultrasound for 
carpal tunnel syndrome [59]. Review authors’ judgments about each risk of bias item presented for 
each included study.
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Use of the RoB tool was made mandatory in Cochrane reviews, and it also became 
the most commonly used domain- based tool in non- Cochrane reviews of interven-
tions [54, 60]. However, several problems with the tool have been identified. Its inter- 
rater reliability is modest  [61, 62], and some users have found the wording in the 
guidance confusing [63]. The tool is frequently implemented in ways that are not rec-
ommended [64–67], such as merging domains addressing different types of bias into 
a single domain. Some review authors also consider non- bias- related processes like 
sample size or industry funding under the other bias domain [56]. Finally, the tool 
lacks a formal mechanism for reaching an overall RoB judgment.

4.4.2.2  RoB 2

In response to concerns identified in previous evaluations, a revised tool for assessing 
RoB in randomized trials (RoB 2) was developed. An initial draft of RoB 2 was released 
in 2016 [68] and a finalized version in 2019 [14]. The RoB 2 tool includes five domains 
that are broadly consistent with the existing tool, but have different terminology to 
explain more clearly what each domain addresses (Figure  4.5). These domains are 
intended to be comprehensive, covering all issues that might lead to a RoB, and for this 
reason review authors cannot add other domains to the tool. The tool provides signaling 
questions, which are reasonably factual in nature and whose answers flag the poten-
tial for bias. Assessments are directed at a specific trial result, reflecting the fact that a 
particular methodological feature such as lack of participant blinding may bias results 
for certain outcomes like patient- reported quality of life but not others, for example 
all- cause mortality. The tool includes a rule that the overall RoB for the result is driven 
by the worst judgment across all domains in the tool. Thus, if any domain is assessed 

Cochrane Risk of Bias tool
(original version)

RoB 2

Random sequence generation
(selection bias) Bias arising from the

randomization processAllocation concealment
(selection bias)

Blinding of participants and personnel
(performance bias)

Bias due to deviations from
intended interventions

Incomplete outcome data
(attrition bias)

Bias due to
missing outcome data

Blinding of outcome assessment
(detection bias)

Bias in measurement
of the outcome

Selective reporting
(reporting bias)

Bias in selection of the
reported result

Other bias –

– Overall bias

FIGURE 4.5  Domains of bias in the initial and revised Cochrane risk of bias tool for randomized 
trials (RoB 2).
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to be at high RoB, then that is the assessment overall. Further, separate templates are 
available for individually randomized parallel group trials, cluster- randomized parallel 
group trials, and individually randomized crossover trials.

The revised tool builds on the Risk of Bias In Non- Randomized Studies of Inter-
ventions (ROBINS- I) tool  [22], described in Chapter  15. Some domains of bias are 
applicable to both randomized trials and nonrandomized studies of interventions 
(e.g. bias due to missing outcome data, bias in measurement of the outcome) and so 
are addressed by both tools. This consistency should facilitate the comparison of RoB 
across different study designs in systematic reviews that include both randomized and 
nonrandomized studies of interventions.

4.5  INCORPORATING RISK OF BIAS IN META- ANALYSIS

As noted at the start of this chapter, if there is a high RoB in the primary studies, then 
the conclusions of a systematic review may be misleading. Accounting for RoB assess-
ments in meta- analysis therefore makes sense. However, surveys of user practice show 
that while most systematic reviewers routinely assess RoB, they infrequently incorpo-
rate those assessments into the meta- analysis [3, 54, 60, 69]. In this section, we outline 
a number of different approaches that have been proposed for this purpose.

4.5.1 Excluding Studies at High Risk of Bias from the Meta- Analysis

When RoB varies across studies included in a meta- analysis, one option is to restrict 
the primary meta- analysis to trials rated at low RoB [1]. Selecting this strategy involves 
a trade- off between bias and precision, because if only a few studies are rated at low 
RoB the meta- analysis result may be imprecise. Systematic reviewers who restrict their 
primary analysis in this way are encouraged to perform a sensitivity analysis including 
all trials to see if the treatment effect changes when trials at high RoB are included [1].

When using this approach, deciding how to categorize trials as low risk or high 
risk overall requires some consideration. Systematic reviewers could adopt criteria by 
which the overall RoB is classified as low if all key domains are at low RoB, high if at 
least one key domain is at high RoB, or some concerns if at least one key domain is rated 
at some concerns in the absence of high risk. However, such criteria will be unhelpful 
if none of the included trials is rated at low RoB overall (as is quite common) [54]. 
Systematic reviewers may therefore consider performing separate sensitivity analyses 
based on each of the domains of RoB that are considered important in the context of 
a given meta- analysis [70].

4.5.2 Quality Score as a Weight in Meta- Analysis

An alternative approach is to directly incorporate information on trial quality as weight-
ing factors in the analysis. In standard meta- analysis, effect estimates of individual 
trials are weighted by the inverse of their variance [71]. The larger the trial, the smaller 
the variance of the effect estimate and the greater the weight the trial receives in meta- 
analysis (see Chapter 9 for a discussion of statistical methods). Trial weights can be 
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multiplied by quality scores that increase the weight of trials deemed to be of high 
quality and decreasing the weight of low- quality trials [5, 40, 72, 73]. A trial with a 
quality score of 40 out of 100 might thus get the same weight in the analysis as a trial 
with half the amount of information but a quality score of 80.

Several criticisms have been raised against weighting by quality scores  [49, 72, 
74–76]. The choice of quality scale will influence the weight of individual trials in 
an analysis, and the combined effect estimate and its confidence interval therefore 
depend on the choice of scale. Also, if some of the studies have particularly impor-
tant methodological flaws, but these have not been picked up by the quality scale, the 
result of the trial will not be sufficiently down weighted in the meta- analysis [74, 76]. 
Finally, down weighting does not address bias itself, which is better addressed using 
adjustment approaches.

4.5.3 Adjusting Results of Trials for Bias

Methods have recently been proposed to adjust the results of trials included in 
meta- analyses for expected biases. In other words, the effect estimates are adjusted 
to what they should be if they were unbiased. One method uses the evidence from 
meta- epidemiological studies to provide empirically based prior information on the 
degree of bias that can be expected from studies at high RoB. This information is 
then used to adjust the observed trial effects for expected bias within a Bayesian 
paradigm [77]. Incorporating uncertainty in the degree of bias leads to additional 
down weighting of trials at high RoB. This approach relies on the assumption that 
bias in the present study is similar to the average bias in previous studies with the 
same methodological flaw. The down weighting can be substantial if the adjustment 
takes into account both variability of bias across trials and variability of bias across 
meta- analyses in the meta- epidemiological data, as is commonly recommended, 
since this variability leads to a high amount of uncertainty in the degree of bias in 
a new trial [25].

In another approach, trial results are adjusted based on a detailed assessment of 
the methodological characteristics of each trial and opinions elicited from experts 
about the degree of bias that is likely to result. Trial- specific, bias- adjusted estimates 
are then combined using standard meta- analysis models [78]. The disadvantages of 
this approach are that obtaining expert opinions can be time- consuming, and the opin-
ions are themselves subjective.

Both approaches require the use of specialized statistical techniques with increased 
complexity and software constraints, and at present are not sufficiently well developed 
for widespread use.

4.6  CONCLUSIONS

Ample evidence shows that many trials are methodologically weak and that their 
deficiencies translate into biased findings of systematic reviews. Assessing the RoB 
in randomized trials and conducting sensitivity analyses based on RoB should there-
fore be considered routine procedures in meta- analysis. Although composite quality 
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scales may provide a useful overall assessment when comparing populations of trials, 
such scales should not be used to identify trials of apparent low or high RoB in a given 
meta- analysis. Rather, the relevant methodological aspects should be assessed indi-
vidually, using comprehensive, evidence- based tools. These should generally include 
key sources of bias, including bias arising from the randomization process, bias due 
to deviations from intended interventions, bias due to missing outcome data, bias in 
measurement of the outcome, and bias due to selective reporting.
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Consider the (fictional) city of Melstol. The council recently called residents to vote on 
a proposal to ban cheering and clapping at the local football stadium to placate noise- 
sensitive residents. Passionate campaigning on both sides of the debate led to a record 
turnout on election day. Officials declared a close victory for the ban, and supporters 
rejoiced noiselessly with vigorous air punches. However, journalists later discovered 
that officials had withheld voting forms for 10% of the electorate living in an area 
that overwhelmingly opposed the measure. A recount including the suppressed votes 
overturned the original result, to the relief of diehard football fans. Yet all residents 
remain concerned by the systematic suppression of votes and credibility of the council 
was dented.

Systematic reviewers seeking to identify all relevant evidence face a similar 
situation. Study investigators may make decisions about dissemination of their 
research findings based on P values, or the magnitude or direction of their results. 
Results that are not available to reviewers may therefore differ systematically from 
those that are. The phenomenon is widely known as reporting bias, although it might 
be described more accurately as nonreporting bias [1, 2]. Omission of relevant study 
results can bias the results of a meta- analysis, putting the credibility of the review in 
doubt. Reporting biases can also lead to bias in published results, if they are selected 
for publication from multiple analyses of the same association (described as bias in 
selection of the reported result [3, 4]). Such bias is addressed by tools to assess risk of 
bias within studies (see Chapter 4).

In this chapter, we summarize the empirical evidence for various reporting biases 
that lead to study results being unavailable for inclusion in systematic reviews, with a 
focus on health research. We describe processes that systematic reviewers can use to 
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minimize the risk of bias due to missing results in a meta- analysis. We also outline dif-
ferent tools, plots, and statistical methods that have been designed for assessing risk of 
bias due to missing results in meta- analyses.

5.1  THE EVIDENCE BASE FOR REPORTING BIASES 
IN HEALTH RESEARCH

Basing decisions about publication on P values, or the magnitude or direction of results, 
has traditionally been referred to as publication bias. To study this phenomenon, inves-
tigators have drawn samples of clinical studies from research ethics committee list-
ings [5], conference proceedings [6], and regulatory submissions [7], recorded which 
studies were published in journal articles, and examined the nature of the results in 
both the published and unpublished studies. These investigations have found that, on 
average, studies with statistically significant or “positive” results are more likely to be 
published than null or “negative” studies (Figure 5.1). Such an association has been 
observed for randomized and nonrandomized studies of interventions [5], diagnostic 
test accuracy studies [8], prognostic accuracy studies [9], and qualitative studies [10]. 
Published randomized trials of health interventions also tend to have larger inter-
vention effect estimates on average than unpublished trials [11], which suggests that 
studies with smaller effects might be considered less worthy of publication.

Research can be disseminated selectively in other ways. Compared with studies with 
null or negative results, studies with positive results are more likely to be published ear-
lier (time- lag bias) [12–16], reported in multiple journal articles (duplicate or multiple 
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FIGURE 5.1  Random- effects meta- analysis of meta- analyses investigating the association 
between publication status and the P value, magnitude, or direction of the results. Data for the 
meta- analysis of studies submitted for research ethics committee approval come from Schmucker 
et al. [5]. Data for the meta- analysis of randomized trials presented at conferences come from 
Scherer et al. [6]. Data for the meta- analysis of clinical trials submitted for regulatory approval 
come from Chan et al. [7].
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publication bias) [2, 17], and cited more frequently by others (citation bias) [18], although 
the magnitudes of the associations vary across clinical areas [12]. When studying pairs 
of randomized trial reports written by the same authors with one report published in 
German and the other in English, in 1997 Egger et al. found that the authors were more 
likely to publish trials in an English- language journal if the results were statistically 
significant (language bias)  [19]. This led to concerns that meta- analyses restricted to 
studies in English could exaggerate an intervention effect. However, later studies com-
paring trials published in English with trials published in a language other than English 
found the opposite direction of bias, with treatment effects slightly smaller in trials pub-
lished in English than in trials published in another language [11, 20, 21]. A consequence 
of all these selective dissemination practices (e.g. publication bias, time- lag bias, lan-
guage bias) is that the subset of studies that are included in systematic reviews may have 
results that are systematically different from studies that are less readily accessible.

Even when a study report is available, results for some outcomes that were 
assessed may be missing or incompletely reported because of the P value, or the 
magnitude or direction of the results (selective nonreporting bias or outcome report-
ing bias). Several studies have compared journal article reports of studies with their 
corresponding protocols  [22, 23], trials register entries  [24, 25], or documents sub-
mitted to regulators [26], and identified frequent nonreporting of results for outcomes 
that were prespecified. The largest such study compared 227 protocols and amend-
ments with 333 matching articles published between 1990 and 2008 [23] and found 
that 7% of protocol- defined primary outcomes and 19% of secondary outcomes were 
not reported. In a more recent analysis, the COMPare study found that results were 
missing for 42% of outcomes prespecified in 67 trials published between October 2015 
and January 2016 in the world’s top five general medical journals [27]. Other studies 
suggest that statistically significant results for beneficial outcomes had higher odds of 
being completely reported than nonsignificant results [28] (Figure 5.2).
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FIGURE 5.2  Random- effects meta- analysis of studies investigating the association between 
reporting results completely for benefit outcomes and the statistical significance of the results. 
Source: Data come from Chan et al. [22, 29] and Dwan et al. [28].
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5.2  APPROACHES TO MINIMIZE RISK OF BIAS DUE TO 
MISSING RESULTS

Regardless of whether an entire study or a subset of its results is unavailable, the 
potential consequence for a meta- analysis is bias. In this section, we describe two strat-
egies systematic reviewers can use to minimize the risk of bias due to missing results 
in a meta- analysis: searching beyond journal articles, and restricting meta- analyses to 
inception cohorts.

5.2.1 Searching Beyond Journal Articles

As described in Chapter 3, results of health research are available in various sources 
other than bibliographic databases of published studies like MEDLINE. No single 
resource gives access to all studies, so systematic reviewers should strive to search 
multiple sources. These include study registers such as http://ClinicalTrials.gov, 
databases of conference proceedings, dissertations and other “gray literature” (e.g. 
unpublished government and institutional reports), and grants databases such as 
NIH RePORTER [30]. Also, contacting authors or sponsors of studies may yield addi-
tional information. For clinical trials of regulated interventions (drugs and devices), 
reviewers should also consider consulting manufacturer registers such as the Glaxo-
SmithKline Study Register, websites of regulatory agencies like the European Medi-
cines Agency, and health technology assessment agencies such as the International 
Network of Agencies for Health Technology Assessment [30, 31].

Many studies have shown that including results from sources other than journal 
articles can influence the magnitude or precision of meta- analytic effects [32–35]. 
For example, Mayo- Wilson et  al. found that depending on whether the study 
data source was a journal article, conference abstract, regulatory document, or 
individual participant dataset, they were able to produce a meta- analytic result 
showing that an agent was effective for pain relief in some instances and ineffective 
in others [36], which shows how valuable it can be to search beyond standard bib-
liographic databases.

Identifying and using data in sources other than journal articles can present var-
ious challenges. For example, search interfaces for trials registers are relatively unso-
phisticated  [31], and there may be long delays between request and receipt of data 
from regulators or manufacturers [37]. Nevertheless, the task of uncovering such data 
should be undertaken, especially when the published studies do not report data on key 
outcomes that are likely to have been measured.

5.2.2 Restricting Meta- Analyses to Inception Cohorts

Study identification is retrospective in most systematic reviews; that is, authors typ-
ically search for reports of completed studies. However, given the evidence that com-
pleted studies with positive results are easier to identify because of the nature of their 
results, systematic reviews based on completed studies are likely to include a biased 
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subset of all studies conducted. To minimize biased inclusion of studies, systematic 
reviewers might instead synthesize results of studies that could be identified before 
their results became known (an inception cohort). For example, different teams of 
researchers could work together to design and conduct a set of studies addressing 
the same question, and synthesize the results once all studies are completed (pro-
spective meta- analysis) [38]. Assuming the researchers agreed to include all relevant 
results in the analysis, there would be no risk of bias due to missing results in the 
prospective meta- analysis. Few prospective meta- analyses have been conducted, but 
numbers are increasing: a systematic search for all prospective meta- analyses pub-
lished up to February 2018 identified 43, almost half of which were published from 
2015 onward [39].

Prospective meta- analysis is recommended for high- priority research questions 
for which limited previous evidence exists and new studies are expected to emerge, 
and is not suitable in all cases [39]. However, systematic reviewers can generate an 
inception cohort in other ways, for example by restricting inclusion to prospectively 
registered (or preregistered) studies addressing the review question [40], or identifying 
trials from trials registers before results were generated and working together with 
the trialists to populate the meta- analysis [41]. If all relevant results are available for 
all prospectively registered studies, there will be no bias due to missing results in a 
meta- analysis of these studies. If results are unavailable for some of the prospectively 
registered studies, then authors using this approach will be able to quantify how much 
evidence is missing, unlike a standard (retrospective) systematic review. However, a 
limitation of this approach is that the precision of a meta- analysis may be low if there 
are only a few, small, prospectively registered studies addressing the review question. 
Restricting a synthesis to an inception cohort may therefore involve a trade- off bet-
ween bias and precision.

5.3  APPROACHES TO ASSESS RISK OF BIAS DUE  
TO MISSING RESULTS

Researchers have developed many approaches seeking to assess selective publica-
tion or reporting of study results, and the impact this may have on a meta- analysis. A 
systematic search for scales and checklists designed to help authors make a qualitative 
judgment about the risk of reporting biases identified 15 tools published up to February 
2017 [42]. The tools varied by the type of reporting bias (publication bias or selective 
nonreporting bias) assessed; the target of assessment (e.g. an individual study or a 
meta- analysis of studies); and the criteria used to designate a study or meta- analysis 
as at risk of bias. A systematic search for graphical and statistical approaches designed 
to detect or adjust for reporting biases identified nearly 100 methods published up to 
January 2013 [43], and additional methods have been developed since [44]. However, 
all these approaches have limitations, and few have been validated empirically using 
examples in which the true amount of missing evidence was known. In the following 
section, we provide an overview of some of the available methods.



 Investigating and Dealing with Publication Bias 79

5.3.1 Tools to Assess Selective Nonreporting of Results in The 
Identified Studies

Various tools have been developed to assess selective nonreporting of results [42]. All 
emphasize the importance of retrieving the study’s protocol, registration record, or 
statistical analysis plan, so that the planned outcomes and analyses can be compared 
with those that were reported [42]. If study plans are not available (which is more likely 
to be the case for older studies, and for nonrandomized studies), an assessment of 
selective nonreporting is still possible. For example, review authors can check whether 
any outcomes listed in the Methods section of a report are incompletely reported 
or have no corresponding results available in the Results section. By “incompletely 
reported” we mean that the study authors present insufficient data for inclusion of the 
result in a meta- analysis (for example, stating only that the between- group difference 
in the number of deaths was not significant, rather than reporting the number of 
deaths in each group or the risk ratio and 95% confidence interval). Regardless of the 
study design, users can also gauge the likelihood that a particular outcome of interest 
was measured, taking into consideration factors such as the clinical importance of the 
outcome. For example, pain is a defining symptom of shoulder disorders [45], so its 
absence in a trial report may raise suspicion of selective nonreporting.

An approach commonly used to assess selective nonreporting of results was via 
one of the domains of the 2011 Cochrane risk of bias tool for randomized trials [46] 
(introduced in Chapter 4). The tool asks users to judge the risk of selective nonreport-
ing bias in a study as either low, unclear, or high, and to provide reasons for their judg-
ment. This approach has limitations [47, 48]. Study- level assessments inform readers 
which studies the systematic reviewers have concerns about, but not necessarily which 
results were incompletely reported or missing entirely from those studies. An audit of 
Cochrane reviews published in 2015 found that in 39% of studies rated at high risk of 
bias due to selective nonreporting, users of the risk of bias tool failed to specify the 
particular results that were incompletely reported [48]. Outcome- level assessments, as 
recommended by the ORBIT (Outcome Reporting Bias In Trials) tool [49], can over-
come this problem by displaying which results are unavailable for which studies, and 
whether the reasons for unavailability give cause for concern.

A limitation of existing tools for assessing selective nonreporting of results is that 
they do not guide reviewers to assess the risk of bias in meta- analyses that are unable to 
include the selectively nonreported results. This may explain why only 30% of Cochrane 
review authors who declared suspicion of selective nonreporting in their included studies 
acknowledged that the meta- analyses presented in the review were missing results [48]. 
A new framework that addresses these problems has recently been developed [50].

5.3.2 Qualitative Signals for Additional Missing Results

Some tools for assessing risk of reporting biases guide users to consider various 
qualitative signals that suggest additional results may be missing from studies that 
have not been identified [42]. These signals include:
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• Sources of unpublished studies (e.g. trials registers) were not consulted.
• Specialized bibliographic databases that are likely to index studies relevant to 

the review question were not consulted.
• Only English- language studies were eligible, but the review addresses a question 

frequently investigated in countries speaking a language other than English.
• The research area addressed by the review is fast moving (hence there is a risk 

of time- lag bias).
• There is prior evidence of reporting bias in the research area addressed by 

the review.

The presence of one or more of these signals does not prove that additional results 
are missing from a particular meta- analysis. However, considering them is useful when 
trying to reach an overall judgment about risk of bias due to missing results, particu-
larly in cases where information on prespecified outcomes and analyses is unavailable 
for most studies.

5.3.3 Funnel Plots

Funnel plots have long been used to assess the possibility that results are systemat-
ically missing from a meta- analysis. However, they should not be considered to be 
diagnostic of the presence of reporting biases because several other factors influence 
their appearance [51]. In this section, we describe what funnel plots are and how to 
interpret them.

First used in educational research and psychology [52], a funnel plot is a simple 
scatter plot of the intervention effects estimated from individual studies on the x axis 
against some measure of study size on the y axis, typically the standard error of the 
effect estimate [53]. The name “funnel plot” is based on the fact that the precision of 
the estimate of the underlying intervention effect will increase as study sample size 
increases; effect estimates from small studies will therefore scatter more widely at the 
bottom of the graph, with the spread narrowing among larger studies. The plot will 
resemble a symmetric, inverted funnel if there is no bias or between- study heteroge-
neity, and hence the scatter is due to sampling variation alone (see panel a of Figure 5.3).

Reporting biases are one of several factors that may lead to asymmetry in a funnel 
plot (Table  5.1). For example, if smaller studies showing no statistically significant 
effects remain unpublished, then such publication bias will lead to an asymmetric 
appearance of the funnel plot with a gap in the bottom corner of the graph (see panel 
b of Figure 5.3). However, studies with less methodological rigor tend to show larger 
intervention effects [58], so asymmetry also can arise when some smaller studies are at 
higher risk of bias and therefore produce larger intervention effect estimates (see panel 
c of Figure 5.3). Therefore, the funnel plot should be seen as a generic means of exam-
ining small- study effects – the tendency for the smaller studies in a meta- analysis to show 
larger treatment effects – rather than a tool to diagnose specific types of bias [51, 56].

The studies displayed in a funnel plot may not always estimate the same under-
lying effect of the same intervention, and such heterogeneity between results may lead 
to asymmetry in funnel plots if the true intervention effect is larger in the smaller 



 Investigating and Dealing with Publication Bias 81

0

1

2

3

0

1

2

3

0

1

2

3

0.25

(a)

(b)

(c)

0.5 1 2 4

0.25 0.5 1 2 4

0.25 0.5 1

Relative risk

S
ta

nd
ar

d 
er

ro
r

2 4

FIGURE 5.3  Hypothetical funnel plots: (a) symmetric plot in the absence of reporting bias (open 
circles indicate smaller studies showing no statistically significant results); (b) asymmetric plot 
in the presence of reporting bias (smaller studies showing no statistically significant results are 
missing); (c) asymmetric plot in the presence of bias due to methodologically flawed smaller studies 
(open circles indicate small studies using few methodological safeguards, whose results are biased 
toward larger effects).
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studies. For example, randomized trials conducted in high- risk patients will tend to 
be smaller because of the difficulty in recruiting such patients, and because increased 
event rates mean that smaller sample sizes are required to detect a given effect [54]. 
Small trials generally are conducted before larger trials are established, and in the 
intervening years standard, control treatments may have improved, which can reduce 
the relative efficacy of the experimental treatment. Trialists may have implemented 
interventions less thoroughly in larger trials, thus explaining the more positive results 
in smaller trials [55].

Some effect estimates, such as log odds ratios, are naturally correlated with their 
standard errors. Because of this, a funnel plot that shows no asymmetry when plotted 
using one effect measure could be asymmetric when plotted using a different one [56]. 
Finally, it is possible that an asymmetric funnel plot arises merely by chance.

5.3.4 Contour- Enhanced Funnel Plots

An enhancement to the funnel plot includes contour lines corresponding to levels of 
statistical significance: P = 0.01, 0.05, 0.1, etc. [59]. This facilitates inspection of the 
statistical significance of study effect estimates and whether areas in which studies 
seem to be missing are related to P values. Such contour- enhanced funnel plots may 
help systematic reviewers differentiate asymmetry due to reporting biases from bias 
due to the other factors described in Section 5.3.3.

Consider the funnel plot in Figure 5.4, which represents a meta- analysis of the 
effect of selective serotonin reuptake inhibitors (SSRIs) versus placebo on treatment 
response, where a risk ratio greater than 1 indicates benefit of SSRIs [60]. There is a 
suggestion of missing results in the left- hand side of the plot, where results would 
be unfavorable to SSRIs, and in the area of statistical nonsignificance, which adds 

TABLE 5.1  Possible sources of asymmetry in funnel plots.

1. Publication bias and other reporting biases
• Entire study reports, or particular results, of smaller studies are unavailable because 

of the P value, magnitude, or direction of effect.

2. Poor methodological quality leading to spuriously inflated effects in smaller studies
• Asymmetry can arise when some smaller studies are of lower methodological quality 

and produce larger intervention effect estimates.

3. True heterogeneity
• Substantial benefit may be seen only in patients at high risk for the outcome that is 

affected by the intervention, and usually these high- risk patients are more likely to be 
included in small, early studies [54].

• Some interventions may have been implemented more thoroughly in smaller trials 
and may therefore have resulted in larger intervention effect estimates [55].

4. Artefactual
• Some effect estimates are naturally correlated with their standard errors, and this can 

produce spurious asymmetry in a funnel plot [56, 57]

5. Chance

Source: Adapted from Egger et al. [51].
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credence to the possibility that the asymmetry is due to reporting biases. Contrast this 
with the funnel plot in Figure 5.5, which corresponds to meta- analysis of the effect of 
higher versus lower intake of long- chain omega- 3 fats on all- cause mortality, in which 
a risk ratio lower than 1 indicates benefit of higher intake [61]. In this case, there is a 
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FIGURE 5.4  Contour- enhanced funnel plot for meta- analysis of the effect of selective serotonin 
reuptake inhibitors (SSRIs) versus placebo on treatment response (Clinical Global Impressions 
Improvement scale [CGI- I]) [60]. There is a suggestion of missing results in the left- hand side of the 
plot, where results would be unfavorable to SSRIs, and in the area of statistical nonsignificance (i.e. 
the white area where P > 0.10), which adds credence to the possibility that the asymmetry is due to 
reporting biases.
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FIGURE 5.5  Contour- enhanced funnel plot for meta- analysis of the effect of higher versus lower 
intake of long- chain omega- 3 fats on all- cause mortality [61]. There is a suggestion of missing 
results in the right- hand side of the plot, where results would be favorable to lower intake of 
omega- 3, and in the area of statistical nonsignificance (i.e. the white area where P > 0.10). However, 
given that almost all results in the plot appear in the area of statistical nonsignificance, this reduces 
the plausibility that reporting bias is the underlying cause of this funnel plot asymmetry.
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suggestion of missing results in the right- hand side of the plot, where results would 
be favorable to lower intake of omega- 3, and in the area of statistical nonsignificance. 
However, given that almost all results in the plot appear in the area of statistical non-
significance, i.e. both large and small studies finding a beneficial effect of higher or 
lower intake were nearly all not statistically significant, this reduces the plausibility 
that reporting bias is the underlying cause of this funnel plot asymmetry.

Funnel plot asymmetry thus may raise the possibility of bias due to missing results, 
but is not proof of bias. A further concern is that visual interpretation of funnel plots 
is inherently subjective.

5.3.5 Tests for Funnel Plot Asymmetry

Several statistical tests for funnel plot asymmetry are available. These examine whether 
the association between estimated intervention effects and a measure of study size or 
precision is greater than that expected to occur by chance. However, after reviewing 
the results of simulation studies evaluating test characteristics, and based on theoret-
ical considerations, Sterne et al. advised that tests for funnel plot asymmetry are appli-
cable only in the minority of meta- analyses for which their use is appropriate [56]. 
For meta- analyses of randomized trials, they suggested that as a rule of thumb, tests 
for funnel plot asymmetry should be used only when at least 10 trials are included in 
the meta- analysis. This is because when there are fewer than 10 trials the power of the 
tests is low. If there is substantial heterogeneity, the minimum number of trials may be 
substantially more than 10. Sterne et al. also suggested that results of tests for funnel 
plot asymmetry should be interpreted in the light of visual inspection of the funnel 
plot. For example, when there is evidence for small- study effects based on the result 
of an asymmetry test, it may be reasonable to exclude reporting biases as an explana-
tion if there were very few studies with statistically significant results and bias would 
be expected to favor studies with statistically significant results. These recommenda-
tions apply only to meta- analyses of randomized trials, as the performance of tests for 
funnel plot asymmetry in other contexts (e.g. meta- analyses of prevalence, prognosis, 
and diagnostic test accuracy studies) is likely to differ [56].

Sterne et al. provided detailed recommendations about which tests to use for meta- 
analyses of randomized trials of intervention effects measured as mean differences, 
standardized mean differences, odds ratios, risk ratios, and risk differences [56]. Some 
tests, including the original and widely used Egger test [51] and Begg and Mazumdar 
test [62], are not recommended for application to odds ratios and standardized mean 
differences because of artefactual correlations between the effect size and its standard 
error [56, 57, 63]. For odds ratios, methods proposed by Harbord et al. [64] and Peters 
et  al.  [65] overcome this problem; for standardized mean differences, see methods 
proposed by Zwetsloot et al. [57] and Pustejovsky et al. [63]. For tests for use in meta- 
analyses of trials of survival data, see Debray et al. [66].

When a test for funnel plot asymmetry provides evidence of small- study effects, 
reporting biases should be considered as one of several possible explanations (described 
in Section 5.3.3), and systematic reviewers should attempt to distinguish the different 
possible reasons for this. Further information on tests for funnel plot asymmetry can 
be found in the historical review by Marks- Anglin and Chen [44].
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5.3.6 Sensitivity Analyses

Statisticians have proposed several statistical approaches to assess how robust meta- 
analyses are to various assumptions about the extent and nature of missing results, 
including trim- and- fill  [67], selection models [68], and regression- based adjustment 
methods [69]. Nearly all are designed to assess robustness to selective publication of 
studies [70], although some are designed to assess robustness to selective nonreport-
ing of results [71, 72]; none assesses robustness to both sources of bias. Given that it is 
impossible to know for certain whether reporting biases have influenced the results of 
a review, or by how much, these methods should be considered only as sensitivity anal-
ysis, rather than as a way of ascertaining the “true” meta- analytic effect. Simulation 
studies have not compared the performance of all proposed methods. However, the 
available evidence suggests that no single method outperforms others in all scenarios, 
and thus there is a danger that uncritical application can lead to inappropriate con-
clusions being drawn [68, 73, 74]. Vevea et al. [70] and Marks- Anglin and Chen [44] 
summarize the advantages and disadvantages of different methods, indicate circum-
stances in which each can be used, and describe software available to implement them. 
Given the complexity of the methods, consultation with a statistician is recommended 
for their implementation.

5.3.7 Summary of Approaches

We have described several approaches that systematic reviewers can use to assess 
the risk of reporting biases. These include comparison of prespecified analysis plans 
with completed reports to detect selective nonreporting of results, consideration of 
qualitative signals that suggest not all studies were identified, and the use of funnel 
plots to identify small- study effects, for which reporting bias is one of several causes. 
Information from approaches such as funnel plots and selection models is more dif-
ficult to interpret than from less subjective approaches such as detection of incom-
pletely reported results in studies for which prespecified analysis plans were available. 
Tools that weigh the various pieces of information gained from each approach to reach 
an overall judgment of the risk of bias due to missing results in a meta- analysis have 
recently been proposed. These include the tool for assessing Risk Of Bias due to Missing 
Evidence (ROB- ME) in pairwise syntheses, available at https://www.riskofbias.info, 
and its extension for network meta- analysis (ROB- MEN).

5.4  CONCLUSIONS

The evidence that dissemination of research findings can be influenced by the nature 
of the findings themselves is convincing; and when available results differ systemati-
cally from missing results, meta- analyses will be biased. Systematic reviewers should 
comprehensively search for study reports and consult not only multiple bibliographic 
databases but trials registers, manufacturers, regulators, and study authors and spon-
sors. Unless they use prospective approaches to meta- analysis, which can eliminate 
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the potential for bias due to missing results, reviewers should formally assess the risk 
of bias due to missing results in their review. Several approaches can facilitate such 
assessment: tools to record selective nonreporting of results, ascertaining qualitative 
signals that suggest not all studies were identified, and the use of funnel plots to iden-
tify small- study effects, one cause of which is reporting bias. Tools that weigh diverse 
information about the likelihood and nature of missing results in the judgment of the 
risk of bias in a meta- analysis have recently been proposed and should facilitate appro-
priate interpretation of results.
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Managing People and Data
Eliane Rohner, Julia Bohlius, Bruno R. da Costa, and Sven Trelle

Systematic reviews and meta- analyses are complex projects that require good 
management of people and data. Because systematic reviews and meta- analyses sum-
marize current evidence, they are time sensitive. If not well managed, a review will likely 
be out of date when it is finally completed. Nominating a project manager who will 
develop a project plan and coordinate the review team is thus strongly advised. Review 
teams often underestimate the time it takes to perform the different steps of a review, 
outlined in Chapter 2, from formulating a precise review question to interpreting the 
results and writing up the study. It is therefore important to agree on realistic timelines 
for the different steps and monitor adherence to these timelines along the project life 
cycle. Several types of data are collected in a systematic review and meta- analysis. Good 
data management is crucial for the success of the project. In this chapter, we discuss the 
composition and coordination of the team undertaking the work and the management 
and extraction of aggregate data from study reports.

6.1 THE TEAM

6.1.1 Composition and Roles

Systematic reviews and meta- analyses require a multidisciplinary team with expertise 
both in the clinical or public health question addressed and in methodology, including 
literature searching (see Chapter  3), risk of bias assessment (see Chapter  4), and 
statistical methods for meta- analysis (see Chapters 8–14).

Several roles and tasks need to be defined and distributed among the members 
of a review team (Box 6.1). Depending on skills, experience, and resources available, 
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one team member can take over several roles and tasks. However, two to three team 
members, at least, are required to conduct a systematic review, since reference screen-
ing and data extraction need to be done by two reviewers, ideally independently, and a 
third reviewer should be consulted if disagreements arise.

Depending on the complexity of the topic and the number of eligible studies, more 
team members might be necessary. Developing the specific review question and pro-
tocol requires input from content and methods experts as well as information special-
ists. Developing literature search strategies for systematic reviews can be challenging, 
and advice from information specialists should be sought early on  [1]. Information 
specialists are also increasingly involved in other systematic review tasks such as the 
formulation of the research question, screening and managing references, and report 
writing [2]. To develop the data extraction form, input is needed from content experts 
on outcomes and other data relevant for the health care question under review and 
from methods experts to define pertinent items for the assessment of study quality. 
Support from statisticians can be helpful to handle the extraction of incompletely 

Box 6.1 Roles and Tasks to be Defined for a Systematic 
Review Project

Role Tasks

Project manager/
coordinator

• Serves as the backbone of a systematic review/meta- analysis 
project

• Coordinates the team, develops the project plan, manages the 
project schedule

• Ensures efficient communication between the team members

Reviewer • Develops specific review questions and the review protocol
• Screens references for eligibility
• Manages screened references to facilitate transparent 

reporting of the screening process (PRISMA flow diagram, see 
Chapter 7)

• Assesses study quality and extracts data using a standardized 
data extraction form

• Drafts reports

Information 
specialist

• Develops, runs, and updates systematic literature searches
• Supports management of references
• Supports reporting of findings from systematic literature 

searches

Methods expert • Guides risk of bias assessment of included studies
• Supports data extractions and ensures the correct use of 

statistical methods

Content expert • Contributes to the development of the review questions and 
the protocol

• Supports the interpretation of the review findings
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reported data. A statistician should also be involved to ensure the correct use of 
statistical methods. Finally, the input of all team members, but in particular of the 
content experts, is required to interpret the review findings appropriately.

6.1.2 Training

Once the tasks have been distributed among the review team members, sufficient time 
for training should be allocated. Especially for team members not previously involved 
in systematic reviews and meta- analyses, comprehensive methodological training 
is essential. The Cochrane webpage (http://training.cochrane.org/) provides online 
training materials and a list of training events.

6.1.3 Project Management and Coordination

Project management and coordination is a resource- intensive key task in a systematic 
review [3, 4]. The project manager develops the project plan, coordinates the review 
team, and oversees the systematic review and meta- analysis as a whole. Together with 
the team, the project manager should identify all tasks that need to be completed dur-
ing the life cycle of the systematic review project. Next, the dependencies between 
different tasks and the timelines and responsibilities should be defined. Ideally, this 
is done in a dedicated team meeting in which all team members agree on timelines 
and responsibilities. It is advisable to display the timelines agreed upon in a Gantt 
chart; that is, a bar chart that visualizes the start and end date of each task. A Gantt 
chart can be easily produced in Microsoft Excel, for example, and then shared among 
team members to serve as a reference document. The Gantt chart in Figure 6.1 gives 
a hypothetical example of how long the different review tasks may last. The timelines 
may vary substantially depending on the complexity of the subject, the number of 
references, and eligible studies identified in the literature search, and the number of 
outcomes to be analyzed.

Months

Tasks 1 2 3 4 5 6 7 8 9 10 11 12

Background reading

Study other reviews

Specify question

Pilot literature search

Write protocol

Develop data extraction form

Literature search and screening

Appraisal of studies

Data extraction 

Synthesize data

Report findings

FIGURE 6.1  Gantt chart for planning and visualizing the schedule of a systematic review project.
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6.1.4 Communication

Not all team members might work on the review full- time, and team members may be 
located in different institutions, countries, or continents. To simplify the management 
of a review with remote team members, entire parts of the review such as literature 
screening or data extraction and analysis can be delegated to a remote team. Often, 
no dedicated funding is available for systematic reviews and meta- analyses, and the 
team members may do the work on a voluntary basis. In this situation, it is even more 
important for the project manager to keep up the team spirit with clear communica-
tion and well- set timelines. Otherwise, discouragement and frustration from unmet 
targets can lead to prolonged and, in the worst case, abandoned reviews. This book’s 
website (www.systematic-reviews3.org) provides a list of freeware tools that help man-
age the group and relevant documents. Updating reviews poses a special challenge as, 
over time, review team members may move on professionally or lose motivation. Good 
data management is essential to overcome part of the challenge, since it allows new 
team members to quickly become acquainted with the review history and ensures that 
adding new data is as straightforward as possible.

6.2 THE DATA

In general, data management for a systematic review follows the same principles that 
apply to other studies – whether reviewers decide to manage data on paper or electron-
ically. The data management system should be:

• Reliable
• The system is readily accessible to persons involved, stable, and fit for purpose

• Supportive
• The system supports (and does not hinder) tasks related to data collection, 

manipulation, and storage
• Secure

• Entering or changing data is restricted to authorized users and data are stored 
securely with regular data back- ups

• Accountable
• Changes and access to the data are traceable

Fulfilling these requirements helps ensure that the data are accurate, verifiable, 
and entered efficiently. A data management plan detailing the mechanisms used to 
handle data should ideally be specified at the protocol stage of the review [5].

6.2.1 Types and Structure of Data in a Systematic Review

Through the different steps of a systematic review and meta- analysis, various forms of 
data are collected. These include information on the number of references identified 
through the literature searches, the eligibility assessment of the identified references, 
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factual data extracted from the included studies to address the study questions, and 
the risk of bias assessment. Review teams may decide to use separate software tools 
and databases for each step, or use dedicated systematic review software, allowing data 
collection and management of more than one step [6].

The structure of the data collected in a systematic review is often complex. The 
primary unit of analysis in a systematic review is usually the component studies. 
However, data on a particular study may be available from multiple sources, including 
conference abstracts and presentations, full- text publications, websites, study proto-
cols, clinical study reports, clinical trial registries, or personal communications. A trial 
protocol, for example, may contain more information on methods, and therefore on 
the risk of bias, than a journal article. In this situation, reviewers should combine com-
plementary information and document the different sources of data [7]. Discrepancies 
between sources could be resolved by contacting the authors or by applying prespeci-
fied criteria so that, for example, data from full- text publications are given preference 
over data from conference abstracts. A single report might include data on multiple 
studies and can therefore contribute several studies eligible for the systematic review 
and meta- analysis, adding further complexity.

Moreover, the data extracted from studies often reflect different elements, such 
as the study population or an outcome of interest. The data structure can become yet 
more complicated if the review team is interested in subgroups of patients, compar-
isons of several interventions, or outcomes assessed at different points in time. Data 
can thus be hierarchically nested across levels of a study. It is essential to identify 
hierarchical structures early on and manage data extraction accordingly. Otherwise, 
data may be inconsistent, and the analysis difficult or even impossible to conduct. 
This hierarchical structure also applies to risk of bias assessments that may relate to 
the study as a whole, to individual comparisons within a study, or to particular results 
determined by the study population, outcome, or timepoint.

6.2.2 Reference Management and Eligibility Assessment

After the literature searches, the identified references need to be deduplicated, 
screened, and assessed for eligibility. Each step of the reference screening and eligi-
bility assessment must be documented rigorously to produce the Preferred Report-
ing Items for Systematic Reviews and Meta- Analyses (PRISMA) flow diagram of the 
systematic review  [8]. Most review teams use general bibliographic software tools 
such as EndNote, RefWorks, Mendeley, or Zotero for these steps  [9]. Each of these 
bibliographic tools allows for the importing of references from databases and facili-
tates deduplication of records. However, they differ in terms of cost and general func-
tionality, which includes the documentation of eligibility assessment. For example, in 
EndNote screening of references may be organized by creating groups of included 
and excluded references  [10]. Apart from general bibliographic software, dedicated 
software tools for reference screening and eligibility assessment exist  [6]. Some of 
them cover several review steps, whereas others, like the semi- automated online tool 
Abstrackr [11, 12], focus on reference screening.

Eligibility assessment is a crucial step in a systematic review, since one wants 
to make sure that no relevant studies are missed. We recommend that at least two 
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reviewers screen references and assess eligibility. Clear inclusion and exclusion 
criteria must be specified at the protocol stage to reduce subjectivity in decisions [5]. 
During title and abstract screening, it is usually sufficient to document whether a ref-
erence is excluded or should be assessed in more detail. At the full- text stage, how-
ever, the reasons for exclusion need to be recorded. It is helpful to define a hierarchy 
of potential exclusion reasons based on the eligibility criteria, and then use them for 
classification of the excluded full texts. Reviewers may decide to do the classification 
directly in the reference manager software or on a separate eligibility form created 
for this purpose. Independently of the approach used, reviewer disagreements about 
eligibility should be resolved by discussion or involvement of a third person, and the 
decision should be documented.

6.2.3 Data Extraction from Component Studies

Data extraction for systematic reviews should be carefully planned, with variables 
defined at the protocol stage [5]. Upon completion of data extraction, relevant data 
should be available in electronic form and ready for analysis. As in other studies, 
systematic review data should be collected using a standardized data extraction form. 
However, there is an essential difference between data collection in systematic reviews 
and primary studies. A systematic review is secondary research, and the data used for 
analysis were generated by others, for different purposes. Therefore, the data available 
from the eligible studies will often not fit the needs of the review exactly. The required 
data might need to be calculated from available data or even be approximated, which 
in turn requires making strong assumptions (see Section 6.2.5). Because these assump-
tions are often not testable, it is important to be transparent regarding the assumptions 
made and the derivations or approximations applied.

In general, because the amount of data to extract can quickly become unmanage-
able, less is often more. An example illustrates the challenge. A review team consid-
ered the following aspects as being particularly relevant to their research question:

• Comparison of two interventions (drug X versus placebo).
• Three outcomes of interest (mortality, quality of life, and serious adverse events).
• Results overall and for two subgroups (two different age groups).
• Results at two different timepoints (6 and 12 months after randomization).

This situation, which is not unusual, makes it necessary to extract data for 18 dif-
ferent comparisons of interest for each component study. This number can quickly 
increase into the hundreds if the systematic review is part of a network meta- analysis 
(see Chapter 13) where many more interventions are compared.

6.2.3.1  Development and Piloting of Data Extraction Forms

The development of a reliable and valid data extraction form is a crucial task in a 
systematic review and enough time should be allocated for this step  [13–15]. For 
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every systematic review, the data extraction form needs to be carefully tailored to the 
specific research question. This step is challenging, and it requires in- depth knowledge 
of the research topic and the relevant literature. A data extraction form usually cap-
tures information on study characteristics and the outcomes of interest. It should be 
designed parsimoniously to ensure that time and resources are not wasted on extract-
ing unnecessary data. Each data item should serve a clear purpose at the data synthesis 
and presentation stage. The form should be developed with this explicitly in mind. It 
should begin with an administrative section, including information on the study iden-
tifier (e.g. first author’s name and publication year), name of data extractor, extrac-
tion date, source of information, and publication type. A notes section for queries that 
need to be discussed within the team may also be useful. This section is usually fol-
lowed by data items related to study design, characteristics of the study population, 
and outcomes of interest. Data extraction templates developed by several groups 
of the Cochrane Collaboration can be downloaded from www.cochrane.org. On this 
book’s website (www.systematic-reviews3.org) we provide further examples of forms 
for different types of outcomes.

It is important to define explicitly how data should be recorded in the forms. 
Ideally, the definitions and instructions can be included in the data extraction form 
itself, but if detailed instructions are required, the forms will become confusing. It may 
then be helpful to put the data extraction guidelines in a separate document. The more 
structured the format of the data entry fields, the cleaner the entered data will be. For 
example, for each data field, the data type (e.g. text, numeric), the format (for dates, 
dd/mm/yyyy), and the unit of measurement, if applicable, should be defined.

Moreover, outcome data might have been assessed at different times using differ-
ent methods or instruments (e.g. different rating scales). Sometimes it is also necessary 
to reference extracted data points with the exact source (report, page, line, or table/
graph). The entry of fixed- format or precoded data is generally preferred over free- 
text fields. However, attention should also be paid to not losing relevant information 
through overzealous coding. It is therefore advisable to use more rather than fewer 
categories for a specific data item. If necessary, categories can be collapsed during 
analysis. Also, if information about a particular variable is unclear or not available, it 
is vital to record this to distinguish these data from incomplete data extractions.

The development of the data extraction form is an iterative process. It is essential 
to pilot the data extraction form on a sample of included studies [15, 16]. In our expe-
rience, it often takes several revisions of the data extraction form to reach the right 
balance between collecting all relevant information validly and reliably, and keeping 
data extraction and analysis efficient by reducing the number of data items collected. 
Piloting data extraction forms also allows rearrangement of data items to improve the 
flow of data collection, and the identification of inconsistencies and logical errors. 
Ideally, different data extractors pilot the form on the same studies. Should the data 
extractors reach different conclusions for a given data item, the description or def-
inition of that item needs to be clarified. Even after the pilot phase, data extraction 
forms may still need adaptation. However, any revisions during data extraction should 
be kept to a minimum, and their implications for previously extracted data must be 
carefully checked. It might be advisable not to implement changes on an ongoing 
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basis, but instead to wait until several shortcomings have been identified and then 
implement them all at once. It is sometimes easier to produce a short additional data 
extraction form for new data items instead of adapting the main data extraction form 
already in use.

6.2.3.2  Implementation of Data Extraction Forms

Many different data management systems for systematic reviews are in use  [17]. 
Reviewers may decide to manage data extraction on paper first, followed by electronic 
data entry, or choose electronic data extraction directly. The decision is mainly based 
on the personal preferences of the review team, but advantages and disadvantages 
should be considered (Box 6.2).

Paper data extraction forms can be generated, for example, in Microsoft Word. 
Tick boxes are useful for data items with prespecified categorical response options. 
Paper forms have the advantage that they readily allow marginal notes and comments. 

Box 6.2 Advantages and Disadvantages of Different Data 
Extraction Methods

Advantages Disadvantages

Paper- based data extraction forms

• Easy and cheap to implement
• Allow marginal notes and comments 

during the extraction process
• No computers needed to do the data 

extraction

• Separate data entry step needed to 
obtain variables for analysis

• Risk of losing data/forms
• Handwriting may impair readability
• Management becomes impractical with 

a large number of included studies

Electronic data extraction forms

In general:
• Combine data extraction and entry
• Clear data entry structure may 

reduce errors
• Allow for quality checks with error 

messages highlighting implau-
sible values

• Option to store forms on server or cloud 
with regular back- ups

• Automatic comparison of data  
collection forms from two reviewers to 
identify disagreements

• Direct data transfer to analysis  
software such as Stata or R possible

In general:
• More rigid than paper forms
• Require access to a computer and 

possibly the internet to do the data 
extraction
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However, this can also quickly lead to confusing situations at the data entry stage. 
Therefore, notes should be added cautiously. When using paper forms, the comparison 
between the data extractions done by two reviewers cannot be automated. One data 
extraction form usually will be chosen as the main form. If discrepancies occur in data 
recorded on the other form, they should be resolved by the involvement of a third 
reviewer. If entries in the main form need to be changed after discussion, this should 
be documented with a note stating the persons involved and the date.

While paper forms may be an attractive option for reviews with a small number of 
studies and variables, they tend to become inefficient and unreliable for larger reviews. 
Electronic forms can be implemented in specialized, dedicated software tools or generic 
data management software. Generic solutions are developed by the review team using 
nonspecialized software such as Microsoft Access, LibreOffice Base, FileMaker, and 
EpiData. Many researchers are familiar with spreadsheet software like Microsoft Excel, 
which is therefore relatively easy to use. However, spreadsheets do not fulfill the cri-
teria for a data management system described above and quickly become impractical 
if data for a larger number of studies and variables are extracted. We therefore gen-
erally advise against using spreadsheets for data extraction. Relational databases like 
Microsoft Access or LibreOffice Base are well suited to capture the typical hierar-
chical data structure in systematic reviews, but setting up these databases requires data 
management and software expertise.

Dedicated software solutions have been developed specifically for the purpose of data 
extraction in systematic reviews, and they may also accommodate other phases of the review 
process, such as literature searches, eligibility assessment, and data synthesis [6]. There are 

Advantages Disadvantages

Electronic data extraction forms

Generic software:
• Full control over the design of data 

extraction forms

Generic software:
• Specialized skills needed to develop 

electronic data extraction form
• Documentation of the consensus pro-

cess often not straightforward

Dedicated software tools:
• Online access facilitates collabora-

tion between reviewers working from 
 different locations

• Often easy navigation in long forms
• Convenient for inexperienced review-

ers as template forms often available 
that include variables commonly 
extracted for systematic reviews

• Additional help files and  support may 
be available

Dedicated software tools:
• Costs (for some of the tools)
• Limited customizability
• The risk that software tools may 

be abandoned and no longer avail-
able (especially relevant to large, 
long- lasting review projects that are 
regularly updated)
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numerous commercial and noncommercial solutions available. The Systematic Review 
(SR) Toolbox (http://systematicreviewtools.com) allows searching for available tools based 
on specific criteria such as the review step or cost. Once data have been entered electroni-
cally, they are exported in file formats readable by standard analysis software such as Stata 
or R. Some dedicated software tools also enable direct data synthesis and analysis [6].

6.2.3.3  Data Extraction Process

Extracting data is prone to error  [18–20]. Box  6.3 lists the most important pitfalls. 
Previous reviewing experience reduces the time required to extract data, but does not 
necessarily improve data accuracy [21]. Therefore, at least two independent reviewers 

Box 6.3 Common Pitfalls in Data Extraction

Data extraction is one of the most challenging parts of the systematic review pro-
cess. The following list contains a selection of the most common pitfalls.

Confusing standard deviations and standard errors
• These two statistics are sometimes not explicitly labeled in reports or are misspecified 

by the authors. Extractors should always check whether a number is reasonable before 
extraction (standard errors are always smaller than the corresponding standard 
deviations), record it in the correct data extraction field, and add a note if the statistic 
had been misspecified.

Performing  derivations/calculations  by  hand  and  entering  these  results 
directly in the extraction form
• Extractors should stick to the rule that extraction and calculations should always 

be separated. The first step is to extract all relevant data. In a second step, reviewers 
should do the calculations in a reproducible way using a statistical software package 
with statistical code that can be checked and made available to others.

Extracting data with insufficient precision
• Extractors should abstain from rounding numbers. Extracting the data as reported 

is generally the best approach. If only boundary numbers are reported (“>X” or 
“<X”) reviewers should document this and consider obtaining more detailed data 
from the authors.

Incomplete recording of data
• Reviewers should complete as much of the extraction form as possible. For example, 

when a report provides the mean difference, 95% confidence interval, P value, and 
the number of patients, then not only the mean difference and confidence interval 
should be extracted, but all the data to allow consistency checks.

Assuming extraction is a one- off process
• Data extraction is often an iterative process that develops throughout the review. 

It is frequently necessary to go over extraction forms multiple times. The process 
and documentation should foresee this, for example by appropriately referencing 
individual data items, giving detailed descriptions of decisions made, and version 
control of forms.
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should extract data [15]. Data may also be extracted by one reviewer and checked by 
a second reviewer. However, this approach seems to increase the data extraction error 
rate [22]. In general, it is advisable to involve both content experts and methodological 
experts in the data extraction process [15]. Before data extraction can start, all team 
members should receive training on how to use the data extraction form and how 
to handle incomplete or missing information. Clear data extraction guidelines need 
to be included either in the data extraction form or – if they are extensive – an addi-
tional document.

6.2.4 Risk of Bias Assessment

Although the primary unit of analysis in a systematic review is typically the com-
ponent studies, the risk of bias assessment should be directed at individual study 
results. As discussed in detail elsewhere (Chapter 4), specific methodological fea-
tures (e.g. lack of participant blinding) may introduce bias for some outcomes (e.g. 
patient- reported quality of life) but not for others (e.g. all- cause mortality). The 
Cochrane Collaboration has developed dedicated tools for assessing risk of bias in 
randomized trials (RoB 2.0)  [23] and in non- randomized studies of interventions 
(ROBINS- I)  [24]. Before starting the risk of bias assessment, review authors need 
to decide which outcomes to focus on. It is not necessary to assess risk of bias for 
all reported results, but authors should aim to cover the main outcomes of their 
review. As for the data extraction process in general, two reviewers should indepen-
dently perform the risk of bias assessment and resolve discrepancies by discussion 
or involvement of a third reviewer [15]. Risk of bias assessment is prone to subjec-
tivity, and it is essential to ensure transparency and replicability. In addition to the 
judgment on risk of bias, supporting information to justify the judgment should be 
extracted, such as quotes from the source publication and their exact location in the 
source document, as illustrated in Table 6.1.

6.2.5 Derivation or Approximation of Data

Outcome data are not always available in the form required for meta- analysis. 
However, it may be possible to derive the information of interest either by simple 
calculation or, with some assumptions, by approximation. Reviewers should be aware 
of these options in order not to miss relevant information. Whenever calculations and 
approximations are made, they should be clearly documented. Reviewers might want 
to use this information at the analysis stage to test the robustness of the assumptions 
made through sensitivity analyses. The Cochrane Handbook for Systematic Reviews of 
Interventions provides a comprehensive overview of how to convert outcome data into 
the format required for meta- analysis and how to deal with missing data [15].

6.2.5.1 Continuous Outcomes

For continuous outcomes, the difference in means and the corresponding standard 
error are usually required for meta- analysis (see Chapters 8 and 9). If standardized 
mean differences are to be calculated, standard deviations are needed. Should not 
all required information be provided in the included studies, methods can be used to 
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derive the missing information. For example, if standard errors or confidence intervals 
are provided, the standard deviation can be derived. If P, t, or F values are reported, 
derivations of standard errors or standard deviations are also possible [25]. Methods 
exist to approximate means and standard deviations from reported quantiles such as 
the median. If only the mean difference is available, one may impute the standard 
deviation from other, similar studies included in the meta- analysis. This book’s website 
(www.systematic-reviews3.org) provides a graph showing the connections between 
the different statistics.

6.2.5.2 Binary Outcomes

Binary outcomes are easier to handle in meta- analysis than continuous outcomes. 
Often the number of events of interest and the number of participants are reported, 
and reviewers can calculate the required effect measure. Alternatively, absolute 
numbers may be derived from percentages. Difficulties may arise when only an 
effect measure such as an odds ratio or a risk ratio (see Chapter 8) is reported, but 
not the number of study participants with and without the events of interest. In this 
case, the outcome can be included in the meta- analysis only if a measure of uncer-
tainty is available for the effect size. Methods are available to convert or approximate 
effect measures [26, 27].

6.2.5.3 Time- to- Event Outcomes

Time- to- event outcomes are often meta- analyzed using the inverse- variance method 
with the hazard ratio as the effect measure. Hazard ratios can also be derived or approx-
imated from available data [28]. If only Kaplan–Meier plots are available, reviewers 
may be able to reconstruct individual participant data from the graph and calculate the 
required numbers, as explained below [29].

TABLE 6.1  Example of a data extraction field for risk of bias assessment.

Study: Trial X 2019

Allocation sequence

Generation of allocation sequences as described by the investigator(s)

Quote 1 “Patients were randomly assigned to . . .”

Source 1 Smith 2020: p. 123, l. 14

Quote 2 “Patients were randomly assigned using computer- 
generated random lists. Lists were generated . . . in Stata.”

Source 2 Meyer 2019: p. 12, l. 10–11

Assessment

Generation of allocation 
sequence

Computer- generated lists

Risk of bias Low risk
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6.2.5.4  Extracting Data from Graphs

Outcome data of interest are sometimes not reported in text or tables, but only in 
graphs. For example, a meta- analysis  [30] that assessed the effectiveness of nonste-
roidal anti- inflammatory drugs for the treatment of pain in osteoarthritis assessed pain 
as the primary outcome at different follow- up intervals. One of the included studies 
did not report standard deviations for every pain assessment. Still, a graph showing the 
development of mean pain over time per group with standard errors was available [31]. 
The graph was then used to extract the required outcome data for meta- analysis.

Extracting data from graphs is a three- step process. The reviewers need to:

1. Enlarge the graph to ease extraction.
2. Measure and record distances and lengths.
3. Transform the recorded data using the appropriate conversion factor(s).

In the past, step 1 was done using a photocopier, step 2 using a ruler, and step 3 
using a hand calculator. Now, digitizing software leads to more accurate extraction [32]. 
There are several freely available software tools (e.g. the package metaDigitise  [33] 
for R) that support manual and automatic digital extraction of graphical data. When 
vector- based graphs are available, a PostScript file can be processed, and exact data 
points can be extracted [34].

Box  6.4 provides a step- by- step guide for reconstructing data from Kaplan–
Meier curves.

Box 6.4 Step- by- Step Guide for Reconstructing Data from Kaplan–
Meier Curves in R or Stata

What is needed?
• Digitizing software (several solutions available on the internet).
• Stata or R software (with packages ipdfc [35] for Stata and survHE [36] for R).
• Kaplan–Meier graph available in Portable Document Format (pdf) or as an 

image that can be imported into the digitizing software (usually png, jpg, or 
gif formats).

• Number of persons at risk at the beginning of the study by group.
• Number of events per group or number of persons at risk at various timepoints.

Digitizing the curves
1. If needed, copy graphs from a pdf file using a snapshot tool, and save as 

image in a format that can be imported into the digitizing software.
2. Import the image into digitizing software.
3. View the original image (avoid automatic analysis features as they are usually 

not reliable enough).
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4. Define axis points (see dotted dark gray arrows in Figure 6.2): maximum on 
the y- axis (usually at 1), origin (0/0), and maximum on the x- axis (usually 
maximum follow- up).

5. Define symbols and colors for each curve that you want to reconstruct. 
Ensure that these are easily distinguishable and clearly labeled (light gray 
crosses and solid/dashed line in Figure 6.2).

6. Mark the lower edge of each identifiable step of the curve using the appropriate 
label (see as an example the three dashed light gray arrows in Figure 6.2), or the 
end of the curve in case of no steps at the end.

7. Check the export settings. Ensure that raw data are exported (and not inter-
polated data).

8. Export and save the data.
9. Manually add a time 0  with a probability of 1 (y- axis data) to each curve 

data point.
10. Check whether extracted probabilities (y- axis data) decrease over time (x- 

axis data) and restart if they do not.

Tip: it is usually not necessary to mark every small step of the curve to obtain 
sufficiently reliable results. Practicing using different curves is, however, strongly 
recommended.

Reconstructing data
1. Import the data into R or Stata.
2. Reconstruct data by using the Stata package ipdfc [35] or the survHE package 

in R [36].
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FIGURE 6.2  Digitizing a Kaplan–Meier curve using digitizing software.
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3. Reanalyze reconstructed data using the method used in the original report, 
e.g. standard Cox model.

4. Compare results (e.g. hazard ratio, confidence interval, P value) with published 
information.

5. Generate Kaplan–Meier curves based on reconstructed data.
6. Save as gif file (with transparent background) or another format that allows 

for transparent background.
7. Overlay generated Kaplan–Meier curve with the published curve.
8. Redo until quality is sufficient.

6.3  OUTLOOK: AUTOMATION AND DATA SHARING

Automation has the potential to accelerate several steps of a systematic review and 
meta- analysis (see also Chapters  23 and  24)  [37]. Though automation may play a 
minor role in more creative tasks such as the development of a research question 
and protocol writing, it can be especially useful for technical tasks such as refer-
ence screening, downloading full texts, and data extraction. For example, a machine 
learning algorithm has been developed to identify randomized controlled trials for 
Cochrane Reviews [38]. A long- term vision is that a protocol provides the instructions 
for a systematic review and meta- analysis, and machines can be taught to complete the 
steps it describes [37]. Indeed, substantial work has been invested in the development 
of automated or semi- automated tools for different steps of a systematic review. The 
International Collaboration for the Automation of Systematic Reviews was initiated in 
2015 to coordinate the efforts of different groups [39].

Making research data publicly available improves transparency and acceler-
ates scientific discovery  [40]. This is why open data access policies are increasingly 
enforced by funding agencies [41] and scientific journals [42]. To date, data- sharing 
efforts in health care have focused on clinical trials [40], whereas sharing of data from 
systematic reviews and meta- analyses has received less attention [43]. However, mak-
ing data from systematic reviews open access may also yield important benefits. For 
example, openly available data could be used to replicate or update results, address 
related research questions, and further develop systematic review and meta- analysis 
methodologies [43, 44]. Also, these datasets might be useful for training and teaching. 
To support data sharing of systematic review data, the Agency for Healthcare Research 
and Quality sponsored the development of the web- based Systematic Review Data 
Repository  [44, 45]. In general, for shared data to be useful, they should follow the 
FAIR principles; that is, they should be Findable, Accessible, Interoperable, and Reus-
able  [46]. Before sharing their data, review teams need to consider any restrictions 
that might apply to previously unpublished data obtained through personal communi-
cation or from clinical study reports. Thus, the intent to make data publicly available 
should be discussed early on with the data providers.
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Over the past few decades, systematic reviews have become increasingly central to 
healthcare decision- making. There has been a corresponding increase in the quantity 
of reviews being produced. Whereas in 2004, 7 systematic reviews were estimated to 
be published daily [1], at least 22 were estimated to be published per day in 2016 [2]. 
This increase in the use of systematic review methods has prompted evolutions in 
both systematic review methodology and reporting. At the time of publication of the 
previous edition of this book (c. 2001), guidance was available to guide the reporting 
of meta- analyses, but not systematic reviews  [3, 4]. As systematic reviews (with or 
without meta- analyses) became more popular than isolated meta- analyses in health 
research over the past few decades, a reporting guideline specifically for the purpose of 
reporting of systematic reviews of intervention effectiveness was developed. In 2009, 
the Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) 
statement  [5] and elaboration  [6] documents to guide the reporting of systematic 
reviews of health interventions were first published; these were updated in 2020 [7, 8].

According to the Enhancing the Quality and Transparency Of health Research 
(EQUATOR) Network, a reporting guideline is a checklist, flow diagram, or explicit text 
to guide authors in reporting a specific type of research, developed using explicit meth-
odology [9]. At the time of publication of this edition, PRISMA 2020 is the standard 
for reporting systematic reviews evaluating health care interventions [10]. Reporting 
guidelines, including PRISMA, extensions of PRISMA, and others mentioned in this 
chapter, can be found on EQUATOR Network’s comprehensive library of reporting 
guidelines (http://www.equator-network.org/library).

Several other tools have been developed to optimize systematic review report-
ing. The Methodological Expectations of Cochrane Intervention Reviews (MECIR) 
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standards [11] and the Methodological Expectations of Campbell Collaboration Inter-
vention Reviews (MECCIR) standards  [12] were developed in 2012 and 2016, and 
cover reporting of Cochrane reviews and Campbell reviews, respectively. Similarly, the 
National Academy of Medicine (formerly the Institute of Medicine) developed stan-
dards for systematic reviews in 2011 [13]. Tools also exist to facilitate quality and meth-
odological appraisal of systematic reviews and are discussed at the end of this chapter.

7.1  CONSEQUENCES OF POOR REPORTING

Systematic reviews are often the primary evidence used to formulate clinical practice 
guidelines, which are in turn relied on by clinicians, as well as other health system 
decision- makers and patients, to guide patient care. If they are missing essential 
information about what was done or what was found (for example, the details and 
results of outcome measurement), the assumed integrity of evidence- based health 
care may be compromised.

Systematic reviews can be poorly or incompletely reported in many different 
ways. Reviews that omit essential methodological details or leave out specific results 
or outcomes (or portions thereof), and systematic reviews that are never published, 
are especially problematic. Incompletely reported reviews impede readers’ assessment 
of the appropriateness and trustworthiness of review methods and findings. Addi-
tionally, without essential information about review methods, interested parties are 
unable to replicate review methods for purposes of verification or updating. This may 
lead to unnecessary redundancy or overlap of reviews, resulting in wasted efforts and 
resources [1]. When planned outcomes, timepoints, analyses, or entire reviews are not 
reported or published due to the direction or significance of (summary) effect estimates, 
this constitutes selective reporting, biasing the evidence base toward favorable out-
comes and reviews. Reporting guidelines exist and ought to be used to help ensure that 
the most accurate, complete, and trustworthy evidence is entering the scholarly record.

7.2  REPORTING SYSTEMATIC REVIEW PROTOCOLS

Documenting a comprehensive protocol is an essential first step in the systematic 
review process (see Chapter 2). The Preferred Reporting Items for Systematic Reviews 
and Meta- Analyses extension for protocols (PRISMA- P) provides guidance for docu-
menting planned methods and analyses of systematic reviews in the form of a 17- item 
checklist [14] and an elaboration document containing explanations and examples for 
each checklist item [15]. A registry for systematic reviews, PROSPERO (https://www.
crd.york.ac.uk/prospero), launched in 2011, provides researchers with a standard-
ized mechanism to document systematic reviews’ intentions and methods publicly 
before they are carried out [16]. PROSPERO has incorporated registration of Cochrane 
reviews and CAMARADES (Collaborative Approach to Meta- Analysis and Review of 
Animal Data from Experimental Studies) since November 2013 and December 2017, 
respectively. Using PRISMA- P to help document review protocols and registering 
reviews are vital steps to ensuring that review protocols are completely reported and 



  Reporting and Appraisal of Systematic Reviews 111

discoverable. This is essential to facilitate the detection of selective reporting within 
systematic reviews, reduce unintended duplication of efforts (and potentially facilitate 
collaboration between review groups), and, potentially, encourage the publication of 
completed, high- quality reviews [2].

7.3  REPORTING SYSTEMATIC REVIEWS

Several tools exist to facilitate and optimize the reporting of completed systematic 
reviews of various objectives and designs. These are described in this section.

7.3.1 Reviews of Health Interventions

7.3.1.1  The PRISMA Guideline

The PRISMA 2020 guideline supersedes the original PRISMA 2009 guideline [10] as 
the standard guideline to facilitate optimal reporting of systematic reviews, review 
updates, and “living” (i.e. continually updated) systematic reviews. It is primarily 
intended to facilitate reporting of reviews evaluating health care interventions, irre-
spective of included study designs. It is also applicable to systematic reviews evalu-
ating nonhealth interventions (e.g. behavioral or educational interventions) and those 
evaluating other objectives (e.g. reviews evaluating etiology, prevalence, or prognosis). 
It is intended for use in reviews including quantitative studies (including those where 
qualitative studies are also present). Comprehensive information and resources, such 
as non- English- language translations and new extensions/applications of PRISMA, 
can be found on the PRISMA website: http://prisma-statement.org. Reporting guide-
lines for addressing other types of reviews, including those primarily including 
qualitative data synthesis, also exist and are listed later in this chapter.

PRISMA 2020 comprises two publications. The PRISMA 2020 statement presents 
27 checklist items that ought to be reported in systematic reviews (PRISMA check-
list, Table 7.1), an update to the PRISMA checklist for abstracts, and a flow diagram 
template for reporting original and updated reviews (Figure 7.1)  [7]. (An expanded 
PRISMA 2020 checklist with additional details is also available as a data supplement 
in [7].) The PRISMA 2020 explanation and elaboration document contains examples 
and detailed guidance and evidence for each checklist item [8].

7.3.1.2  The PRISMA Checklist

The PRISMA 2020 checklist consists of a checklist of 27 items, several of which contain 
subitems. Each item is supported by evidence and published examples in the PRISMA 
explanation and elaboration document [8]. For example, checklist item 20c, one of the 
subitems of the “Results of Synthesis” item, recommends providing details about inves-
tigations into heterogeneity among included studies. The item, an example of how to 
report it, and detailed guidance including the importance of reporting it are provided in 
Box 7.1. Each item also elaborates on the essential elements of reporting referred to by 
each item, as well as any potential additional elements that it may be helpful to report.
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TABLE 7.1  PRISMA 2020 Checklist.

Section and 
topic

Item # Checklist item Location 
where item 
is reported

TITLE

Title 1 Identify the report as a systematic review.

ABSTRACT

Abstract 2 See the PRISMA 2020 for Abstracts checklist.

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context 
of existing knowledge.

Objectives 4 Provide an explicit statement of the objective(s) or 
question(s) the review addresses.

METHODS

Eligibility criteria 5 Specify the inclusion and exclusion criteria for 
the review and how studies were grouped for 
the syntheses.

Information 
sources

6 Specify all databases, registers, websites, 
organizations, reference lists, and other sources 
searched or consulted to identify studies. Specify 
the date when each source was last searched 
or consulted.

Search strategy 7 Present the full search strategies for all databases, 
registers, and websites, including any filters and 
limits used.

Selection 
process

8 Specify the methods used to decide whether 
a study met the inclusion criteria of the review, 
including how many reviewers screened each 
record and each report retrieved, whether they 
worked independently, and if applicable, details of 
automation tools used in the process.

Data collection 
process

9 Specify the methods used to collect data from 
reports, including how many reviewers collected 
data from each report, whether they worked 
independently, any processes for obtaining or 
confirming data from study investigators, and if 
applicable, details of automation tools used in 
the process.

Data items 10a List and define all outcomes for which data were 
sought. Specify whether all results that were 
compatible with each outcome domain in each 
study were sought (e.g. for all measures, time 
points, analyses), and if not, the methods used to 
decide which results to collect.
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(Continued)

TABLE 7.1  (Continued)

Section and 
topic

Item # Checklist item Location 
where item 
is reported

10b List and define all other variables for which data 
were sought (e.g. participant and intervention 
characteristics, funding sources). Describe any 
assumptions made about any missing or unclear 
information.

Study risk 
of bias 
assessment

11 Specify the methods used to assess risk of bias in 
the included studies, including details of the tool(s) 
used, how many reviewers assessed each study 
and whether they worked independently, and if 
applicable, details of automation tools used in the 
process.

Effect measures 12 Specify for each outcome the effect measure(s) 
(e.g. risk ratio, mean difference) used in the 
synthesis or presentation of results.

Synthesis 
methods

13a Describe the processes used to decide which 
studies were eligible for each synthesis (e.g. 
tabulating the study intervention characteristics 
and comparing against the planned groups for 
each synthesis [item #5]).

13b Describe any methods required to prepare the data 
for presentation or synthesis, such as handling of 
missing summary statistics, or data conversions.

13c Describe any methods used to tabulate or visually 
display results of individual studies and syntheses.

13d Describe any methods used to synthesize results 
and provide a rationale for the choice(s). If meta- 
analysis was performed, describe the model(s), 
method(s) to identify the presence and extent of 
statistical heterogeneity, and software package(s) 
used.

13e Describe any methods used to explore possible 
causes of heterogeneity among study results (e.g. 
subgroup analysis, meta- regression).

13f Describe any sensitivity analyses conducted to 
assess robustness of the synthesized results.

Reporting bias 
assessment

14 Describe any methods used to assess risk of bias 
due to missing results in a synthesis (arising from 
reporting biases).

Certainty 
assessment

15 Describe any methods used to assess certainty 
(or confidence) in the body of evidence for an 
outcome.
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TABLE 7.1  (Continued)

Section and 
topic

Item # Checklist item Location 
where item 
is reported

RESULTS

Study selection 16a Describe the results of the search and selection 
process, from the number of records identified in 
the search to the number of studies included in the 
review, ideally using a flow diagram.

16b Cite studies that might appear to meet the 
inclusion criteria, but which were excluded, and 
explain why they were excluded.

Study 
characteristics

17 Cite each included study and present its 
characteristics.

Risk of bias in 
studies

18 Present assessments of risk of bias for each 
included study.

Results of 
individual 
studies

19 For all outcomes, present, for each study: (a) 
summary statistics for each group (where 
appropriate) and (b) an effect estimate and its 
precision (e.g. confidence/credible interval), ideally 
using structured tables or plots.

Results of 
syntheses

20a For each synthesis, briefly summarize the 
characteristics and risk of bias among contributing 
studies.

20b Present results of all statistical syntheses 
conducted. If meta- analysis was done, present 
for each the summary estimate and its precision 
(e.g. confidence/credible interval) and measures 
of statistical heterogeneity. If comparing groups, 
describe the direction of the effect.

20c Present results of all investigations of possible 
causes of heterogeneity among study results.

20d Present results of all sensitivity analyses conducted 
to assess the robustness of the synthesized results.

Reporting 
biases

21 Present assessments of risk of bias due to missing 
results (arising from reporting biases) for each 
synthesis assessed.

Certainty of 
evidence

22 Present assessments of certainty (or confidence) in 
the body of evidence for each outcome assessed.

DISCUSSION

Discussion 23a Provide a general interpretation of the results in the 
context of other evidence.

23b Discuss any limitations of the evidence included in 
the review.
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7.3.1.3  The PRISMA Flow Diagram

PRISMA 2020 also encourages authors to report the flow of studies through sequential 
stages of the systematic review process (i.e. obtained, excluded, and included) in detail. 
The PRISMA 2020 flow diagram (Figure 7.1) provides a visual template for doing so. 
Specifically, within a review, authors are encouraged to report the number of records 
identified (ideally from each source/database); records remaining after removing dupli-
cates or those deemed ineligible by machine classifiers, and the corresponding number 
excluded for these reasons; records for which titles and abstracts were screened, and 
the corresponding number excluded after this process; reports retrieved for full- text 
screening, and potentially eligible reports that were irretrievable; retrieved reports that 
did not meet inclusion criteria and the corresponding primary reasons for exclusion 

TABLE 7.1  (Continued)

Section and 
topic

Item # Checklist item Location 
where item 
is reported

23c Discuss any limitations of the review processes 
used.

23d Discuss implications of the results for practice, 
policy, and future research.

OTHER INFORMATION

Registration 
and protocol

24a Provide registration information for the review, 
including register name and registration number, or 
state that the review was not registered.

24b Indicate where the review protocol can be 
accessed, or state that a protocol was not 
prepared.

24c Describe and explain any amendments to 
information provided at registration or in the 
protocol.

Support 25 Describe sources of financial or non- financial 
support for the review, and the role of the funders 
or sponsors in the review.

Competing 
interests

26 Declare any competing interests of review authors.

Availability of 
data, code, and 
other materials

27 Report which of the following are publicly available 
and where they can be found: template data 
collection forms; data extracted from included 
studies; data used for all analyses; analytic code; 
any other materials used in the review.

Source: From [7]. For more information, visit http://www.prisma- statement.org

http://www.prisma-statement.org
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FIGURE 7.1  PRISMA 2020 flow diagram. Gray boxes should only be completed if applicable and otherwise should be removed. A “report” refers to a 
journal article, preprint, conference abstract, study register entry, clinical study report, dissertation, unpublished manuscript, government report, or any 
other document providing relevant information. Source: From [7].



  Reporting and Appraisal of Systematic Reviews 117

Box 7.1 Example of a PRISMA Checklist Item

Item 20c. Results of Synthesis: Present results of all investigations of possible 
causes of heterogeneity among study results

Example: “Among the 4 trials that recruited critically ill patients who were and 
were not receiving invasive mechanical ventilation at randomization, the asso-
ciation between corticosteroids and lower mortality was less marked in patients 
receiving invasive mechanical ventilation (ratio of odds ratios (ORs), 4.34 [95% 
CI, 1.46- 12.91]; P = 0.008 based on within- trial estimates combined across tri-
als); however, only 401 patients (120 deaths) contributed to this comparison. . . 
All trials contributed data according to age group and sex. For the association 
between corticosteroids and mortality, the OR was 0.69 (95% CI, 0.51- 0.93) 
among 880 patients older than 60 years, the OR was 0.67 (95% CI, 0.48- 0.94) 
among 821 patients aged 60 years or younger (ratio of ORs, 1.02 [95% CI, 0.63- 
1.65], P = 0.94), the OR was 0.66 (95% CI, 0.51- 0.84) among 1215 men, and the 
OR was 0.66 (95% CI, 0.43- 0.99) among 488 women (ratio of ORs, 1.07 [95% CI, 
0.58- 1.98], P = 0.84)” [17].

Explanation: Presenting results from all investigations of possible causes of het-
erogeneity among study results is important for users of reviews and for future 
research. For users, understanding the factors that may, and equally may not, 
explain variability in the effect estimates may inform decision- making. Similarly, 
presenting all results is important for designing future studies. For example, the 
results may help to generate hypotheses about potential modifying factors that 
can be tested in future studies, or help identify “active” intervention ingredients 
that might be combined and tested in a future randomized trial. Selective report-
ing of the results leads to an incomplete representation of the evidence that risks 
misdirecting decision- making and future research.

Essential elements
• If investigations of possible causes of heterogeneity were conducted:

• Present results regardless of the statistical significance, magnitude, or 
direction of effect modification.

• Identify the studies contributing to each subgroup.
• Report results with due consideration to the observational nature of the 

analysis and risk of confounding due to other factors [18, 19].
• If subgroup analysis was conducted, report for each analysis the exact P 

value for a test for interaction as well as, within each subgroup, the sum-
mary estimates, their precision (such as standard error or 95% confidence/
credible interval), and measures of heterogeneity. Results from subgroup 
analyses might usefully be presented graphically (see Fisher et al. [20]).

• If meta- regression was conducted, report for each analysis the exact 
P value for the regression coefficient and its precision.



118 Systematic Reviews in Health Research 

(such as ineligible study design, ineligible population); and the number of studies and 
reports ultimately included in the review. Where applicable, authors are also encour-
aged to report the number of ongoing studies and associated reports identified. The 
PRISMA 2020 flow diagram provides a modifiable template depending on whether 
the review is an original question or represents an update of a previous review, and 
depending on whether sources of unindexed literature were searched. A web applica-
tion to assist in generating a flow diagram can be found at https://www.eshackathon.
org/software/PRISMA2020.html.

7.3.1.4  Extensions of the PRISMA Statement

PRISMA has also been modified to provide additional guidance for different scenarios, 
such as for different types of analyses (e.g. those including network meta- analyses), for 
different types of data/studies (e.g. individual participant data, diagnostic test accu-
racy studies), or for specific parts of the review process (e.g. search strategy). Exten-
sions typically incorporate additional checklist items, modify existing items, or expand 
on certain items, as deemed important through expert consensus and informed by 
evidence. Each extension is typically accompanied by its own explanatory document 
containing examples and evidence to support each item. Extensions of PRISMA are 
summarized in Table 7.2.

7.3.1.5  Synthesizing Review Interventions

Recommendations exist to facilitate considerations related to synthesizing and report-
ing intervention details in systematic reviews  [31]. Eight items are provided for 
consideration during the planning, conduct, and reporting stages of the review pro-
cess. These considerations are meant as an aid throughout the review process, so that 
important and necessary intervention details that need to be reported in a review are 
planned for and collected/requested during the review (Box 7.2).

• If informal methods (that is, those that do not involve a formal statistical 
test) were used to investigate heterogeneity – which may arise particularly 
when the data are not amenable to meta- analysis – describe the results 
observed. For example, present a table that groups study results by dose or 
overall risk of bias and comment on any patterns observed [21].

Additional elements
• If subgroup analysis was conducted, consider presenting the estimate for 

the difference between subgroups and its precision.
• If meta- regression was conducted, consider presenting a meta- regression 

scatterplot with the study effect estimates plotted against the potential 
effect modifier [18].

https://www.eshackathon.org/software/PRISMA2020.html
https://www.eshackathon.org/software/PRISMA2020.html
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TABLE 7.2  Extensions of the PRISMA statement.

PRISMA extension 
purpose

Description of guidance

Abstracts [7] Developed based on the premise that readers of published 
abstracts may never read the full text of a manuscript, instead 
using only the abstract to identify findings, screen for studies of 
specific designs, or judge a study’s methods. Given the many 
roles of the abstract, maximizing the structure, transparency, and 
completeness of information shared in its contents is important. 
The checklist’s primary focus is reviews assessing the relative 
benefits and harms of interventions.

Acupuncture [22] Provides guidance for reviews evaluating acupuncture as an 
intervention. Reporting of such interventions has unique essential 
elements. This checklist introduces five new subitems and modifies 
six existing PRISMA items related to title, rationale, eligibility 
criteria, literature search, data extraction, and study characteristics.

Diagnostic 
test accuracy 
studies [23]

Provides reporting guidance for systematic reviews of diagnostic 
test accuracy (DTA) studies. DTA systematic reviews synthesize 
data from primary diagnostic studies (i.e. those evaluating the 
accuracy of one or more index tests against a reference standard), 
provide estimates of test performance, enable different tests to be 
compared for accuracy, and facilitate the identification of sources 
of variability in test accuracy. DTA systematic reviews also provide 
insight into the ability of medical tests to detect a target condition.

Equity [24] Provides guidance for equity- based systematic reviews undertaken 
to help to address avoidable disparities in health. Additional 
considerations discussed include specification of equity- related 
questions addressed, methods undertaken specifically to work with 
data for disadvantaged populations, reporting relevant subgroup 
analyses, and focused discussion of applicability to disadvantaged 
populations addressed in the systematic review.

Harms [25] Developed to facilitate the reporting of harms (or adverse events) 
as a primary or secondary review outcome. It contains 4 items to 
complement the original 27- item PRISMA checklist. All PRISMA and 
PRISMA harms should be reported when the synthesis of harms 
data is the primary focus of the review, or whether harms are 
synthesized together with efficacy outcomes.

Individual participant 
data meta- 
analyses [26] (see 
also Chapter 12)

Builds upon the PRISMA statement to address gaps in guidance 
as it pertains to reporting of systematic reviews that incorporate 
individual participant data (IPD) within randomized trials as 
opposed to aggregate study- level data. Considerations for 
novel items including how IPD data are acquired, checked, 
and synthesized, how studies without IPD data are managed, 
considerations for risk of bias appraisal, methods used for the 
synthesis of the included study data, and modifications to the flow 
diagram for study selection.

(Continued)
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TABLE 7.2  (Continued)

PRISMA extension 
purpose

Description of guidance

Network meta- 
analysis [27](see 
also Chapter 13)

Provides guidance for systematic reviews involving a network meta- 
analysis (NMA). NMA is an extension of traditional meta- analysis 
allowing the comparison of multiple treatments using direct and indirect 
evidence (see Chapter 16). There is a need for reviews that use NMA 
to report details that are not standard components of traditional meta- 
analyses. This includes rationale for use of NMA, additional details 
regarding statistical methods, structuring of interventions into a treatment 
network, techniques to report comparisons of many interventions (and 
new measures such as treatment rankings), and the extent to which the 
assumptions of homogeneity, similarity, and consistency are met.

Protocols 
(PRISMA- P) [14, 15] 
(see also Chapter 2)

Aimed to facilitate the documentation of protocols for systematic 
reviews and meta- analyses, the PRISMA- P checklist provides guidance 
to authors on a minimum set of information that should be included in 
a review protocol. PRISMA- P is intended to facilitate implementation 
and replication of review methods, as well as comparisons between 
protocols and systematic reviews through more complete protocols.

Scoping reviews 
(PRISMA- ScR) [28]

This 20- item checklist offers guidance for reporting scoping 
reviews – a type of knowledge synthesis that consists of a 
systematic approach to map evidence on a topic and identify main 
concepts, theories, sources, and knowledge gaps.

Literature 
search [29]

This 16- item checklist (referred to as PRISMA- S) is intended to 
complement the PRISMA checklist and its extensions by providing 
general interdisciplinary guidance for ensuring that each essential 
component of a search is completely reported, such that it could be 
replicated by others.

Box 7.2 Recommendations for Authors to Improve 
the Consideration of Interventions When Planning, Conducting, 
and Reporting Systematic Reviews

Review stage Consideration

Planning 1 Consider intervention details during question formulation
2 Describe intervention considerations in the review  protocol 

 (following PRISMA- P [15])

Conduct 3 Extract intervention details as part of data extraction
4 Request missing intervention details
5 Consider intervention characteristics during statistical analyses 

and exploration of heterogeneity when appropriate

Reporting 6 Report intervention details in a summary table
7 Share intervention materials where possible
8 Describe implications for future research

Source: Adapted from [32].
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7.4  REPORTING SYSTEMATIC REVIEWS WITHOUT 
META- ANALYSES

Meta- analysis in systematic reviews of quantitative studies is not always possible or 
appropriate (e.g. heterogeneous studies/study characteristics, missing outcome data). 
About a third of systematic reviews of interventions are estimated not to contain meta- 
analyses [2]. Such reviews tend to use descriptive text, often referred to as “narrative 
synthesis,” to describe intervention effects, but appear to do so haphazardly [30]. The 
Synthesis Without Meta- analysis (SWiM) guideline, published in 2020, was developed 
to provide a framework for reporting these studies [21]. SWiM contains nine reporting 
items, accompanied by explanations and examples. It provides specific guidance for 
reporting how studies are grouped, synthesis method used (e.g. calculating summary 
statistics of intervention effect estimates, vote counting based on direction of effect, 
and combining P values), presentation of data and summary text, and limitations of 
the synthesis.

7.5  OTHER GUIDANCE FOR REPORTING SYSTEMATIC REVIEWS

7.5.1 Institute of Medicine Standards for Reporting 
Systematic Reviews

The National Academy of Medicine (formerly the Institute of Medicine) published 
21 standards for developing high- quality comparative effectiveness systematic 
reviews in 2011 [13]. Three of these standards, including 11 substandards, pertain 
to reporting systematic reviews. These standards are extensively based on PRISMA 
checklist items, with some additional items to ensure that all steps and judgments 
required by the preceding standards are reported, and to include a focus on informing 
the patient and clinical decision- making. For example, a recommendation to include 
a plain- language summary (following guidance from Cochrane) aims to ensure that 
research findings are conveyed so that patients can understand and apply them to 
their personal circumstances.

7.5.2 MECIR and MECCIR Standards

The MECIR standards were developed by consensus within Cochrane and aim to 
facilitate transparent conduct and reporting of Cochrane intervention reviews. They 
address six key methodological areas of reviews: (i) scope and question of the review, 
(ii) review search, (iii) selection of studies and data, (iv) risk of bias, (v) analyzing data 
and meta- analyses, and (vi) interpreting and presenting results. Some recommenda-
tions are indicated as essential/mandatory (e.g. “must do”), while others are highly 
desirable (e.g. “should do”) but not a minimum standard. Several standards relate to 
the reporting of reviews, including standards for the reporting of Cochrane proto-
cols, new Cochrane reviews, as well as review updates. The Campbell Collaboration, 
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which carries out reviews of social and behavioral interventions including those 
affecting health policy, adapted the MECIR guidelines to develop MECCIR stan-
dards for both conducting and reporting Campbell reviews. Review authors working 
with these two organizations are expected to follow their respective conduct and 
reporting standards.

7.6  REPORTING OTHER TYPES OF SYSTEMATIC REVIEWS

Systematic reviews exist that ask questions other than about evaluating interven-
tions, and synthesize nonintervention or nonexperimental studies and data. Several 
reporting guidelines that have been developed for other review types are described 
here. An up-to-date listing of reporting guidelines can be found on the EQUATOR 
Network Library of reporting guidelines at https://www.equator-network.org/library.

7.6.1 Meta- Analyses of Observational Studies

A guideline for reporting meta- analyses of observational studies (MOOSE) was 
published in 2000, developed using a combination of evidence and consensus- 
based processes [33]. It provides 35 recommendations pertaining to the reporting of 
background, search strategy, methods, results, discussion, and conclusion of epidemi-
ological reviews.

7.6.2 Reviews of Experimental Animal Studies

A guideline for reporting systematic reviews of animal experiments was published 
in 2006 [34]. A more recent set of recommendations for conducting, reporting, and 
appraising such reviews was published by the CAMARADES group in 2014 [32]. Nei-
ther guideline explicitly recommends standards for reporting the 3Rs (i.e. replacement, 
reduction, and refinement), a widely known set of principles for performing humane 
animal research [35]. Of systematic reviews of animal research published by 2010, 90% 
failed to report on any of the 3Rs [35].

7.6.3 Reviews of Qualitative Research

At least four reporting guidelines exist to facilitate the reporting of reviews of qualitative 
research/data and are listed here for further reference:

• The ENhancing Transparency in Reporting the synthesis of Qualitative research 
(ENTREQ) guidelines [36].

• The Meta- Ethnography Reporting Guidance (eMERGe) [37].
• Realist And Meta- narrative Evidence Syntheses: Evolving Standards (RAME-

SES) for realist reviews [38].
• RAMESES for meta- narrative reviews [39].
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7.7  OPTIMIZING REPORTING IN PRACTICE

Ideally, authors preparing reports of their systematic reviews for publication should 
adhere to and report items from the relevant reporting guideline checklist and use 
flow diagrams to demonstrate the selection and progression of studies throughout a 
review. In addition, authors can and should follow reporting guidance earlier on in 
the research process, such as during protocol development (see Chapter 2). Doing so is 
likely to increase the chances of eventual publication of a systematic review and facil-
itate transparent reporting of methods and findings.

There is some evidence that systematic reviews published in journals that 
endorse PRISMA (of which there are over 300) are more completely reported 
overall  [40], [41]. However, direct improvements in review reporting are diffi-
cult to track and some users are not using reporting guidelines in the intended 
manner. For example, journals recommend the use of PRISMA by review authors, 
but few actually require a completed checklist upon manuscript submission [42]. 
A systematic review evaluating the effect of reporting guideline endorsement on 
reporting quality found that systematic reviews were, on average, more completely 
reported in journals endorsing PRISMA than nonendorsers (mean difference of 
0.53 (99% confidence interval [CI] 0.02, 1.03; based on three studies evaluating 143 
systematic reviews) [41]. Many studies aiming to evaluate the impact of reporting 
guidelines, including PRISMA, fail to make meaningful comparisons or use poor 
study designs from which to draw conclusions about their effects (for example, bet-
ween journals that endorse vs. do not endorse; in reviews published before or after 
endorsement in a given journal) [43].

To support authors in complying with reporting guidelines, biomedical journal 
editors can institute mandatory submission of guideline checklists and peer reviewers 
could then use them during the editorial decision- making process to make specific 
recommendations to authors. Widespread use of reporting tools ought to assist in the 
publication of completely reported systematic reviews.

7.8  APPRAISAL OF SYSTEMATIC REVIEWS

Since systematic reviews are a key tool for informing evidence- based health care, 
including practice guidelines, readers need to be able to gauge the validity of their find-
ings, which largely hinges on the quality of methods used during the review process. 
Complete reporting can enable such assessments. Unfortunately, when the reporting 
of systematic reviews is poor, inadequate, or incomplete, problems with reporting 
have the potential to be confused with poor methods. Poor reporting of systematic 
reviews also often limits the strength of evidence practice guidelines can reach.

At least two tools to appraise systematic reviews exist, with slightly different aims. 
The Risk Of Bias In Systematic reviews (ROBIS) tool evaluates the risk of bias present 
in the systematic review process [44]. The AMSTAR 2 tool (see below) aims to appraise 
the methodological quality of systematic reviews [45]. Features of the reliability and 
validity of both tools are presented in Table 7.3.
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7.8.1 ROBIS: Risk of Bias in Systematic Reviews

ROBIS facilitates appraisal of the risk of bias related to systematic review methods and 
conduct [48]. It is intended to be used by experienced users such as clinical guideline 
developers, authors of overviews of systematic reviews, and review authors looking 
to assess or avoid bias in their reviews. The tool guides users through a three- phase 
assessment of systematic reviews [44]:

Phase 1: relevance of the patients/population, interventions, comparators, and 
outcomes to the review question at hand (i.e. if doing an intervention review).

Phase 2: potential sources of bias in the review, assessed in four domains of the 
review process: (i) study eligibility, (ii) identification and selection of studies, 
(iii) data collection and study appraisal, and (iv) synthesis and findings. Phase 2 
consists of assessing whether features associated with lower risk of bias are pre-
sent (“yes,” “probably yes,” “probably no,” “no,” and “no information,” with 
“yes” indicating low concerns), and a rating of concern about the domain 
(“low,” “high,” or “unclear”).

Phase 3: informed by whether concerns in Phase 2 were addressed in the interpre-
tation of findings, users are asked to judge the overall risk of bias of the review.

More information on ROBIS is available at www.bristol.ac.uk/population-health-
sciences/projects/robis.

TABLE 7.3  Reliability and validity of ROBIS and AMSTAR/AMSTAR 2.

ROBIS AMSTAR/AMSTAR 2

Purpose To facilitate assessment of risk 
of bias of systematic reviews of 
most types of research questions, 
including those evaluating 
therapy, diagnostic accuracy, 
prognosis, and etiology

Intended to facilitate critical appraisal of 
the methodological quality of systematic 
reviews of health care interventions, 
including identifying weaknesses in the 
conduct of the review

Reliability Interrater reliability (IRR) ranges 
across questions/domains 
from κ = 0.03 to κ =0.69 (Fleiss’ 
kappa); varies based on user 
experience [44]

AMSTAR:
• IRR ranges across questions 

from κ = −0.09 to κ = 0.76 (Fleiss’ 
kappa) [44]; κ = 0.38 to κ = 1.0 (Cohen’s 
kappa) [44]; κ = 0.41 to κ = 0.69 
(Cohen’s kappa) [46]

AMSTAR 2:
• κ = 0.32 to κ = 0.67 (Cohen’s 

kappa) [46]

Validity Construct validity strongly 
correlated with AMSTAR 
(rs = 0.76, P < 0.01) [44]

• High intraclass correlation coefficients 
(ICC = 0.85, 95% CI 0.65, 0.92) [47]

• Construct validity strongly correlated 
with ROBIS (rs = 0.76, P < 0.01) [44]



  Reporting and Appraisal of Systematic Reviews 125

7.8.2 AMSTAR: A MeaSurement Tool to Assess Systematic Reviews

A MeaSurement Tool to Assess systematic Reviews (AMSTAR) is an instrument 
intended to facilitate critical appraisal of the quality of systematic reviews, origi-
nally published in 2007  [49] and updated in 2017 (AMSTAR 2)  [45]. AMSTAR 2 
provides simple guidance for inexperienced and experienced users for rating the 
quality of specific methodological elements of published systematic reviews of 
health care interventions, including randomized controlled trials or nonrandomized 
studies. The tool comprises 16 items, each of which provides a short single- sentence 
question with additional guidance on selecting response options (expressed as “yes,” 
“partial yes,” and “no”); the resulting assessment provides a broad overall picture of 
review quality. One recognized limitation of assessing the methodological quality 
of research, including of systematic reviews, is that it is difficult to distinguish poor 
methods from poor reporting  [50]. More information on AMSTAR is available at 
https://amstar.ca.

7.9  CONCLUSIONS

Various strategies and tools to improve the reporting of systematic reviews and to facili-
tate their appraisal exist and continue to evolve. Researchers are encouraged to become 
familiar with the reporting tools most appropriate to their research and to adhere to their 
recommendations when preparing reports of systematic review protocols and completed 
reports. Additionally, reviewers ought to be mindful of employing rigorous and appro-
priate methods and reporting that will negate any potential biases in the review process.
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An early task in a meta- analysis is the selection of the summary statistic (effect 
measure) used to describe the observed effect in each study, from which the overall meta- 
analytical summary can be calculated (see Chapter 9). This chapter considers the choice 
of a summary statistic from randomized trials. Many of the statistics are also used for 
observational studies, although analyses of observational studies usually adjust for con-
founders (see Chapter 15) and so do not use the same computations as we describe here.

The choice of summary statistic depends on the type of outcome data being 
collected from individual participants. Table 8.1 lists the main types of outcome data 
and the main measures used to compare outcomes in two arms of a randomized trial. In 
the chapter, we review the computation and interpretation of these measures, consider 
their properties, present empirical evidence about their suitability for meta- analysis, and 
offer guidance on how to choose an appropriate measure for a particular meta- analysis.

8.1  INDIVIDUAL STUDY ESTIMATES OF INTERVENTION EFFECT: 
BINARY OUTCOMES

Binary data arise when each individual can either experience or not experience a particular 
outcome. We will refer to experiencing the outcome as the “event.” For example, the 
event may be “death,” or “stopped smoking,” or “had at least one stroke.” The most 
commonly encountered effect measures used in randomized trials for binary data are:

• Risk ratio (RR) (also called relative risk).
• Odds ratio (OR).
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• Risk difference (RD) (also called absolute risk reduction, ARR).
• Number needed to treat (NNT).

See Box 8.1 for an explanation of the difference between risk and odds. As events may 
be desirable rather than undesirable, we would prefer a more neutral term than “risk” 
(such as probability), but for the sake of convention we use the term “risk” throughout.

Measures of relative effect express the risk of the outcome in one group relative 
to that in the other. The RR is the ratio of two risks (one for each group), whereas the 
OR is the ratio of two odds. Note that these relative measures (RR, OR) are some-
times expressed as the percentage reduction in risk or odds. For example, the relative 
risk reduction is defined as RRR = 100(1 – RR)%. While this representation can help 
interpretation, it does not affect the choice between different measures: meta- analysis 
will always be based on the original ratio measures. Summary RRs and ORs estimated 
from meta- analyses can be converted into relative risk and relative odds reductions in 
exactly the same way as for individual trials.

TABLE 8.1  Types of data arising from individual participants in a randomized trial.

Data type Examples Effect measures commonly 
used in meta- analysis

Binary Dead or alive; stop or 
continue smoking; at least 
one stroke or no stroke

Odds ratio, risk ratio, risk 
difference

Simple count Number of days in 
hospital; number of 
strokes

These are often 
dichotomized and treated 
as binary data, or may be 
treated as continuous data

Ordinal scale (few 
categories)

Level of pain measured 
as none, mild, moderate, 
or severe

Odds ratio
These may be dichotomized 
and treated as binary 
data, or may be treated as 
continuous data

Ordinal scale (many 
categories)

Score on Beck Depression 
Inventory (range 0–63 
points)

These are usually treated as 
continuous data

Continuous Weight in kg; serum 
cholesterol in mg/dL; pain 
measured using a visual 
analog scale

Mean difference, 
standardized mean 
difference, ratio of means

Count per unit time Number of strokes within 
a specified length of 
follow- up

Rate ratio

Time to event (or time 
observed without 
experiencing the event)

Time to death (or time 
observed); time to first 
stroke (or time observed)

Hazard ratio
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Box 8.1 Odds and Risks

In general conversation the phrases “odds” and “risks” are used interchangeably 
(together with the phrases “chances” and “likelihood”), as if they describe the same 
quantity. In statistics, however, odds and risks have particular meanings and are cal-
culated in different ways. When the difference between them is ignored, the results 
of a systematic review may be misinterpreted.

Risk is the concept more familiar to patients and health professionals. Risk 
describes the probability with which a health outcome (often an adverse event) will 
occur within a specified period of time. In research, risk is commonly expressed 
as a decimal number between 0 and 1, although these are occasionally converted 
into percentages. It is simple to grasp the relationship between a risk and the likely 
occurrence of events within the time period: in a sample of 100 people the number 
of events observed will be the risk multiplied by 100. For example, when the risk is 
0.1, 10 people out of every 100 will develop the event; when the risk is 0.5, 50 people 
out of every 100 will develop the event.

Odds is a concept that is more familiar to gamblers than health professionals. 
The odds is the probability that a particular event will occur divided by the probabil-
ity that it will not occur, and can be any number from 0 to infinity. In gambling, the 
odds describe the ratio of the size of the potential winnings to the gambling stake; 
in health care it is the ratio of the number of people with the event to the number 
without. It is sometimes expressed as a ratio of two integers. For example, an odds 
of 0.01 is often written as 1 : 100, odds of 0.33 as 1 : 3, and odds of 3 as 3 : 1. Odds 
can be converted to risks, and risks to odds, using the formulae

 
risk odds

odds
; odds risk

risk1 1
.
 

The practical application of an odds is more complicated than for a risk. The 
best way to ensure that the interpretation is correct is to convert the odds first into 
a risk. For example, when the odds are 1:10, or 0.1, one person will have the event 
for every 10 who do not, and, using the above formula, the risk of the event is 0.1/
(1 + 0.1) = 0.091. In a sample of 100, about 9 individuals will have the event and 91 will 
not. When the odds are equal to 1, one person will have the event for every one who 

does not, so in a sample of 100, 100 1
1 1

50  will have the event and 50 will not.

The difference between odds and risk is small when the risk is low, as shown 
in the above example. When events are common, the differences between odds and 
risks are large. For example, a risk of 0.5 is equivalent to an odds of 1; a risk of 0.9 is 
equivalent to an odds of 9. Similarly, a ratio of risks (the RR) is similar to a ratio of 
odds (the OR) when events are rare, but not when events are common (unless the 
risks in the two groups are very similar), as can be seen in Figure 8.1.

Many epidemiological studies investigate rare events, and here it is common to 
see the phrases and calculations for risks and odds used interchangeably. However, 
in randomized controlled trials, event rates are often in the range where risks and 
odds are very different, and RRs and ORs should not be used interchangeably.
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The RD is the difference between the risks in the two groups. This effect measure is 
often the most natural statistic to use when considering clinical importance, and is often 
used when carrying out sample size calculations for randomized trials. The RD is some-
times called the ARR. The adjective “absolute” is used here to distinguish this measure 
from relative measures of effect, but it should be recognized that this usage is different 
from the mathematical usage of “absolute” to mean the size of the effect regardless of 
the sign. Retaining the sign of the difference is of course vital, as it distinguishes trials 
that are indicating a beneficial effect from those that are indicating a harmful effect.

8.1.1 Computations

The results of the trial can be presented in a 2 × 2 table (see Table  8.2), giving the 
numbers of people who do and do not experience the event in each of the two groups 
(here called intervention and control). The total number of individuals in the trial is 
Ni = n1i + n2i.

Measures of relative effect (RRs and ORs) are usually combined on the log scale. 
Hence we give the standard error for the log ratio measure in the following.

The RR for each trial is given by

 
RRi

i i

i i

a n
c n

/
/

,1

2  

the standard error of the log RR being

 
SE RRln ,i

i i i ia n c n
1 1 1 1

1 2  

where “ln” denotes logarithms to base e (natural logarithms).
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FIGURE 8.1  Risk ratios and odds ratios are similar when the overall risk is small, but get 
increasingly different as the overall risk increases.
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The OR for each trial is given by

 
ORi

i i

i i

a d
b c

,
 

the standard error of the log OR being

 
SE ORln .i

i i i ia b c d
1 1 1 1

 

Neither the RR nor the OR can be calculated for a trial if no individuals (or all indi-
viduals) have the event in one of the groups. In this situation it is customary to add ½ 
to each cell of the 2 × 2 table (ai, bi, ci, di in Table 8.2). In the case where no individuals 
have an event in either group (or all individuals have the event in both groups), the 
trial provides no information about an RR or an OR and should be omitted from the 
meta- analysis.

The RD for each trial is given by

 
RDi
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with standard error

 
SE RDi

i i

i

i i

i

a b
n

c d
n1

3
2
3

.
 

The RD can be calculated for any trial, even when there are no events in either group.
The NNT is derived from the RD as

 
NNT

RD
1

i

.
 

The vertical bars in the denominator here are directions to take the absolute 
(positive) value. Numbers needed to treat cannot be negative, but it is important to be 
aware of whether the NNT is a number needed to treat for one person to benefit, or a 
number needed to treat for one person to be harmed.

For the Peto  odds  ratio method  [1] (see Chapter  9), the individual study ORs 
are given by

TABLE 8.2  Summary information when outcome is binary.

Study i Event No event Group size

Intervention ai bi n1i

Control ci di n2i
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OR
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i i
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exp ,
 

with standard error

 
SE ORln ,i

iv
1

 

where E[ai] = n1i(ai + ci)/Ni is the expected number of events in the intervention group 
if there is no effect of the intervention and

 
v

n n a c b d

N Ni
i i i i i i

i i

1 2
2 1

 

the (hypergeometric) variance of ai.

8.1.2  What is the Event?

Most health care interventions are intended either to reduce the risk of occurrence of 
an adverse outcome or to increase the chance of a good outcome. These may be seen 
broadly as prevention and treatment interventions, respectively. All of the effect mea-
sures described above apply equally to both types of outcome.

In many situations it is particularly natural to talk about one of the outcome states 
as being an event. For example, in treatment trials participants are generally ill at the 
start of the trial, and the event of interest is recovery or cure. In prevention trials par-
ticipants are well at the beginning of the trial and the event is the onset of disease 
or death. This distinction is oversimplistic, however, as trials do (and should) inves-
tigate both good and bad outcomes. For example, trials of therapy will look at both 
intended beneficial effects and unintended adverse effects. Because the focus is usu-
ally on the intervention group, a trial in which an intervention reduces the occurrence 
of an adverse outcome will have an OR and RR less than 1, and a negative RD. A trial 
in which an intervention increases the occurrence of a good outcome will have an OR 
and RR greater than 1, and a positive RD.

It is also possible to switch events and nonevents and consider instead the 
proportion of patients not recovering or not experiencing the event. For meta- analyses 
using RDs or ORs, the impact of this switch is of no great consequence: the switch 
simply changes the sign of an RD, while for ORs the new OR is the reciprocal (1/x) of 
the original OR. Similar considerations apply when a trial compares two active treat-
ments, when it might not be clear which should be labeled as the “control” inter-
vention. By contrast, switching the outcome can make a substantial difference for 
RRs, affecting the effect magnitude, its significance, and the observed heterogeneity 
across studies. In a meta- analysis, the effect of this reversal cannot be predicted math-
ematically. An example of the impact the switch can make is given in the case study 
in Box 8.2.
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A simple binary outcome may hide considerable variation in the time from the 
start of intervention to the event, and many interventions can only aim to delay rather 
than prevent an event. When interest focuses on the extent to which intervention 
delays an event, data are best analyzed using methods for the analysis of time- to- 
event or survival data, the appropriate summary statistic being the hazard ratio (HR; 
see Section 8.3). Meta- analysis of such studies ideally is based on individual partici-
pant data (see Chapter 16), although it may be possible to extract adequate summary 
information from some papers. The average length of follow- up may vary across trials 
and could be an important source of heterogeneity in RRs or ORs. Neither the RR nor 
the OR will be the same as the HR.

8.2  INDIVIDUAL STUDY ESTIMATES OF INTERVENTION EFFECT:  
CONTINUOUS OUTCOMES

If the outcome is a continuous measure, our analysis options are most flexible if we 
can obtain the number of participants, the mean response, and standard deviation of 
responses separately for intervention and control groups (Table 8.3).

The total number of participants in the study is Ni = n1i + n2i, and
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is the pooled standard deviation of outcomes across the two groups.
The difference in mean responses can be used to compare the two groups when 

outcome measurements in all trials are made on the same scale. This is usually referred 
to as the mean difference (MD). For a particular study the MD is given by

 MDi i im m1 2 ,  

with standard error
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TABLE 8.3  Summary information when outcome is continuous.

Study i Mean response Standard deviation Group size

Intervention m1i s1i n1i

Control m2i s2i n2i
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The MD cannot be used when the trials measure the outcome in a variety of ways, 
for example if the trials measure depression using different psychometric scales. In 
this circumstance it is necessary to standardize the results of the trials to a uniform 
scale before they can be combined.

The standardized  mean  difference (SMD) expresses the difference in mean 
responses relative to the variability observed in that trial. The method assumes that the 
differences in standard deviations between trials reflect differences in measurement 
scales and not real differences in variability between trial populations. This assump-
tion may be problematic in some circumstances, for example where pragmatic and 
explanatory trials are combined in the same review. For instance, a pragmatic trial 
with wide patient eligibility criteria might have a large standard deviation, whereas an 
explanatory trial with narrow patient eligibility criteria might have a small standard 
deviation. The difference in standard deviations then reflects the different purposes of 
the trials rather than the use of different measurement scales. The intervention effect 
can also be difficult to interpret when expressed as an SMD, since it is reported in units 
of standard deviation rather than in units of any of the measurement scales used in 
the review.

There are three popular formulations of effect size used in the SMD method. 
These formulations differ with respect to the standard deviation used in calculations 
and whether or not a correction for small- sample bias is included. In statistics, small- 
sample bias arises if there is a difference between the expected value of an estimate 
given a small sample and the expected value if the sample is very large. Simulations 
show that the SMD tends to be overestimated with finite samples, although the bias is 
substantial only if the total sample size is very small (less than 10) [2].

Cohen’s d [3] is given by
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Hedges’ adjusted g  [3] is very similar to Cohen’s d, but includes an adjustment to 
correct for the small- sample bias mentioned earlier. It is defined as
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Finally, Glass’s Δ [4] takes the standard deviation from the control group as the 
scaling factor, giving
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with standard error
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This method is preferable when the intervention alters the observed variability as 
well as potentially changing the mean value.

Both the MD and SMD methods assume that the outcome measurements within 
each trial have a normal distribution. When these distributions are skewed or severely 
non- normal, the results of these methods may be misleading.

An alternative to both the MD and the SMD is the ratio of means (RoM). There 
are two variants of this. The ratio of arithmetic means [5] for each study is given by
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the standard error of the log ratio of arithmetic means being
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Alternatively, the ratio  of  geometric  means  [6] is given by applying the for-
mulae for the MD to the log- transformed data, and exponentiating the result (that 
is, computing eMD, where MD is computed from means on the log scale). The ratio of 
geometric means and its confidence interval may be reported directly, especially if the 
distribution of responses across individuals is skewed. The ratio of geometric means 
can also be estimated from the data in Table 8.3, with assumptions about the nature of 
the skewed distribution [6].

8.3  INDIVIDUAL STUDY ESTIMATES OF INTERVENTION EFFECT:  
TIME- TO- EVENT OUTCOMES

The effect measure most commonly used for time- to- event data is the hazard ratio. 
The hazard (or hazard rate) is a measure of instantaneous risk. Expressing an inter-
vention effect as an HR involves an assumption that the ratio of hazards is constant 
over the time period of interest. This assumption is known as the proportional haz-
ards assumption and underlies the most common methods for analyzing time- to- event 
data, in particular Cox regression (otherwise known as proportional hazards regres-
sion). HRs are typically extracted directly from reports of randomized trials rather than 
computed by reviewers. Often they will be presented as results of a Cox regression 
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analysis. However, several methods are available for approximating the HR, based on 
other statistics and graphs that might be presented, including Kaplan–Meier curves 
(which illustrate the survival times of patients in each group of the trial). See Parmar 
et al., Williamson et al., and Guyot et al. for helpful texts [7–9].

8.4  INDIVIDUAL STUDY ESTIMATES OF INTERVENTION 
EFFECT: RATES

When the results of a study are reported as a count of events across participants 
within an intervention group, along with the total amount of follow- up time over 
which these participants were observed (as in Table  8.4), the two groups may be 
compared in terms of the rate of events. The rate is the number of events divided by 
the total amount of person- time, and is expressed in relation to the units of observa-
tion time. For example, if 80 patients are each followed up for one year and 15 events 
are observed, the rate is 15 per 80 years of observation time, or 0.19 per person- year. 
Note that we do not draw a distinction between two participants each having one 
event and one participant having two events and the other participant having none. 
Thus, the number of events may exceed the number of individuals, a situation that 
is not possible with binary data.

The rate ratio (RaR) [10] for each study is given by
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the standard error of the log rate ratio being
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Note that the number of participants does not feature in the computations. Note 
also that the choice of time unit (i.e. patient- months, women- years, etc.) is not impor-
tant, since it is canceled out of the rate ratio and does not feature in the standard 
error. An adjustment of 0.5 may be added to each count in the case of zero events. 
Alternative methods of estimating a rate ratio are available, including Poisson regres-
sion [11, 12].

The rate difference (RaD) [13] for each study is given by
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TABLE 8.4  Summary information for computing rates.

Study i Events Person- time Group size

Intervention e1i t1i n1i

Control e2i t2i n2i
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with standard error
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In a randomized trial, rate ratios will often be very similar to RRs obtained after 
dichotomizing the outcome (for example, into those who did and did not experience at 
least one event), since the average period of follow- up should be similar in both inter-
vention groups. Rate ratios and RRs will differ, however, if an intervention affects the 
likelihood of some participants experiencing multiple events.

8.5  INDIVIDUAL STUDY ESTIMATES OF INTERVENTION EFFECT: 
ORDINAL OUTCOMES

Ordinal outcomes are outcomes that fall into one of several ordered categories. For 
example, a headache may be categorized as absent, mild, moderate, or severe in inten-
sity. A simple strategy for analyzing ordinal data is to reduce the data to dichotomous 
data by grouping categories. When there are numerous categories, it is common to 
assign numeric values to each category and compute means and standard deviations 
of the scores, analyzing the data as if they were continuous data.

When there is a small number of categories, analyses retaining the ordinal nature 
of the outcome may give rise to ORs. These are based on models that make particular 
assumptions about how risks of being in different categories are distributed across the 
categories and the intervention groups. One popular model is the proportional odds 
model, which assumes that the intervention effect can be represented by a single OR, 
where this OR relates to any dichotomization of the outcome into a higher versus a 
lower category. The ORs are either extracted from trial reports or need to be computed 
by analyzing the complete dataset. Models and methods are described in detail by 
Whitehead and Jones [14].

8.6  CRITERIA FOR SELECTION OF A SUMMARY STATISTIC

What are the desirable attributes of a summary statistic (or effect measure) to be used 
in a meta- analysis? Here we summarize three key criteria to help decide on a suitable 
statistic to summarize results of a randomized trial.

• Consistency: First, we would like the estimated statistic to be applicable across 
the situations where the trial results will be used. To have this property, estimates 
of the intervention effect have to be as stable as possible over the various popula-
tions from which the trials have been drawn, and to which the intervention will 
be applied. The more nearly constant the statistic is, the greater the justification 
for expressing the effect of the intervention as a single summary number [15].

• Mathematical  properties: Second, the summary statistic must have the 
mathematical properties required for performing a valid meta- analysis. One of 
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the most important of these is the availability of a reliable variance estimate. 
The NNT, for example, does not have a reliable variance estimator and is there-
fore not a suitable statistic to use in meta- analysis.

• Ease of interpretation: Third, a summary statistic should lead to presentation 
of a summary of the effect of the intervention in a way that helps readers to 
interpret and apply the results appropriately. “The essence of a good data anal-
ysis is the effective communication of clinically relevant findings” [16], so the 
ability of general readers of a review to understand and make logical decisions 
based on the reported summary statistic must not be overlooked.

We elaborate on each of these criteria in the three sections that follow. We dis-
cuss each with particular reference to the choice of statistic for binary outcome data, 
where a choice can be particularly difficult to make.

8.6.1  Consistency of Effects Across Studies

A meta- analysis is most useful when the results of the studies are consistent from one 
to the next. However, a set of trials will often display greater heterogeneity than is 
expected by chance alone, indicating that a single summary statistic may be an inade-
quate summary of the intervention effect. Choosing an appropriate summary statistic 
cannot guarantee consistency of results across studies, but it can sometimes help. Note 
that we can investigate whether particular study characteristics explain some of the 
variation either using meta- regression or stratified meta- analysis (see Chapter 10).

In any meta- analysis of binary outcome data, it is likely that there is variation in 
the underlying risk of the event observed in the control groups across the trials. When 
this is the case, the RD, RR, and OR cannot all be equally consistent summaries of 
the trial results. Table 8.5 shows the results of four hypothetical trials, all of which 
have different control group risks. Trials 2–4 have, respectively, the same OR, the same 
RR, and the same RD as Trial 1. However, it is clear that when two trials have the 
same value for one of the measures, they differ on the other two measures. The only 
situation where this relationship does not hold is when there is no intervention effect. 
The heterogeneity observed between the trials may thus in part be an artefact of a poor 
choice of summary statistic, and be reduced or even disappear when an alternative 
summary statistic is used.

TABLE 8.5  Results of four hypothetical trials with varying control group risks.

Trial Relation 
to Trial 1

Intervention group

Treatment Control OR RR RD

1 – 24/100 16/100 0.60 0.67 0.08

2 Same OR 32/100 22/100 0.60 0.69 0.10

3 Same RR 42/100 28/100 0.54 0.67 0.14

4 Same RD 42/100 34/100 0.71 0.81 0.08
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8.6.1.1 The L’Abbé Plot

The most common graphical display associated with a meta- analysis is the forest plot 
(Chapter 2). This plot has a limited ability to help with the question of whether an effect 
measure is an appropriate summary. A more useful graph here is the L’Abbé plot, in which 
summary data from the two intervention groups are plotted against each other  [17]. 
Examples are shown in the case studies later in this chapter. The L’Abbé plot is a helpful 
adjunct to a “standard” meta- analysis. It has several useful features, including the explicit 
display of the range of variation in responses or response rates in intervention and control 
groups [18].

The particular value of the L’Abbé plot in deciding on a summary statistic is that 
it is simple to superimpose contours of constant intervention effect according to each 
possible measure [19, 20]. The L’Abbé plot for a given set of trials may thus shed light 
on whether a chosen effect measure is likely to be a good overall summary for a meta- 
analysis, as illustrated in the case studies in Boxes 8.2 and 8.3.

L’Abbé plots to illustrate contours for RD, RR, and OR are shown in Figure 8.2. The 
solid lines indicate interventions where the risk is reduced (or the alternative outcome 
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FIGURE 8.2  L’Abbé plots demonstrating constant odds ratios, risk differences, and risk ratios for 
standard and reversed outcomes.
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is increased). The dashed lines indicate interventions where the risk is increased (or 
the alternative outcome is decreased). In each case, the further the lines are from the 
diagonal line of no effect, the stronger is the intervention effect. Lines are drawn for RRs 
and ORs of 0.2, 0.4, 0.6, 0.8, 1, 1.25, 1.67, 2.5 and 5, and for RDs of −0.8 to +0.8 in steps of 
0.2. The bold solid line marks the line of no intervention effect (RR = 1, OR = 1, RD = 0).

8.6.1.2  Empirical Evidence of Consistency

A L’Abbé plot is not the only way to assess the consistency of results with the overall 
summary statistic: it is routine in meta- analysis to evaluate the consistency of results 
with the summary estimate using tests of homogeneity (see Chapter 7). Rather than 
visually investigating the appropriateness of different summary statistics, it is possible 
to undertake the meta- analysis using different measures of intervention effect, and to 
choose the one that gives the lowest heterogeneity statistic. However, there are prob-
lems in this procedure, as the decision is data derived and usually based on very few 
data points (and thus vulnerable to the play of chance).

An influential empirical investigation assessed the consistency of various dif-
ferent summary statistics across a large sample of meta- analyses  [20]. One analysis 
considered 551  meta- analyses of binary outcomes published from the Cochrane 
Library. Meta- analyses were performed using RD, RR, and OR methods (described in 
Chapter 9) on each dataset. The consistency of the results for each meta- analysis was 
measured using the standard heterogeneity statistic, computing a weighted sum of the 
squares of the differences between the trial estimates and the overall estimate. The 
three summary statistics for each analysis were then compared.

Plots of the heterogeneity statistics for comparisons of RR with OR and of RR with 
RD are given in Figure 8.3. We see from the first plot that there is little difference on 
average between heterogeneity for ORs and RRs analyses, while from the second plot 
it is clear that RDs tend to have higher heterogeneity than RRs (more points are below 
the diagonal line than above it). Even for meta- analyses with high risks in the control 
group, there was little difference in median heterogeneity scores for the two measures 
of relative effect [20].

It therefore appears that the RD is likely to be the poorest summary in terms of 
consistency, while there is little difference between ORs and RRs. However, the find-
ings do not necessarily mean that the RD should never be used. As Figure 8.3 shows, 
there are meta- analyses that demonstrate less heterogeneity with the RD than the RR. 
An example of a situation where the RD is the most consistent summary statistic is 
given in the case study in Box 8.3.

Note that the heterogeneity statistics in the analyses are computed using the stan-
dard methods, which use different weights for RR, OR, and RD analyses, although all 
are considered to approximate to a χ2 distribution with k – 1 degrees of freedom, where 
k is the number of studies contributing to the meta- analysis.

Similar studies have been performed based on the I2 statistic rather than the het-
erogeneity test statistic. These two heterogeneity statistics are equivalent when they 
are computed from the same meta- analysis, in which case one is a simple transformation 
of the other. Rhodes et al. examined both binary data and continuous data [21]. Their 
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results are given in Table 8.6; these are summaries of distributions fitted to 3873 meta- 
analyses of binary outcomes and 5132 meta- analyses of continuous outcomes. Find-
ings for binary data mirror those found by Deeks et al. [20], in that RDs were observed 
to be less similar across studies than RRs or ORs. For continuous data, no substantial 
difference was observed between consistency of MDs and consistency of SMDs. These 
analyses for continuous data were restricted to meta- analyses in which the authors 
considered the studies to be measuring responses using similar scales, so that use of 
the MD was appropriate.

(a) Heterogeneity: RR compared to OR

(b) Heterogeneity: RR compared to OR

Heterogeneity of OR (P-value of Q statistic)

H
et

er
og

en
ei

ty
 o

f R
R

 (
P

-v
al

ue
 o

f Q
 s

ta
tis

tic
)

H
et

er
og

en
ei

ty
 o

f R
R

 (
P

-v
al

ue
 o

f Q
 s

ta
tis

tic
)

0

0.001

0.01

0.05

0.1

0.5

0

0.001

0.01

0.05

0.1

0.5

1

1 0.5 0.1 0.05 0.01 0.001 0

1

1 0.5
decreasing

de
cr

ea
si

ng
in

cr
ea

si
ng

de
cr

ea
si

ng
in

cr
ea

si
ng

increasing

Heterogeneity of RD (P-value of Q statistic)

decreasing increasing

0.10.05 0.01 0.001 0
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TABLE 8.6  Distribution of I2 statistics for different outcome measures.

Data type Summary statistic Median for I2 Inter- quartile 
range for I2

Binary outcome 
data

Risk ratio 22% 12 to 39%

Odds ratio 21% 9 to 39%

Risk difference 41% 24 to 61%

Continuous 
outcome data

Mean difference 46% 18 to 77%

Standardized mean 
difference

40% 15 to 73%

8.6.2 Mathematical Properties

It is important that the chosen summary statistic has the mathematical properties 
required for performing a valid meta- analysis. A standard meta- analysis is performed 
as a weighted average of summary statistics across studies, using inverse variances as 
weights. We therefore need to be able to compute a variance for each study, and we 
further require that the variance provides an adequate summary of the uncertainty in 
the summary statistic from each study. The standard meta- analysis method requires 
that the sampling error in the summary statistic is approximately normally distributed 
with mean zero. Fulfilling this requirement is the main reason why meta- analyses of 
relative measures such as the RR and OR are undertaken on the log scale (i.e. they are 
fundamentally meta- analyses of log RRs and log ORs).

There are mathematical considerations in the choice between summary statistics 
for binary outcome data. The OR has several mathematical properties that may be 
advantageous for use as a summary statistic in a meta- analysis. We have already men-
tioned that the behavior of OR methods does not rely on which of the two outcome 
states is coded as the event. The OR is also the measure obtained from Peto’s approach 
to the meta- analysis of randomized trials.

The OR has the further advantage over the RR of being “unbounded”: this means 
that it can take values anywhere from 0 to infinity regardless of the underlying risk 
of the event. On the logarithmic scale, the OR is unbounded in both directions. In 
contrast, the value of the observed RR is constrained to lie between 0 and 100/p2, 
where p2 is the risk in the control group. This means that for common events, large 
values of RR are impossible. For example, when the risk in the control group is 66%, 
then the observed RR cannot exceed 1.5. This problem only applies for increases in 
risks, and could be circumvented by considering all trials – whether treatment or 
prevention – as designed to reduce the risk of a bad outcome. In other words, instead 
of considering the increase in risk of success, we could consider the decrease in risk 
of failure.

The RD is also naturally constrained, which may create difficulties when applying 
results to other patient groups and settings. For example, if a trial or meta- analysis 
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estimates an RD of −10%, then for a group with an initial risk of less than 10% the 
outcome will have an impossible negative probability. Similar scenarios for increases 
in risk occur at the other end of the scale. Such problems may arise when the results 
are applied to patients who have different risks from those of participants in the trial 
(or meta- analysis).

The NNT does not have a reliable variance estimator and is therefore not a suit-
able statistic to use in meta- analysis. In most situations the NNT is best obtained by 
computing an overall RR or OR and applying this to a typical risk of the event without 
intervention.

For continuous outcomes, all effect measures described here have valid var-
iance estimates. Ratios of means suffer from the same type of constraint as RRs 
if the measurement scale has a strict upper (or lower) limit. Particular care is 
needed to avoid using ratio measures when the mean response in either group can 
be negative.

8.6.3  Issues in Interpretation of Effect Measures

While it is important that results of meta- analyses can be expressed in ways that 
are readily interpretable, it is not necessary that the summary statistic selected for 
the meta- analysis is itself easily interpretable. Nevertheless, the better the statistical 
methods are understood by the reader, the more likely the reader is to understand the 
results and potentially therefore to accept them.

Among summary statistics for binary outcome data, interpretation of an RR is not 
difficult, as it describes the multiplication of the risk that occurs with use of the inter-
vention. For example, an RR of 3 implies that the risk with intervention is three times 
higher than the risk without intervention (or alternatively that intervention increases 
the risk by 100 × (RR − 1) %  = 200%). Similarly, an RR of 0.25 is interpreted as the risk 
associated with intervention being one- quarter of that without intervention (or alter-
natively that intervention decreases risk by 100 × (RR − 1) %  = 75%). Again, the inter-
pretation of the clinical importance of a given RR cannot be made without knowledge 
of the typical risk in the control group: an RR of 0.75 could correspond to a clinically 
important reduction in events from 80% to 60%, or a small, less clinically important 
reduction from 4% to 3%.

ORs, like odds, are more difficult to interpret [22, 23]. ORs describe the multiplica-
tion of the odds of the outcome that occur with use of the intervention. To understand 
what an OR means in terms of changes in numbers of events, it is best to convert it first 
into an RR in the context of a typical control group risk, as outlined above. Formulae 
for converting an OR to an RR, and vice versa, are:

 
RR OR

OR
OR

RR
RR1 1

1
12

2

2p

p
p

; ,
 

where p2 is the typical control group risk (see the case study in Box 8.2 for an example 
of the interpretation of an OR).
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The nonequivalence of the RR and OR does not indicate that either is wrong; both 
are entirely valid. Problems may arise, however, if the OR is interpreted directly as an 
RR [24, 25]. For interventions that increase risk of an event, the OR will be larger than 
the RR, so the misinterpretation will tend to overestimate the intervention effect, espe-
cially when events are common (with, say, risks more than 30%). For interventions 
that reduce risk, the OR will be smaller than the RR, so that again it overestimates 
the effect of intervention. This error in interpretation is quite common in published 
reports of systematic reviews.

The RD is straightforward to interpret. It describes the actual difference in the 
risk that was observed with intervention; for an individual it describes the estimated 
change in the probability of experiencing the event. However, the clinical importance 
of an RD may depend on the underlying risk. For example, an RD of 2% may represent 
a small, clinically insignificant change from a risk of 58% to 60%, but a proportionally 
much larger and potentially important change from 1% to 3%. Although there are some 
grounds to claim that the RD provides more complete information than relative mea-
sures [26], it is still important to be aware of the underlying risks and consequences of 
the events when interpreting an RD.

An RR of 2 will have a much bigger impact on absolute risk if the underlying risk 
is high than if the underlying risk is small. Several studies have examined whether 
different ways of expressing numeric results of clinical trial results (such as choice 
of summary statistics) may influence perceptions about the worth of an interven-
tion. Systematic reviews of the published literature on the effects of information 
“framing” on the practices of physicians  [27] and the preferences of patients  [28] 
have found that expressing intervention effects in terms of an RR (or relative risk 
reduction) was more likely to elicit use of the intervention than expression of the 
same results in terms of RDs or numbers needed to treat. These studies cannot assess 
whether switching summary statistics leads to clinical decisions being more or less 
rational, only that different decisions are made when the same findings are pre-
sented in different ways.

Among summary statistics for continuous outcome data, the SMD is particularly 
challenging to interpret. It expresses the difference in mean response between the 
two groups in terms of how many standard deviations apart they are. These standard 
deviations describe between- participant variability in individual responses. Rules of 
thumb have been proposed for interpreting SMDs. One particular schema is to inter-
pret 0.2 as representing a small effect, 0.5 a medium effect, and 0.8 a large effect [29]. 
Variations exist (for example, <0.40 = small, 0.40–0.70 = moderate, >0.70 = large). 
However, such rules of thumb are not universally applicable. An alternative is to 
convert the SMD into an unstandardized MD on a particular well- known scale. This 
requires a typical standard deviation for that scale, which might be obtained from the 
trials in the meta- analysis or from an external source (such as a large cohort study). 
The conversion is straightforward: MDs = ss × SMD, where MDs represents the MD on 
the chosen scale s, and ss, is a typical standard deviation for responses on that scale. 
MDs are much easier to interpret. Interpretation is enhanced when there is a good 
understanding of how large a difference on the scale can be considered to be clinically 
important.
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8.7  CASE STUDIES

Many of the issues mentioned in the preceding sections are illustrated by two case 
studies: Box  8.2 shows results from a meta- analysis of eradication of Helicobacter 
pylori in non- ulcer dyspepsia, and Box 8.3 shows results from a meta- analysis of trials 
of vaccines to prevent influenza.

Box 8.2 Case Study: Eradication of Helicobacter Pylori  
in Non- Ulcer Dyspepsia

H. pylori is a bacterium that inhabits the stomach and has been linked to the devel-
opment of peptic ulcer; eradication of the bacterium with antibiotics is an effective 
cure for most ulcer disease. H. pylori is also considered to have a possible causal role 
in the development of non- ulcer dyspepsia. A meta- analysis of the five relevant tri-
als reported a small reduction in dyspepsia rates 12 months after eradication, which 
was just statistically significant  [30]. The effect measure used in the published 
analysis was the RR for remaining dyspeptic 12 months after eradication. This was 
chosen as it was thought to be the most clinically relevant outcome and had been 
pre- stated in the review protocol. No alternative effect measures were considered.

Eight alternative meta- analyses are presented in Table 8.7. Results are shown 
using fixed- effect and random- effects analyses for ORs, RDs, and the two RRs of dys-
pepsia recovery and remaining dyspeptic. (Estimates of the ORs and RDs of remain-
ing dyspeptic rather than of dyspepsia cure can be determined from the cure results 
by taking reciprocals and by multiplying by −1, respectively, as explained earlier in 
the chapter.) In the following we discuss the interpretation of these results, consid-
ering random- effects analyses.

The tests of homogeneity clearly indicate that the authors’ chosen effect 
measure, the RR of remaining dyspeptic, is the most consistent estimator across 
all the trials, with heterogeneity being indicated for the three alternative sum-
mary statistics. In fact, the strength of conclusion from the overall estimate 
crucially depends on this choice of summary statistic: the random- effects analy-
ses for ORs, RDs, and the RR for cure are all not statistically significant at the 
P = 0.05 level. Inspection of the L’Abbé plot in Figure 8.4 also suggests that the 
pattern of the trial estimates is consistent with the RR for the reversed outcome 
of remaining dyspeptic, although this is somewhat hard to discern with so few 
data points. Selection of the RR of remaining dyspeptic on the basis of minimal 
heterogeneity and maximum statistical significance would be a data- driven deci-
sion. Where the interpretation of the analysis so critically depends on the choice 
of effect measure, it is essential for the effect measure to be pre- stated before the 
analysis (as was the case in this review), the selection being based on clinical and 
scientific argument.
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TABLE 8.7  Alternative analyses of eradication trials for non- ulcer dyspepsia.

Measure Effect 95% CI Test of homogeneity

Odds ratio of cure
Fixed- effect model
Random- effects model

 
1.31
1.38

 
1.03 to 1.68
0.90 to 2.11

 
Q = 10.8, df = 4, P = 0.03

Risk difference for cure
Fixed- effect model
Random- effects model

 
0.05
0.06

 
0.01 to 0.09
−0.01 to 0.12

 
Q = 8.3, df = 4, P = 0.08

Risk ratio for cure
Fixed- effect model
Random- effects model

 
1.21
1.28

 
1.02 to 1.43
0.92 to 1.77

 
Q = 12.7, df = 4, P = 0.01

Risk ratio for 
remaining dyspeptic
Fixed- effect model
Random- effects model

 

0.93
0.92

 

0.88 to 0.99
0.85 to 0.99

 

Q = 6.4, df = 4, P = 0.18

It is also of interest to consider the consistency (or otherwise) of the estimates 
of treatment benefit across the different analyses. The choice of effect measure can 
lead to different predictions of benefit. The RR for cure of 1.28 can be interpreted as 
the chances of recovery increasing by 28% (around one- quarter) with treatment, or 
that recovery is 1.28 times more likely with treatment. This effect may be important 
if symptomatic recovery commonly occurs without treatment, but not if it is rare. 
It is necessary to obtain an estimate of this typical recovery rate, p2, to gauge the 
likely impact of the effect in terms of numbers of patients recovering. In the review 
there was considerable variation of baseline recovery rates between 10% and 50%, 
as shown in the L’Abbé plot in Figure  8.4. Consider a scenario where the spon-
taneous recovery rate is 10%: for every 100 people receiving eradication therapy, 
100 × (0.1 × 1.28) = 13 will not have dyspeptic symptoms later this year, 10 of whom 
would have recovered without treatment and 3 due to treatment.

Alternatively, the RD analysis estimated an absolute increase in recovery 
rates of 0.06, or 6%. This can be interpreted as showing that the chance of recov-
ery increases by 6 percentage points regardless of baseline recovery rates. Thus, for 
every 100 people treated, 6 will recover as a result of treatment, regardless of how 
many recover anyway.

The estimate of the OR of 1.38 is interpreted as showing that eradication treat-
ment increases the odds of cure by 38%, or that the odds are 1.4 times higher. To 
understand the effect that this OR describes, it is necessary first to convert it into an 
RR. Taking the same spontaneous recovery rate of 10%, the equivalent RR is 1.33, 
which leads to an estimate of 3 additional people being cured for every 100 treated.

The fourth option differs, in that the event being described is remaining dyspep-
tic. The estimate suggests that the risk of dyspepsia with treatment will be 92% of 
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FIGURE 8.4  L’Abbé plot of the results of the five trials of H. pylori eradication therapy in 
the treatment of non- ulcer dyspepsia. The dashed line ascending from point (0,0) corresponds 
to an RR for dyspepsia cured at 12 months of 1.21 (Mantel–Haenszel fixed- effect estimate; test 
for heterogeneity: Q = 12.7, df = 4, P = 0.01). The dashed line descending from point (1,1) 
corresponds to an RR for remaining dyspeptic at 12 months of 0.93 (Mantel–Haenszel fixed- 
effect estimate; test for heterogeneity: Q = 6.4, df = 4, P = 0.18).

the risk without treatment, or that the risk has decreased by 8%. In terms of num-
bers of people remaining dyspeptic, this should be considered in the context of the 
reversed event risk. We estimate the proportion remaining dyspeptic at 12 months 
to be 0.9 to fit in with the previous scenario. Using this value, for every 100 people 
receiving eradication therapy, 100 × (0.9 × 0.92) = 83 will still be dyspeptic at the end 
of follow- up, 7 fewer than would be the case without treatment.

The choice of summary statistic therefore also makes a difference to the esti-
mated benefit of treatment in a particular scenario, the number of people benefiting 
from treatment varying between 3 and 7 per 100 depending on the chosen summary 
statistic. These discrepancies are less for projections at typical event risks close to 
the mean of those observed in the trials. The pattern of predictions of absolute ben-
efit according to placebo response rates for the four effect measures are shown in 
Figure 8.5.
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FIGURE 8.5  Predictions of treatment benefit at 6–12 months using H. pylori eradication 
therapy in non- ulcer dyspepsia. Solid lines indicate predictions within the range of the trial data, 
dotted lines indicate predictions beyond the observed range. The black boxes and vertical lines 
indicate the point estimates and confidence intervals of the five trials.

Box 8.3 Case Study: Prevention of Influenza Through Vaccination

Only a small proportion of cases of clinical influenza are caused by the influenza 
A virus, the target of most vaccines that protect against influenza. This means that 
in clinical trials of influenza vaccines, a large proportion of the cases of clinical 
influenza would not be prevented even by a totally efficacious vaccine. Also, the 
proportion of clinical influenza cases unrelated to influenza A fluctuates between 
trials according to seasonal and geographic variations in other viral infections that 
cause “flu- like illnesses.”

In a systematic review of the efficacy of influenza vaccines [31], it was argued 
that, in this situation, the RD is the most appropriate summary statistic if the pro-
portion of participants acquiring influenza A cases is more stable than the propor-
tion acquiring other influenza- like viruses across the trials. Inspection of a L’Abbé 
plot (Figure 8.6) and heterogeneity statistics (Table 8.8) indicates that this is the 
case. However, strong evidence of heterogeneity is present whichever summary sta-
tistic is used. This may in part be explained by the test of homogeneity being power-
ful enough to detect small variations in intervention effects in reviews with large 
samples (more than 30 000 participants were included in this review). It may also be 
explained through variation in the formulation of the vaccine used in the different 
trials, and to changes in circulating influenza A viral subtypes.
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TABLE 8.8  Alternative analyses of influenza vaccination trials.

Measure Effect 95% CI Test of homogeneity

Odds ratio for clinical 
illness
Random- effects model

 

0.66

 

0.53 to 0.81

 

Q = 84.75, df = 19, 
P < 0.001

Risk difference for 
clinical illness
Random- effects model

 

−0.051

 

−0.078 to −0.023

 

Q = 57.86, df = 19, 
P < 0.001

Risk ratio for  clinical 
illness
Random- effects model

 

0.75

 

0.65 to 0.86

 

Q = 86.98, df = 19, 
P < 0.001
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FIGURE 8.6  L’Abbé plot of the results of 20 trials of influenza vaccination in healthy adults. 
The dashed line indicates the summary RD of −5.1%.

For this situation it does not make clinical sense to reverse the outcome and 
consider the RR for remaining free of clinical influenza. Such a model would predict 
the largest absolute benefit of vaccination in a population where risk of influenza- 
like illness is very low, and no benefit in a population where risk is very high (see 
the patterns of RRs in Figure 8.6).
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8.8  DISCUSSION

The choice of effect measure for a meta- analysis depends first on the type of data, and 
in particular whether the outcomes measured on individual participants are binary, 
continuous, time- to- event, ordinal, categorical, or something else. For some types of 
data, a systematic reviewer has the opportunity to select which measure will be used to 
compare outcomes between two intervention groups. For binary outcome data, an RR, 
OR, or RD can be chosen; for continuous outcome data, an MD, an SMD, or an RoM 
can be chosen. In this chapter we have considered three criteria on which the selection 
of a measure might be based: consistency across studies, mathematical behavior, and 
ease of comprehension.

The three effect measures for binary outcome are equally valid measures of the 
intervention effect for a randomized controlled trial, but each has strengths and limi-
tations. No single measure is uniformly best, so the choice inevitably involves a com-
promise. The OR has the strongest mathematical properties, but is the hardest to 
comprehend and to apply in practice. There are many published examples where ORs 
from meta- analyses have been misinterpreted by authors as if they were RRs [24, 32]. 
Indeed, Schwartz et al. observed that “odds ratios are bound to be interpreted as risk ra-
tios” [33]. There must always be some concern that routine presentation of the results 
of systematic reviews as ORs will lead to frequent overestimation of the benefits and 
harms of interventions when the results are applied in clinical practice.

While there are strong advocates of the OR [34, 35], some statisticians and epide-
miologists have argued that the OR is often not the most suitable choice of summary 
statistic for summarizing the results of randomized trials and systematic reviews [22]. 
Presentation of RDs or RRs appears on the surface to be more likely to be correctly 
interpreted than one based on ORs. The RD is the easiest measure to understand, but 
is the measure least likely to be consistent across a set of trials. Its use is problem-
atic when it is applied to real patients with widely ranging expected risks, because 
intervention benefit often depends on underlying risk. The RR has some undesirable 
mathematical properties, but these are a problem only in situations where under-
lying risks are very high and RRs are much greater than 1. In many situations, the RR 
may be a reasonable choice as it is relatively easy to comprehend, and our empirical 
study shows that it is as likely to be as consistent across trials as an OR. However, two 
opposing RRs are available for any analysis according to whether we focus on the event 
or the nonevent, and selecting the “wrong” one can dramatically alter the results of 
the systematic review, as shown in the case study in Box 8.2.

Selection of summary statistics for continuous data is principally determined by 
whether trials all report the outcome using the same scale. If this is not the case, use of 
an MD method would be erroneous. However, the SMD method can be used for either 
circumstance. Differences in results between these two methods can reflect differences 
in both the intervention effects calculated for each study and the study weights. Inter-
pretation of a weighted MD is easier than that of an SMD, as it is expressed in natural 
units of measurement rather than standard deviations.

A commonly recommended approach is to use one statistic to analyze the data 
and to present the results using another. The choice of statistic for analysis might be 
based on considerations of mathematics and consistency, while an easily interpreted 
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statistic could be used for presentation. This approach might, for example, indicate 
the use of the OR for analysis, with results converted to an RR or a NNT for presen-
tation (see Box 8.4); or the use of an SMD for analysis, with results converted to an 
unstandardized MD for presentation (see Section 8.6.3). A difficulty here is that con-
versions require assumptions about additional quantities (the control group risk in the 
case of ORs, and the standard deviation on the selected presentation scale for SMDs). 
These quantities may vary greatly according to the situation to which the results are 
to be applied. For conversion of ORs, an average value for the control group risk is 
often estimated from the control groups of the clinical trials, but as trials are rarely 
designed to provide a valid estimate of this value, this estimate may be inappropriate 
when applying the results of the review. A better approach might be to choose these 
external values based on studies other than clinical trials, or on clinical experience.

The impact of the choice of summary statistic can also be considered in sensitivity 
analyses. Clearly, we would hope that the interpretation of the results would be consis-
tent irrespective of the summary statistic, indicating that the broad qualitative conclu-
sions of the review do not depend on the use of a particular effect measure. However, 
we have seen that this will not always be the case (see Box 8.2). In some situations, 

Box 8.4 Computing Absolute Risks and Number Needed to Treat 
From A Meta- Analysis

Here we show how to estimate both an absolute risk associated with intervention 
and the NNT from estimates of RR or OR as summaries of treatment effect from 
a meta- analysis. The formulae apply similarly to an individual clinical trial. The 
computations require a typical risk of the event without intervention (or with the 
control intervention), p2. This underlying risk might be obtained from the control 
group of a highly relevant clinical trial or perhaps from a cohort study.

The absolute risk of the event for an individual given the intervention, p1, can be 
computed directly from summary ORs or RR according to the following formulae:
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where p2 is the typical risk of the event without treatment.
The NNT is estimated from a summary RD simply as NNT = 1/RD. NNT can be 

computed directly from a summary OR or RR according to the following formulae:
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As the typical risk increases, the NNT based on a summary RR will decrease. 
The NNT based on a summary OR, however, will decrease as the risk increases to 
50%, and increases thereafter. This pattern for the OR echoes the symmetry in the 
weights given to the trials in the meta- analysis.
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changing the effect measure can have a large effect on the interpretation of the results, 
especially where the size as well as the direction of the effect are critical.

A priori specification of the effect measure on clinical or scientific grounds 
undoubtedly seems preferable to a post hoc selection based on comparisons of analyses. 
But how could such an a priori selection be determined? The choice of a summary 
statistic can often be viewed as a choice between different mathematical models of 
the relationship between control group responses and treatment group responses. 
The underlying patterns for these models are shown in the L’Abbé plots in Figure 8.2 
(which show contours of constant effect for each measure) or more clearly in the plot 
of treatment benefit against control group risks in Box 8.4 (which shows predictions of 
actual benefit of treatment for the results of the first case study). Significant variation 
in control group responses between trials must reflect variation in participant charac-
teristics, control group interventions, outcome measures, study quality, or variation in 
length of follow- up (for example, event risk usually increases with time). If the causes 
of variation in control group responses between the trials can be identified, and if the 
shape of the relationship between these and intervention benefit can be hypothesized, 
it may be possible to choose the summary statistic that most closely fits the predicted 
patterns of these relationships.
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Combining Results Using 
Meta- Analysis
Jonathan J. Deeks, Richard D. Riley, and Julian P.T. Higgins

In this chapter we consider the general principles of meta-analysis, and introduce the 
most commonly used methods for performing meta-analysis. We shall focus on meta-
analysis of randomized trials evaluating the effects of an intervention, but much the 
same principles apply to other comparative studies, notably case–control and cohort 
studies evaluating risk factors. An important first step in a systematic review of controlled 
trials is the thoughtful consideration of whether it is appropriate to combine all (or per-
haps some) of the trials in a meta-analysis, to yield an overall statistic (together with its 
confidence interval) that summarizes the effect of the intervention of interest. Decisions 
regarding the “combinability” of results should largely be driven by consideration of 
the similarity of the trials (in terms of participants, experimental and comparator inter-
ventions, and outcomes), but statistical investigation of the degree of variation between 
individual trial results, which is known as heterogeneity, can also contribute.

9.1 META- ANALYSIS

9.1.1 General Principles

Meta- analysis usually involves a two- stage process. In the first stage a summary statistic is 
calculated for each trial to be included in the meta- analysis. The summary statistics describe 
the observed intervention effect, and are usually risk ratios, odds ratios or risk differences for 
binary outcome data, differences in means or standardized differences in means for contin-
uous outcome data, or hazard ratios for survival (time- to- event) data. In the second stage, 
the overall estimate of the intervention effect is calculated as a weighted average of these 
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summary statistics. The weights are trial specific, and are chosen to reflect the amount of 
information that each trial contains. In practice the weight for a trial is often the inverse of 
the variance (the square of the standard error) of the trial’s summary statistic, which relates 
closely to sample size (and number of events for binary or time- to- event data). The precision 
(confidence interval) and statistical strength of evidence (e.g. P value) for an overall estimate  
are also calculated. The most commonly used methods of meta- analysis follow these basic 
principles. There are, however, some other aspects that vary between alternative methods, 
as described in this chapter.

In a meta- analysis we do not combine the data from all of the trials as if they were 
from a single large trial. Such an approach is inappropriate for several reasons and can 
give misleading results, especially when the number of participants in each group is 
not balanced within trials [1].

9.1.2 Heterogeneity

An important component of systematic reviews is to investigate the consistency of the 
intervention effects across the individual trials. As trials will not have been conducted 
according to a common protocol, there will usually be some variation between the trials in 
trial characteristics, such as the participants, clinical settings, concomitant care, methods 
of delivery of the intervention, and measurement of outcomes. While some divergence of 
trial results from the overall estimate is always expected purely by chance, the effective-
ness of an intervention may also vary according to trial characteristics. Such variation in 
effectiveness is known as heterogeneity, and it will increase the variability of the observed 
trial results. Consistency of trial results across a variety of circumstances provides impor-
tant and powerful corroboration of the generalization of the effect of the intervention, so 
that a greater degree of certainty can be placed on its application to wider clinical practice.

The possibility of excess variability (heterogeneity) between the results of the dif-
ferent trials may be examined by a statistical test of homogeneity (often described as a 
test for heterogeneity). If the test result yields a small P value, the between- trial vari-
ability is more than expected by chance alone, and it can be concluded that the inter-
vention has a variable effect. However, if the test of homogeneity is inconclusive (the P 
value is large), the possibility of a Type II (false- negative) error must always be consid-
ered, because the test has low power to detect excess variation, especially when there 
are not many trials. Partly because the test has limited usefulness in this situation, it is 
preferable to focus on the magnitude of heterogeneity (often denoted by τ2, also known 
as the between- trial variance), which if greater than zero suggests there is between- 
trial variability in the size of the effect. This variation can be incorporated into the 
analysis using a random- effects model (see below). One may additionally consider the 
magnitude of heterogeneity relative to the variability of trial results themselves, for 
example using the I2 statistic, to determine the potential impact of heterogeneity on 
the meta- analysis. Fuller details on these methods are given later in the chapter.

Where the amount of heterogeneity is deemed considerable, the meta- analyst 
ought to consider an investigation of reasons for the differences between trial results 
(see Chapter 10), and if the differences cannot be explained, may even consider not 
undertaking a meta- analysis at all. Meta- analysis of the studies in subgroups and 
statistical methods of meta- regression (see Chapter 10) can be used to examine poten-
tial associations between trial characteristics and the estimated intervention effect.
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9.1.3  Summary Statistics for Intervention Effects

A meta- analysis of randomized trials is performed for a specific summary statistic. 
For example, if the outcome for each individual within each trial is binary, then the 
standard options for a summary statistic are the odds ratio, the risk ratio, and the risk 
difference. If the outcome is continuous, then the usual choices are the difference in  
mean response (often called the mean difference) and the standardized difference 
in mean response (often called the standardized mean difference or SMD, and known 
in some fields as the “effect size”). For time- to- event data, the hazard ratio is the usual 
measure for comparing survival between the two intervention groups. These sum-
mary statistics are described in more detail in Chapter 8. In most circumstances we 
combine log- transformed values of ratio measures (odds ratios, risk ratios, and hazard 
ratios), because the sampling distribution for these measures is symmetric only on 
the log scale. Heterogeneity may be larger for one summary statistic than for another. 
For instance, if odds ratios are similar across trials but baseline risks differ substan-
tially, then risk differences would be expected to very markedly across trials, producing 
greater heterogeneity than on the odds ratio scale (see Chapter 8).

9.2  FORMULAE FOR DERIVING A SUMMARY ESTIMATE 
OF THE INTERVENTION EFFECT BY COMBINING TRIAL RESULTS 
(META- ANALYSIS)

We first describe a general class of meta- analysis methods that combine individual trial 
summary statistics. Each summary statistic is an estimate of the intervention effect for 
a particular metric, such as a standardized mean difference. We denote the summary 
statistic generically by î, with each given a weight wi that is related to îSE

 
, where 

SE denotes the standard error. All the methods described are available in the Stata, R, 
or Comprehensive Meta- Analysis routines described in Chapters 25–27.

9.2.1  Fixed- Effect and Random- Effects Methods

One approach to meta- analysis is to assume that there is a single true intervention 
effect common to all trials; in other words, the intervention effect is fixed at the same 
value for each trial. The differences between trial results are therefore due solely to the 
play of chance, which relates to the sample size of each trial. This approach has often 
been described as a fixed-effectmeta-analysis. although some refer to it (perhaps 
more appropriately) as a common- effect or equal- effects meta- analysis. The estimate 
from a fixed- effect meta- analysis provides the best estimate of this single interven-
tion effect.

In a random-effectsmeta-analysis the intervention effects for the individual 
trials are assumed to vary around some average value. The summary estimate from the 
meta- analysis provides the best estimate of this average intervention effect. Usually 
the intervention effects in the different trials are assumed to have a normal distribu-
tion with between- trial variance τ2. In essence, the test of homogeneity tests whether 
τ2 is zero. The smaller the value of τ2, the more similar are the fixed- effect and random- 
effects analyses in terms of the summary intervention effect and its interpretation.
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Peto describes his method for obtaining a summary odds ratio (described below) 
as assumption free [2], arguing that it does not assume that all the trials are estimating 
the same intervention effect. Although alternative interpretations of the fixed- effect 
meta- analysis result are available  [3], in the current chapter we adopt the conven-
tional assumption that, in a fixed- effect meta- analysis, the same intervention effect is 
assumed for every trial. We also interpret the Peto method in the same way.

There has been historical debate over when to use fixed- effect or random- effects 
models. Many recommend using random- effects models when heterogeneity is 
expected. Given that random- effects estimates and fixed- effect estimates are usually 
very similar when there is little or no heterogeneity, they consider it reasonable to use 
random- effects models in most circumstances so that any heterogeneity is incorpo-
rated into the analysis if it is present. However, random- effects models have limita-
tions when data and events are sparse, when fixed- effect models may be preferred, and 
may be very misleading if trial findings are related to their sample sizes (sometimes 
described as the presence of “small- study effects”), as discussed later.

9.2.2  Fixed- Effect Meta- Analysis using the  Inverse- Variance  
Method

Inverse- variance methods may be used to combine summary statistics for binary, 
 continuous, time- to- event, and other types of outcome data. In the general formula 
below, the estimated summary statistic, denoted by î , could for example be the log 
odds ratio, log risk ratio, log hazard ratio, risk difference, difference in means, or 
standardized difference in means from the ith trial.

The summary statistics are combined to give an overall summary estimate by cal-
culating a weightedaverage of the estimates from the individual trials:

ˆ
ˆ .i i
IV

i

w
w

The summation notation indicates summation across the i trials included in the 
analysis. In a fixed- effect meta- analysis, the weights (wi) are the reciprocal of the vari-
ances (or squared standard errors):

2

1 .
ˆSE

i

i

w

Thus larger trials, which have smaller standard errors, are given more weight than 
smaller trials, which have larger standard errors. This choice of weight minimizes 
the uncertainty in the summary estimate, ÎV. For binary outcome data, where one 
or more cells in the 2 × 2 table is zero, both the summary statistic î  and its standard 
error îSE  may be undefined due to divide- by- zero errors. Where this occurs a small 
quantity, typically 0.5, is added to each cell in the 2 × 2 table before the computations 
are undertaken, though other options are available [4].
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The standard error of ÎV  is given by

IV
1ˆSE .

iw

The heterogeneity test statistic is given by [5]

2ˆ ˆ .i i IVQ w

For a formal test of homogeneity, the statistic Q will follow approximately a χ2 
distribution on k − 1 degrees of freedom, under the null hypothesis that the true inter-
vention effect is the same for all trials. However, as previously mentioned, it is better 
to focus on the absolute magnitude of heterogeneity (τ2, see below) and its magnitude 
relative to the variation within each trial (the ˆSE i ). The latter can be summarized 
by the I2 statistic, which is given by

I
Q k

Q
2 100

1
% ,

where k is the number of trials in the meta- analysis [6, 7]. I2 measures the percentage 
of variability in intervention effect estimates that is due to between- trial heterogeneity 
rather than chance. A common mistake is to interpret I2 as a measure of the (absolute) 
amount of heterogeneity. The value of I2 should not be used on its own to decide bet-
ween a fixed- effect or random- effects meta- analysis [8]; it simply quantifies the poten-
tial impact of heterogeneity on the summary estimate. If I2 is close to 0% then the impact 
of heterogeneity is small, whereas an I2 closer to 100% indicates it may be substantial.

The strength of the inverse- variance approach is its wide applicability. It can be 
used to combine any type of estimate where standard errors are available. Thus it 
also can be used for estimates of a wide variety of measures, including standardized 
mortality ratios, risk and prognostic factor effects, and prevalence; and from many 
types of study, including crossover trials, cluster- randomized trials, and observational 
studies. It is also possible to use this method when arm- specific summary data (such 
as 2 × 2 tables for binary outcomes) cannot be obtained for each study, but intervention 
effects and confidence intervals are available, such as when intervention effects have 
been adjusted for design or prognostic variables.

When applying the inverse- variance method to meta- analyses of binary outcomes, 
it is important to remember that different choices of summary statistic will affect the 
relative weights that are assigned to different trials. For a trial with a given sample size, 
it will be given the highest weight in a meta- analysis if using the risk ratio scale when 
the absolute risks of the event in the two groups are both high (near 100%), and the 
lowest weight when they are both low (near 0). In a meta- analysis of odds ratios, the 
trial will be given the highest weight when both absolute risks are near to 50%. For a 
meta- analysis of risk differences, the pattern is the opposite to that for odds ratios: the 
trial will have the highest weight when the absolute risks are both low (near 0%) or 
high (near 100%) [9].
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9.2.3  Mantel–Haenszel Methods for Binary Outcomes

When binary outcome data are sparse, both in terms of event risks being low and trials 
being small, the estimates of the standard errors of the intervention effects that are 
used in the inverse- variance methods may be poor. Mantel–Haenszel methods are an 
alternative weighting scheme for conducting a fixed- effect meta- analysis for binary 
outcome data, which have been shown to be more robust when data are sparse and 
may therefore be preferable to the inverse- variance method in that situation. In other 
situations they give similar estimates to the inverse- variance method. They are avail-
able only for binary outcomes.

For each trial, the summary statistic from each trial î  is given weight wi in the 
analysis, where wi is defined below. The summary estimate of effect, ˆ

MH, is given by

MH

ˆ
ˆ .i i

i

w
w

Unlike with inverse- variance methods, relative effect measures are combined on 
their natural scale, although their standard errors (and confidence intervals) are still 
computed on the log scale.

We will use the same notation for the data as in Chapter 8, summarized in Table 9.1. 
This gives the numbers of people who do or do not experience the event in each of the 
two groups (here called intervention and control).

For combining oddsratios, each trial’s OR is given weight [10, 11]

w
b c
Ni
i i

i

.

Thus the summary estimate can be expressed as

MH MH

/ˆ OR .
/

i i i

i i i

a d N

b c N

This illustrates that adjustments for zero events are not required to compute 
the summary Mantel–Haenszel estimate, although in practice several software rou-
tines have introduced them to ensure that the odds ratio, î , is defined for each trial 
(including metan in Stata, and Review Manager).

The logarithm of ORMH has standard error given by [12]

SE ORMHln ,1
2 2 2

E
R

F G
R S

H
S

TABLE 9.1 Summary information when outcome is binary.

Trial i Event No event Group size

Intervention ai bi n1i

Control ci di n2i

Total Ni
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where 

R
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N

S
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N
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For combining riskratios, each trial’s RR is given weight [13]

w
c n
Ni
i i

i

1 ,

and the logarithm of RRMH has standard error given by

SE RRMHln ,P
R S

where

P
n n a c a c N

N
R

a n
N

S
c n
N

i i i i i i i

i

i i
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1 2

2
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For riskdifferences, each trial’s RD has the weight [13]

w
n n

Ni
i i

i

1 2 ,

and RDMH has standard error given by

SE RDMH

J
K 2

,

where

J
a b n c d n

n n N
K

n n
N

i i i i i i

i i i

i i

i

2
3

1
3

1 2
2

1 2; .

However, the test of homogeneity is based upon the inverse- variance weights and 
not the Mantel–Haenszel weights, and computed using log- transformed estimates for 
ratio measures. The heterogeneity statistic is given by

2

MH
ˆ ˆln lni iQ w

where MH
ˆ  is the summary odds ratio (ORMH), or risk ratio (RRMH), or

2

MH
ˆ ˆ

i iQ w
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where MH
ˆ  is the summary risk difference (RDMH). Zero- cell corrections are required 

when î is not estimable.

9.2.4  Peto’s Odds Ratio Method

An alternative to the Mantel–Haenszel methods is a method due to Peto (sometimes 
attributed to Yusuf, or to Yusuf and Peto) [2]. This is again a fixed- effect approach to 
meta- analysis. The overall odds ratio is given by

OR
OR

Peto exp
ln

,
w

w
i i

i

where the odds ratio for each individual study ORi is calculated using the approximate 
Peto method described in Chapter 8, and the weight wi is equal to the hypergeometric 
variance of the event count in the intervention group,  vi. The summation notation 
indicates summation of the trials included in the analysis.

The logarithm of the overall odds ratio has standard error

SE ORPetoln .1
vi

The heterogeneity statistic is given by

Q vi iln ln .OR ORPeto

2

The approximation upon which Peto’s method relies has been shown to fail when 
intervention effects are very large, and when the size of the arms of the trials is seri-
ously unbalanced [14]. Severe imbalance with, for example, four times as many par-
ticipants in one group than the other is possible, but rare in randomized trials. In 
other circumstances, including when event rates are very low, the method performs 
well [15]. Unlike the inverse- variance and Mantel–Haenszel methods, corrections for 
zero- cell counts are not necessary for either the summary OR or its standard error.

9.2.5  Extending the Peto Method for Combining Time- to- Event Data

Meta- analysis for time- to- event outcomes can be performed either by computing hazard 
ratios for each trial and combining them using the inverse- variance method above, or 
by exploiting a link between the log- rank test statistic and the Peto method, as follows.

For each trial, the calculation of a log- rank statistic involves dividing the follow- up 
period into a series of discrete time intervals. For each interval the number of events 
observed in the treated group Oij, the number of events that would be expected in the 
intervention group under the null hypothesis Eij and its variance vij, are calculated [16]. 
The expected count and its variance are computed taking into account the number 
still at risk of the event within each time period. The log- rank test for the ith trial is 
computed from Oij, Eij and vij summed over all the time periods, j.
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Following the same format as the Peto odds ratio method, an estimate of the 
hazard ratio in each trial is given by [16]

HRi
ij ij

ij

O E
v

exp ,

with standard error

SE HRln .i

ijv
1

Note that the summation notation here indicates summation of the j time period 
intervals, and is computed separately for each trial.

The summary estimate of the hazard ratio is given by the weighted average of the 
log hazard ratios

HR
HR

Peto exp
ln

,
w

w
i i

i

where the summation is now over the i trials again, and the weights wi are equal to the 
variances computed from the trials, vij.

The logarithm of the overall hazard ratio has standard error

SE HRPetoln .1
wi

Computation of the components of the log- rank statistic Oij, Eij, and vij is 
straightforward if individual participant data (IPD) are available. However, the method 
has been noted to suffer from bias in some situations [17]. Methods have been pro-
posed for indirectly estimating the log hazard ratio and its variance from graphical 
and numeric summaries commonly published in reports of randomized controlled 
trials [18–21].

9.2.6  Random- Effects Meta- Analysis using the  Inverse- Variance  
Method

Under the random- effects model, the assumption of a single, fixed (common) inter-
vention effect is relaxed, and the true intervention effects are considered to vary across 
trials. Conventionally, the θi are assumed to follow a normal distribution with a mean 
θ and variance τ2. A simple estimate of τ2, after DerSimonian and Laird [5], is given by

2
2

1
ˆ ,

i
i

i

Q k

w
w

w
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where Q is the heterogeneity statistic, with 2ˆ  set to zero if Q < k − 1, and the wi are 
calculated as in the inverse- variance method. The value of Q is typically obtained by 
the formula shown within the inverse- variance method section, although the formula 
based on the Mantel–Haenszel approach is also an option (and has been implemented 
as the default in some software, such as metan in Stata and Review Manager). Again, 
for odds ratios, risk ratios, and hazard ratios, the intervention effect is considered on 
the logarithmic scale.

When deriving the summary effect estimate for the random- effects inverse- 
variance approach, each trial’s intervention effect is given weight

2
2

1 .
ˆ ˆSE

i

i

w

The summary estimate is given by

DL

ˆ
ˆ ,i i

i

w

w

with standard error

DL
1ˆSE .

iw

Note that when 2 0 , i.e. where the heterogeneity statistic Q is smaller than 
its degrees of freedom (k − 1), the weights reduce to those given by the fixed- effect 
inverse- variance method.

If the estimate of τ2 is greater than zero, then the weights in random- effects 

models (
2

2ˆ ˆ1 / SEi iw ) will be smaller and more similar to each other 

than the weights in fixed- effect models (
2ˆ1 / SEi iw ). This means that sum-

mary estimates from random- effects meta- analyses have larger standard errors (the 
confidence intervals will be wider) than fixed- effect analyses [22], since the variance 
of the summary effect is the inverse of the sum of the weights, which are smaller when 
the estimate of τ2 is greater than zero. It also means that random- effects models give 
relatively more weight to smaller trials than the fixed- effect model, which will alter 
the summary estimate if there is a relationship between trial findings and sample size. 
This may not always be desirable (see Chapter 5).

The random- effects inverse- variance method has the same wide applicability as 
the fixed- effect inverse- variance method, and can be used to combine any type of esti-
mates, provided standard errors are available.
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9.2.7  Other Random- Effects Meta- Analysis Methods

There are many other competing approaches for the estimation of τ2, most of which 
are computationally more complex than the DerSimonian and Laird method, but 
can be readily obtained with modern software such as Stata, R, or Comprehensive 
Meta- Analysis (see Chapters 25–27). At least 16 different estimators are available [23]. 
Re- analysis across many meta- analyses using several of these methods found that 
meta- analysis conclusions can differ depending on which is used [24]. However, an 
estimate using restricted maximum likelihood (REML) has been recommended based 
on an extensive simulation study [25]. We provide one example of a re- analysis using 
different approaches in Box 9.1. Regardless of the chosen method, the estimated τ2 is 
used to obtain the trial weights, 

2
2ˆ ˆ1 / SEi iw , and then the summary effect 

and standard error computed as outlined above. Whichever estimate of τ2  is used in the 
inverse- variance approach, it will be accompanied by substantial uncertainty when 
the number of studies is small.

Box 9.1 Consideration of Different Estimation Methods for  
Random- Effects Models

Cornell et al. illustrate how the choice of estimation method and confidence inter-
val can lead to different conclusions (Figure 9.1) [26]. The methods that account for 
uncertainty in the between- trial variance (profile likelihood, Hartung–Knapp, and 
Bayesian) all lead to wider 95% confidence intervals than the DerSimonian and 
Laird approach with standard confidence interval derivation.

Study Odds ratio (95% CI)

Analysis

Weseley & Douglas (1962) 1.04 (0.48 to 2.28)

0.40 (0.20 to 0.78)

0.33 (0.14 to 0.74)

0.23 (0.08 to 0.67)

0.25 (0.13 to 0.48)

0.74 (0.59 to 0.94)

0.77 (0.39 to 1.52)

2.97 (0.59 to 15.07)

1.14 (0.69 to 1.91)

0.67 (0.56 to 0.80)

0.60 (0.40 to 0.89)

0.60 (0.35 to 1.03)

0.60 (0.35 to 1.04)

0.60 (0.34 to 1.08)

Flowers et al (1962)

Menzies (1964)

Fallis et al (1964)

Cuadros & Tatum (1964)

Landesman et al (1965)

Kraus et al (1966)

Tervila & Vartiainen (1971)

Campbell & MacGillivray (1975)

0.05 0.5 0

Odds ratio

4 20

Fixed-effect (τ = 0)

DerSimonian-Laird estimate / standard CI (τ = 0.48)

DerSimonian-Laird estimate / Hartung-Knapp CI (τ = 0.48)

Profile likelihood (τ = 0.49)

Bayesian (τ = 0.63)

FIGURE 9.1 Summary meta- analysis results for a meta- analysis of the effect of diuretics on 
preeclampsia, as taken from Cornell et al. [26].
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9.3  CONFIDENCE INTERVAL FOR OVERALL EFFECT

The standard 100(1 − α)% confidence interval for the overall estimate ˆ  is given by

1 /2 1 /2
ˆ ˆ ˆ ˆSE to SE ,z z

where ˆ  is the log odds ratio, log risk ratio, log hazard ratio, risk difference, mean 
difference, or standardized mean difference, and z is the standard normal deviate. 
For example, if α = 0.05, then z1 − α/2 = 1.96 and the standard 95% confidence interval 
is given by

ˆ ˆ ˆ ˆ1.96 SE to 1.96 SE .

Confidence intervals for log odds ratios, log risk ratios, and log hazard ratios are 
exponentiated to provide confidence intervals for the summary odds ratio, risk ratio, 
or hazard ratio, respectively.

There are growing calls to replace this standard confidence interval with methods 
that more fully account for the uncertainty in the within- trial weights  [26]. When 
deriving the summary estimate, the estimated weights are assumed to be known. How-
ever, the weights in a fixed- effect meta- analysis and both components of the weights 
in a random- effects meta- analysis ( ˆSE i  and 2ˆ ) are in fact estimates that may have 
considerable uncertainty. Thus, the concern is that the standard approach produces 
confidence intervals that are too narrow, leading to conclusions that are too precise. 
Hartung and Knapp (and independently Sidik and Jonkman) propose an alternative 
confidence interval for random- effects meta- analyses, which uses a modified estimate 
of ˆSE  and replaces z1 − α/2 with tk − 1, 1 − α/2, the value from a t-distribution with degrees 
of freedom equal to the number of trials (k) minus one [27, 28]. The method is the 
default approach in the metareg Stata module (see Chapter  25), and simulation 
studies suggest this method performs very well unless there are few trials with very 
unequal sample sizes [29]. Other options include profile likelihood estimation [30] and 
Bayesian methods. The latter can incorporate prior information from other sources. 
Empirical prior distributions for τ2 have been proposed for different outcome types 
across various disease fields, based on previous meta- analyses in Cochrane [31, 32] 
(see Box 9.2).

9.4  TEST STATISTIC FOR OVERALL EFFECT

A standard test statistic for the overall intervention effect is derived as

ˆ
,

ˆSE
Z
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where the odds ratio, risk ratio, or hazard ratio is again considered on the log 
scale. Under the null hypothesis that there is no intervention effect, Z will follow 
approximately a standard normal distribution. However, as for the derivation 
of confidence intervals, other test statistics that account for uncertainty may be 
preferred [33].

Note that the interpretation of the test of overall effect differs between fixed- effect 
and random- effects analyses. For the fixed- effect model it tests the hypothesis that 
there is no effect of the intervention, while for the random- effects model it tests the 
hypothesis that the average effect of the intervention is zero.

Box 9.2 Bayesian Meta- Analysis

Bayesian meta- analysis provides an alternative to the specific methods described 
in more detail in this chapter. In a Bayesian meta- analysis, the combined results of 
the studies are combined with a priordistribution, producing a posteriordistribution 
for the quantities of interest. In a simple Bayesian fixed- effect meta- analysis, the 
prior distribution describes an a priori belief about the magnitude of the underly-
ing effect. In a simple Bayesian random- effects meta- analysis, the prior distribution 
describes a priori beliefs about the mean and variability of effects across studies. 
The prior distribution may be derived from data external to the meta- analysis, or 
from expert opinions. It influences the analysis such that the main results of the 
meta- analysis (extracted from the posterior distribution) reflect a combination of 
the information in the prior distribution and the information in the data.

Usually the prior belief about the magnitude of the effect size is specified to 
be that of ignorance, with a flat prior distribution that does not favor any particu-
lar effect size over another. However, notable gains in precision can be obtained 
by using informative prior distributions for the amount of between- study heter-
ogeneity in a random- effects meta- analysis  [31]. This is particularly the case for 
meta- analyses of clinical trials, since empirical distribution for the typical amount 
of heterogeneity have been derived based on many thousands of historical meta- 
analyses. The impact of using such prior distribution is greatest when there are very 
few trials in the meta- analysis, since in this situation the between- study heteroge-
neity is estimated very poorly based on the trials alone.

There are further advantages of taking a Bayesian approach. One is that they 
offer great flexibility to model the data more meaningfully, for example by allowing 
different studies to be analyzed in different ways, and easily facilitating the cluster-
ing of studies, for example by drug classes. The flexibility arises because Bayesian 
meta- analyses are typically implemented using bespoke code within a simulation 
approach to analysis (specifically, Markov chain Monte Carlo methods). A further 
advantage, argued by many, is that inferences more naturally follow intuition: 
Bayesian analyses focus on our uncertainty about the underlying effects, treating 
the data as fixed, rather than our uncertainty about the data, treating the underly-
ing effects as fixed. Result are expressed using credibleintervals and direct probabili-
ties, rather than using confidence intervals and P values.
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9.5  PREDICTION INTERVAL FOR THE INTERVENTION EFFECT 
IN A NEW TRIAL

The overall summary from a fixed- effect meta- analysis estimates the assumed fixed 
(or common) effect of the intervention. For a random- effects analysis, the overall sum-
mary estimates the average effect rather than a fixed effect, an important difference 
that is often overlooked. When interpreting the overall summary for a random- effects 
analysis, it is important to describe the expected variability as well as the average effect 
of the intervention, to be able to help predict, for example, what might be observed in 
a new trial, or when the intervention is applied in a different setting. Assuming that 
the trials included in the meta- analysis provide a representative sample of interven-
tion effects and that intervention effects are normally distributed between trials, a pre-
diction interval can be computed for the effect of the intervention in further trials or 
settings. A prediction interval is approximately found by [34, 35]

2 2
2 2

2 2
ˆ ˆ ˆ ˆˆ ˆto ,k kt SE t SE

Box 9.3 Interpretation of Summary Results from Random- 
Effects Models

Figure  9.2 presents two hypothetical meta- analyses (Example 1 and Example 2), 
taken from Riley et al. [35]. In each meta- analysis, intervention effect estimates are 
computed and synthesized from 10 hypothetical trials. Each trial provides an unbi-
ased estimate of the intervention effect expressed as a standardized mean difference. 
Assume that negative intervention effects indicate benefit. The two meta- analyses give 
identical summary intervention effect estimates of −0.33 with a standard 95% confi-
dence interval of −0.48 to −0.18. Both are computed using a DerSimonian and Laird 
random- effects model. However, visual inspection of the forest plots makes it clear 
that there is substantially more between- trial variation in Example 2 than in Example 
1. So why do the analyses give the same result, and is it appropriate that they do?

The reason for the discrepancy is that two factors are impacting on the width of 
the confidence interval. The first is the sizes of the trials. The trials are generally larger 
in Example 2 and have narrower confidence intervals. The effect of the larger trials is 
to give the meta- analysis more precision and give the diamond at the bottom a nar-
rower confidence interval. The second factor is the amount of heterogeneity. This is 
much larger in Example 2. The effect of this heterogeneity is to give the meta- analysis 
less precision and give the diamond at the bottom a wider confidence interval. The 
examples were constructed so that the effects of these two factors cancel out, such 
that the summary estimates in both examples have the same precision. However, the 
width of the confidence interval in Example 2 does not describe the amount of het-
erogeneity across the trials. The confidence interval reflects only uncertainty in the 
location of the average intervention effect.
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Adding prediction intervals helps reveal the difference in interpretation for 
these two meta-analyses. In Figure 9.2, the prediction interval for the first forest 
plot is essentially the same as the confidence interval for the average effect, because 
there is no discernible heterogeneity across the trials (the slight difference arises 
because the prediction interval is computed using a t-distribution whereas the con-
fidence interval is computed using a normal distribution). However, the 95% predic-
tion interval for the second forest plot is much wider than the confidence interval: 
−0.76 to 0.09. Although most of this interval is below zero, indicating that the inter-
vention will be beneficial in the majority of settings, the interval overlaps zero and 
so in some settings the intervention effect may be small or even slightly harmful. 
This finding was masked when just focusing on the average effect estimate and its 
confidence interval.

FIGURE 9.2 Forest plots of two distinct hypothetical meta- analyses that give the same 
summary estimate (center of the diamond) and 95% confidence interval (width of the diamond). 
Example 1 is a random- effects meta- analysis with smaller trials with little heterogeneity. 
Example 2 is a random- effects meta- analysis with larger trials with greater heterogeneity. N.B. 
The center of each square gives an individual trial estimate of intervention effect, and the 
horizontal line gives its 95% confidence interval; the size of the square is proportional to the 
weight of the trial in the meta- analysis.

       (–0.51, –0.15)

        (–0.76, 0.09)

Hypothetical Example 1
1
2
3
4
5
6
7
8
9
10

Hypothetical Example 2
11
12
13
14
15
16
17
18
19
20

ID
Study

–0.49 (–1.17, 0.19)
–0.17 (–0.59, 0.25)
–0.52 (–0.99, –0.05)
–0.48 (–1.21, 0.25)
–0.26 (–0.75, 0.23)
–0.36 (–0.94, 0.22)
–0.47 (–0.90, –0.04)
–0.30 (–0.59, –0.01)
–0.15 (–0.68, 0.38)
–0.28 (–1.26, 0.70)
–0.33 (–0.48, –0.18)

0.00 (–0.83, 0.83)
0.10 (–0.33, 0.53)
–0.40 (–0.45, –0.35)
–0.80 (–1.19, –0.41)
–0.63 (–1.22, –0.04)
0.22 (–0.37, 0.81)
–0.34 (–0.48, –0.20)
–0.51 (–0.71, –0.31)
0.03 (–0.21, 0.27)
–0.81 (–1.40, –0.22)
–0.33 (–0.48, –0.18)

Standardized mean
difference (95% CI)

Summary estimate (95% CI)
95% prediction interval

Summary estimate (95% CI)
95% prediction interval

0–1.5 –1 –.5 0 .5 1

Standardized mean difference



174 Systematic Reviews in Health Research 

where tk − 2 is the 100(1−α/2) percentile of the t- distribution with k − 2 degrees of 
freedom. The value of α is usually chosen as 0.05, to give a 95% prediction interval, 
although use of other values can also be considered (for example, quoting a 50% pre-
diction interval would describe the central 50% of intervention effects, akin to the box 
in the center of a box and whisker plot). A t- distribution, rather than a normal dis-
tribution, is used to help account for the uncertainty of 2ˆ . The correct number of 
degrees of freedom for this t- distribution is complex, and the value of k − 2 will often 
be approximate. See Box 9.3 for an example of how adding prediction intervals to a 
meta- analysis helps with interpretation.

Prediction intervals for meta- analyses of small numbers of trials can be very 
wide, and may not be helpful. They are also strongly dependent on the accuracy of 
the between- trial variability in the random- effects model following a normal distri-
bution. Recent work has proposed alternative approaches, using bootstrapping or 
nonparametric methods, to derive prediction intervals without assuming a particular 
distribution [36, 37]. Note that prediction intervals may encompass heterogeneity in 
intervention effects caused by biases in addition to genuine clinical differences, so are 
most useful clinically when the meta- analysis does not include trials at high risk of bias.

9.6  META- ANALYSIS WITH INDIVIDUAL PARTICIPANT DATA

The same basic approaches and meta- analysis methods described above are useful for 
meta- analyses of IPD [38, 39] (see Chapter 12). A benefit of having IPD is that the 
meta- analyst calculates the summary tables or statistics for each trial directly from 
the raw data, and therefore can ensure that all data are complete and up to date, that 
the same inclusion/exclusion criteria are used, that the outcome definitions are har-
monized, and that the same method of analysis is used for all trials. A key advantage 
of having IPD is that the meta- analysis can address participant- level characteristics. 
Thus, summary statistics can be calculated that are adjusted for prognostic factors, or 
for specific groups of participants, enabling subgroup analyses to be produced and dif-
ferences between them quantified.

9.7 ADDITIONAL ANALYSES

Additional analyses undertaken after the main meta- analysis investigate influence, 
robustness, and bias. Influence and robustness can be assessed in sensitivity analyses 
by repeating the meta- analysis on subsets of the original dataset (see Chapter 2 for an 
example). The influence of each trial can be estimated by deleting each in turn from 
the analysis and noting the degree to which the size and uncertainty of the interven-
tion effect change. Other sensitivity analyses can assess robustness to uncertainties 
and assumptions. Examples include implementing different statistical models and 
estimation methods (for example, different methods for estimating heterogeneity var-
iances); removing or adding sets of trials (such as those at higher risk of bias); and 
changing the data for individual trials (for example, by using different methods to 
impute missing data, or when it is not clear which result should be extracted from a 
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trial report). Methods for investigating between- trial bias, including publication bias, 
are described in Chapter 5.

9.8 SOME PRACTICAL ISSUES

Although it is desirable to include trial results according to intention- to- treat principles, 
this is not always possible given the data provided in published reports. Reports com-
monly omit participants who do not comply, receive the wrong intervention, or drop out 
of the trial. All of these individuals can easily be included in intention- to- treat analyses 
if follow- up data are available, and it is most important that they are included if the rea-
sons for exclusion relate to the intervention that they received (such as dropouts due 
to side effects and poor tolerability of the intervention). Occasionally full details of the 
outcomes of those excluded during the trial may be mentioned in the text of the report, 
or IPD may be available, but in many situations assumptions must be made regarding 
their fate. By using sensitivity analysis based on plausible assumptions about the missing 
values, it is possible to assess the influence of these excluded cases on the final results [40, 
41]; see Chapter 11. The issue is more problematic for continuous outcomes, where there 
is a continuum of possible scenarios for every excluded participant.

Other problems can occur when trials have no events in one or both arms [4, 
15]. In these many of the methods described in this chapter require the addition 
of a small quantity (usually 0.5) to the cell counts to avoid division by zero errors. 
Many software implementations of these methods automatically add this correction 
to all cell counts regardless of whether it is strictly needed. When both groups have 
event rates of zero (there being no events in either arm), then the trial contains no 
information about an odds ratio or a risk ratio, and such trials must be excluded 
from the analysis unless assumptions are made about the absolute risk of the event 
(for example, Kuss has proposed alternative methods  [42]). The risk difference 
in such situations is zero, so the trials will still contribute to an analysis of risk 
differences. However, for all effect measures, both inverse- variance and Mantel–
Haenszel methods perform poorly when event rates are very low, underestimating 
intervention effects and overestimating P values [15]. Peto’s odds ratio method has 
been observed to produce more accurate estimates of the intervention effects and 
their confidence intervals, providing the sample sizes of the arms in the trials are 
not severely unbalanced.

9.9 DISCUSSION

We have outlined a variety of standard methods for combining results from several 
trials in a systematic review. There are three aspects of choosing the right method 
for a particular meta- analysis: identifying the data type (binary, continuous, time to 
event, etc.), choosing an appropriate summary statistic, and selecting a method for 
combining the summary statistics across trials. These are summarized in Box  9.4. 
Although we have discussed meta- analysis in the context of clinical trials, the methods 
apply equally for meta- analysis of observational and other experimental studies.
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Box 9.4 Considerations in Choosing a Method of Meta- Analysis

Choice of summary statistic depends upon
(a) the type of data being analyzed (e.g. binary, continuous, time- to- event)
(b) the consistency of estimates of the intervention effect across trials 

and subgroups
(c) the ease of interpretation of the summary statistic

Choice of weighting method depends upon
(a) the reliability of the method when sample sizes are small
(b) the reliability of the method if events are very rare
(c) the degree of imbalance in allocation ratios in the trials

Considerationofheterogeneitycanaffect
(a) whether a meta- analysis should be considered, depending on the simi-

larity of trial characteristics
(b) whether an overall summary can have a sensible meaning, depending 

on the degree of disagreement observed between the trial results
(c) whether a random- effects method is used to account for between- 

trial variation
(d) whether the impact of other factors on the intervention effect can be 

investigated using stratified analyses and methods of meta- regression

A key decision is whether the meta- analysis will use a fixed- effect or random- effects 
model. For fixed- effect analyses of binary outcome measures, it is important to be aware 
of circumstances in which Mantel–Haenszel, inverse- variance, and Peto methods give 
erroneous results. Inverse- variance methods have poor properties when most trials are 
small (or events are few) and are rarely preferable to Mantel–Haenszel methods for a 
fixed- effect meta- analysis. Both Mantel–Haenszel and inverse- variance methods have 
poor properties when event rates are very low, and Peto’s method can be misleading 
when intervention effects are large, and when there are severely unequal numbers of 
participants in intervention and control groups in some or all of the trials [17]. Some of 
these points are illustrated in the case studies discussed in Boxes 9.5 and 9.6.

The interpretation of summary results is different for fixed- effect and random- 
effects models. The former provides the best estimate of an assumed common (fixed) 
summary effect, whereas the latter provides an estimate of the average summary effect 
from a distribution of possible intervention effects. This distinction is not well recog-
nized in the literature. The derivation of prediction intervals following a random- effects 
analysis can help illustrate the heterogeneity around the summary estimate more 
clearly, though the interval may often be very wide. It is important to note that none of 
the analyses described can compensate for publication bias (see Chapter 5), nor can 
they account for bias introduced through poor trial design and execution.
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Box 9.5 Case study: Support from Caregivers during Childbirth

Descriptive studies of women’s childbirth experiences have suggested that women 
appreciate advice and information from their caregivers, comfort measures and other 
forms of tangible assistance to cope with labor, and the continuous presence of a sym-
pathetic person. A systematic review included trials that evaluated the effects of intra-
partum support from caregivers on a variety of childbirth outcomes, medical as well as 
psychosocial [43]. One outcome included in the review was the use of epidural anes-
thesia during delivery. Nine trials reported this outcome, five from North America, two 
from Europe, and one each from Central America and South America. In four of the 
six trials husbands, partners, or other family members were also usually present. The 
person providing the support intervention was variously described in the trials as a mid-
wife, nurse, monitrice, and a doula. The results of the nine trials are given in Table 9.2.

Ten alternative methods have been described in this chapter that can be used to 
perform a meta- analysis of these data. The results are shown in Table 9.3, with the 
standard method used to derive confidence intervals and P values.

There are some notable patterns in the results in Table 9.3. First, there is substantial 
agreement between Peto, Mantel–Haenszel, and fixed- effect inverse- variance meth-
ods for odds ratios. For risk ratio meta- analyses, the differences in the trial weights 
between the methods can be high when event rates are high, as is the case for many tri-
als in this analysis. For example, the largest trial (Hodnett 2002) is given very different 
weights (48.5% in the inverse- variance, 61.4% in the Mantel–Haenszel, and 17.1% in 
the random- effects analyses) which has led to differences in the meta- analytical find-
ings. (Meta- analysis of risk ratios of not having an epidural – switching the definition 
of the event – would give similar weights to each trial, since event rates would be low.)

Second, there are substantial differences between intervention effects 
expressed as odds ratios and risk ratios. Considering the Mantel–Haenszel results, 

TABLE 9.2 Rates of use of epidural anesthesia in trials of caregiver support.

Trial Caregiver present
Epidurals/N

Standard care
Epidurals/N

Kennell 1991 (USA) 47/212 94/200

Bréart 1992 (Belgium) 55/133 62/131

Bréart 1992 (France) 281/652 319/666

Gagnon 1997 (Canada) 139/209 142/204

Langer 1998 (Mexico) 295/335 302/346

Torres 1999 (Chile) 202/217 195/218

Hodnett 2002 (Canada) 2349/3454 2436/3461

Campbell 2006 (USA) 247/291 260/295

McGrath 2008 (USA) 145/224 149/196



the reduction in the odds of having an epidural with additional caregiver support 
is 16% (100 × [1–0.84]), while the relative risk reduction is 5% (100 × (1–0.95), only 
around one- third the size. Where events are common, odds and risks are very differ-
ent, and care must be taken in a meta- analysis of odds ratios to ensure that a reader 
of the review is not misled into believing that benefits of intervention are larger 
than is truly the case [32].

Between- trial heterogeneity is present, and tests of homogeneity have small 
P values for all summary statistics (OR, RR, and RD), with values for I2 of 72.1, 80.8, 
and 77.7%, respectively. As a result, the confidence intervals for the random- effects 
estimates are wider than those calculated from fixed- effect models. The estimates 
of the benefit of intervention also increase, as the random- effects model attributes 
proportionally greater weight to the smallest trials, which in this example report 
larger relative benefits of intervention.

The 95% prediction intervals provide ranges that reflect the heterogeneity across 
trials. In each case, the prediction interval indicates that the effect of intervention in 
a subsequent, similar trial will not necessarily indicate benefit.

TABLE 9.3 Results of meta- analyses of epidural rates from trials of caregiver support.

Method Estimate of effect
(95% CI)

Statistical evidence 
of effect

Statistical evidence 
of heterogeneity

Odds ratio

Peto 0.84 (0.77,0.91) Z = 4.19, P < 0.0001 8
2 = 29.1, P < 0.001

Mantel–Haenszel 0.84 (0.77, 0.91) Z = 4.19, P < 0.0001 8
2 = 28.7, P < 0.001

Inverse variance 
(fixed effect)

0.84 (0.76, 0.91) Z = 4.13, P < 0.0001 8
2 = 28.7, P < 0.001; 

I2 = 72.1%

Inverse variance 
(random effectsa)

0.78 (0.63, 0.96) Z = 2.35, P = 0.019

95% prediction interval: (0.40, 1.49)

Risk ratio of receiving epidural

Mantel–Haenszel 0.95 (0.93, 0.97) Z = 4.19, P < 0.0001 8
2 = 41.7, P < 0.001

Inverse variance 
(fixed effect)

0.97 (0.95, 0.99) Z = 2.60, P < 0.009 8
2 = 37.3, P < 0.001; 

I2 = 80.8%

Inverse variance 
(random effectsa)

0.93 (0.88, 0.99) Z = 2.16, P = 0.03

95% prediction interval: (0.77, 1.14)

Risk difference

Mantel–Haenszel −0.035 (−0.052, 
−0.019)

Z = 4.20, P < 0.0001 8
2 = 36.6, P < 0.001

Inverse variance 
(fixed effect)

−0.029 (−0.045, 
−0.013)

Z = 3.59, P < 0.0001 8
2 = 35.9, P < 0.001; 

I2 = 77.7%

Inverse variance 
(random effectsa)

−0.048 (−0.088, 
−0.007)

Z = 2.32, P = 0.02

95% prediction interval: (0.18, 0.08)

a Random- effects meta- analyses use the DerSimonian and Laird estimate of between- study variance.
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Box 9.6 Case study: Effect of Reduced Dietary Sodium 
on Blood Pressure

Restricting the intake of salt in the diet has been proposed as a method of low-
ering blood pressure, in both hypertensives and people with normal blood pres-
sure. A 1996 systematic review of randomized trials included 56 trials comparing 
salt- lowering diets with control diets [44]. Only trials that assessed salt reduction 
through measurement of sodium excretion were included. Hypertensive partici-
pants were recruited for 28 of the trials; the other 28 recruited normotensive par-
ticipants; 41 trials used a crossover design, while 15 used a parallel- group design.

The focus of interest in these trials is the difference in mean blood pressure 
(both diastolic and systolic) between the salt- reducing diet and the control diet. As 
all measurements are in the same units (mmHg), the difference in means can be 
used directly as a summary statistic in the meta- analysis. The trials estimated this 
difference in mean blood pressure in four different ways:

• In a parallel- group trial, as the difference in mean final blood pressure 
between those receiving the salt- lowering and the control diets.

• In a parallel- group trial, as the difference in mean change in blood pressure 
while on the diets, between those on the salt- lowering diet and those on the 
control diet.

• In a crossover trial, as the mean within- person difference between final 
blood pressure at the end of the salt- lowering diet and at the end of the 
control diet.

• In a crossover trial, as the mean within- person difference in the change 
in blood pressure while on the salt- lowering diet compared with the 
control diet.

Results from these four different designs all estimate the same summary meas-
ure. However, it is likely that trials using within- person changes are more efficient 
than those using final values, and that those with crossover designs are more effi-
cient than those with parallel groups. These differences are encapsulated in the 
standard errors of the estimates in differences in mean blood pressure between the 
two diets, provided appropriate consideration is given to the within- person pairing 
of the data for change scores and crossover trials in the analysis of those trials. As 
the standard inverse- variance approach to combining trials uses weights inversely 
proportional to the square of these standard errors, it copes naturally with data of 
these different formats, so that the trials are given appropriate weights according to 
the relative efficiency of their designs.

The authors of the review reported that they had used a variety of techniques 
to estimate these standard errors, as they were not always available in the original 
reports. If necessary, standard errors can be derived directly from standard devia-
tions, confidence intervals, t values, and exact P values. However, when paired data 
(both for change scores and for crossover trials) are used, it is occasionally nec-
essary to make an assumption about the within- participant correlation between 
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two timepoints if the analysis presented mistakenly ignores the pairings. Similarly, 
when results are reported simply either as significant or nonsignificant, particular 
P values must be assumed from which the standard errors can be derived. Such 
problems are common in meta- analyses of continuous data, due to the use of inap-
propriate analyses and the poor standard of presentation commonly encountered in 
published trial reports.

Meta- analyses were undertaken separately for the trials in normotensive and hyper-
tensive groups, and for systolic and diastolic blood pressure. The results are given in 
Table 9.4, with standard methods used to derive confidence intervals and P values.

The analysis shows reductions of around 5–6 mmHg in systolic blood pressure 
in hypertensive participants, with a smaller reduction in diastolic blood pressure. 
The size of the reductions observed in normotensive participants was much smaller, 
the differences between the hypertensive and normotensive subgroups being con-
vincing for both systolic (Z = 4.12 : P < 0.0001) and diastolic (Z = 5.61 : P < 0.0001) 
measurements. The confidence intervals for the random- effects analyses for all 
reductions are much wider than those of the fixed- effect analyses, reflecting the sig-
nificant heterogeneity detected in all analyses (as indicated by the I2 statistics). The 
prediction intervals indicate that the range of possible intervention effects is wide, 
particularly in the hypertension trials. The authors investigated this further using 
methods of meta- regression (see Chapter 10) and showed that the heterogeneity 
between trials could in part be explained by a relationship by the reduction in salt 
intake achieved in each trial.

On the basis of these analyses, the authors concluded that salt- lowering diets 
may have some worthwhile impact on blood pressure for hypertensive people but 
not for normotensive people, contrary to current recommendations for universal 
dietary salt reduction.

TABLE 9.4 Impact of salt- lowering diets on systolic and diastolic blood pressure.

Method Estimated  difference in 
blood  pressure  reduction 
(95% CI)
(diet- control) (mmHg)

Statistical 
evidence of effect

Statistical 
evidence of 
heterogeneity

Normotensive trials

Systolic

Inverse variance 
(fixed effect)

−1.2 (−1.6, −0.8) Z = 6.4, P < 0.001 27
2

  = 75.1, P < 0.001

Inverse variance 
(random effectsa)

−1.7 (−2.4, −0.9) Z = 4.3, P < 0.001 I2 = 64.0%

95% prediction interval (−4.6, 1.3)

Diastolic

Inverse variance 
(fixed effect)

−0.7 (−1.0, −0.3) Z = 3.4, P = 0.001 27
2  = 56.1, P = 0.001
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Exploring Heterogeneity
Julian P.T. Higgins and Tianjing Li

The ultimate purpose of a systematic review is often considered to be the production of an 
overall effect estimate, obtained by combining results across studies in a meta-   analysis. 
In reality, studies brought together in a systematic review are likely to vary in terms of 
where, when, why, and how they were undertaken. A meta- analysis cannot, therefore, 
be interpreted in quite the same way as an individual study. For example, a particular 
clinical trial investigating the effectiveness of face masks in reducing the spread of 
influenza viruses might compare surgical masks with no masks, given to parents of sick 
children at schools during a flu season, using a particular selection of outcome measures. 
The purpose of a meta- analysis may be broader: for example, to estimate the extent to 
which using facial barriers of any kind reduces the transmission of a range of respiratory 
viruses during an outbreak. Meta- analyses almost invariably ask broader questions than 
do individual studies so that they can gain from the increased precision and greater 
generalizability that ensue (see Chapter 1).

The inevitable differences between studies brought together within a systematic 
review can pose problems in interpreting the overall effect. Consider, for example, the 
meta- analysis of randomized trials of intrapartum support from caregivers during 
childbirth [1], introduced as a case study in Chapter 9 and illustrated in Figure 10.1. As 
the review authors noted, the trials were conducted “under widely disparate hospital 
conditions, regulations and routines,” and individuals providing the support “varied in 
their experience, qualifications and relationships to the laboring women.” Furthermore, 
a critical evaluation of trials revealed differences in the risk of bias in their results 
(see Chapter 4), with variation in whether outcome assessors were blinded and in the 
extent of missing outcome data. In the presence of such heterogeneity, to whom would 
the results of the overall synthesis apply? Meta- analyses are often criticized for mixing 
apples and oranges, sometimes with good justification. The key to a convincing meta- 
analysis is to articulate a meaningful underlying question that is adequately addressed 
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by all of the included studies (see Chapter 2). For example, it may be meaningful to 
ask a question about fruit, in which case mixing apples and oranges, as well as pears 
and bananas, may be a useful thing to do. Unless a meaningful question exists, the 
emphasis should be on understanding the differences across the studies.

In this chapter, we explore some of the methods available for exploring heteroge-
neity in a meta- analysis. These methods should be regarded as central tools, although 
their implementation needs care to avoid misleading interpretation of their results 
in practice. The main two approaches are (i) to group the studies into subsets and 
compare the overall effects across these subsets, an analysis known as subgroup anal-
ysis; and (ii) to explore the gradient of effects across studies according to one or more 
numeric study features, an analysis known as meta- regression. We also highlight how 
gathering individual participant data (IPD) from each study provides a stronger basis 
for exploring how effects vary according to participant characteristics such as age and 
disease severity, a topic taken forward in Chapter 12.

10.1  CLINICAL, METHODOLOGICAL, AND STATISTICAL 
VARIABILITY ACROSS STUDIES

It can be helpful to distinguish between three types of variability across studies. The 
first is variation in the research questions being asked by the different studies, such as the 
participant groups, the interventions or exposures of interest, and how outcomes 
or endpoints were defined and measured. The term clinical diversity (or sometimes 
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FIGURE 10.1  Meta- analysis of trials comparing the effect of caregiver support with standard care 
during childbirth on epidural anesthesia use. CI, confidence interval.
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clinical heterogeneity) has been used for this type of variability. In the context of a 
meta- analysis of clinical trials, it relates to variation in the PICOs  – Population(s), 
Intervention(s), Comparator(s), Outcome(s) – of the included studies (see Chapter 2). 
The second type of variability is in how the studies were undertaken. This type of vari-
ability includes differences in the study design, e.g. randomized trial versus case–con-
trol study, and the conduct of the study, e.g. whether or not outcomes (or exposures) 
were assessed without knowledge of intervention (or case/control) status. Further, it 
covers variability in how the data were analyzed (e.g. making different assumptions 
about missing data). We refer to this as methodological diversity (or methodological het-
erogeneity); it refers to different biases operating in different studies.

Clinical and methodological diversity is expected in any meta- analysis. Therefore, 
it is not surprising to observe that the results of the studies are incompatible with each 
other. We refer to this third type of variability as statistical heterogeneity. Statistical het-
erogeneity (often abbreviated hereafter to heterogeneity) is due to clinical or methodo-
logical diversity across the studies, although the actual causes within these categories 
may be unknown. Importantly, it is often impossible to determine whether clinical or 
methodological diversity is the main cause. Both are likely to be present: a re- analysis 
of 117 meta- analyses of clinical trials estimated that a median of 37% (95% confidence 
interval 0–71%) of statistical heterogeneity could be explained by bias regarding gen-
eration and concealment of the allocation sequence and masking of participants and 
trial personnel, rather than clinical diversity [2]. Note that clinical and methodological 
diversity among the studies will not necessarily lead to heterogeneity. Heterogeneity 
only arises when these factors influence the magnitudes of effects estimated by the 
studies. Nevertheless, it is unusual for no factors to influence the magnitude of an 
effect unless the intervention or exposure is ineffective or unimportant. Even then, it 
is likely that methodological diversity will be present, since the different studies may 
be prone to different biases.

To assess whether (statistical) heterogeneity is present, the imprecision in esti-
mating the effect size from each study, as graphically expressed by the confidence 
intervals in a forest plot such as Figure  10.1, has to be taken into account. Visual 
inspection of the forest plot is a convenient first step in identifying heterogeneity. 
Such inspection should focus on whether there is greater variation between the study 
results than would be expected by the play of chance. This situation will manifest 
itself in confidence intervals that do not overlap with each other. As might be sur-
mised from inspection of Figure 10.1, a statistical test for heterogeneity yields a small P 
value ( 8

2  = 41.7, P < 0.001), with an I2 statistic of 80.8% (see Chapter 9). This is driven 
largely by the Kennell study, which stands out with a risk ratio much smaller than all 
the other studies. The cause of this discrepancy is not clear.

The evidence for statistical heterogeneity is strong among the trials of caregiver 
support. However, in many meta- analyses such statistical evidence is lacking: the test 
for heterogeneity fails to reject the null hypothesis (of homogeneity), and the I2 statistic 
takes a small value or even 0%. Yet this cannot be interpreted as evidence of homoge-
neity (that is, total consistency) of the results of all the studies included. A statistically 
nonsignificant test result should not be interpreted as conclusive evidence in favor of the 
null hypothesis of homogeneity. Tests of homogeneity have low power when there are 
few studies in a meta- analysis (as is often the case) and thus may fail to detect genuine 
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heterogeneity [3]. Similarly, I2 values typically come with substantial uncertainty, and a 
point value of 0% may be observed in the presence of heterogeneity [4].

It may be tempting to ignore the problems of clinical and methodological diversity 
when interpreting the results of a meta- analysis if clear evidence of statistical heterogeneity 
is lacking. However, it is more important to examine the extent and sources of statistical 
heterogeneity than to look for evidence of its existence. Indeed, some have argued that 
testing for heterogeneity is largely irrelevant because the studies in any meta- analysis will 
always be clinically or methodologically diverse [5]. The extent of heterogeneity in a 
meta- analysis may be measured by estimating the standard deviation (or its square, the 
variance) of underlying effect sizes across studies. This quantity is often called tau (τ, with 
variance τ2) in the meta- analysis literature and is discussed in more detail in Chapter 9.

10.2  REAL AND SPURIOUS HETEROGENEITY

An essential aspect of a meta- analysis should be to consider how the specific differ-
ences between studies might impact their results. In a meta- analysis of thrombolysis 
trials in the acute phase of myocardial infarction, a classic example, the survival benefit 
was shown to be greater when there was less delay between onset of symptoms and 
treatment [6]. Quantifying this relation was influential in drawing up policy recom-
mendations for the use of thrombolysis in routine clinical practice. Whereas a key aim 
of a meta- analysis may be to estimate the average effect seen in studies asking a similar 
underlying question, plans should be made when writing the meta- analysis protocol 
for a careful investigation of potential sources of heterogeneity (see Chapter 2).

When faced with heterogeneity, it is important to pause, explore, and identify 
reasons for it. It can be present for spurious reasons. Data extraction errors are not 
uncommon. For instance, the direction of effect may accidentally be reversed for a 
study, or a standard error may be mistaken for a standard deviation, leading to a very 
narrow confidence interval and a spurious impression of heterogeneity. Thus, it is 
always wise to check the data, particularly for outlying studies (see Chapter 6). The 
impact of outlying studies, if found to be error free, can be evaluated by conducting 
sensitivity analyses with and without them. However, excluding discrepant studies 
post hoc, solely based on their results without a sound justification, can introduce bias.

Heterogeneity may be present because of the choice of effect measure. Risk differ-
ences are unlikely to give consistent estimates of intervention effects. When the risks 
in the comparison group vary substantially, homogeneous risk ratios or odds ratios 
will induce heterogeneous risk difference and vice versa. For example, a meta- analysis 
found that blood pressure–lowering treatment leads to a similar reduction in the risk 
of cardiovascular events irrespective of baseline cardiovascular risk, but absolute risk 
reductions, of course, were much larger for those with higher baseline risks [7]. It is 
crucial always to recognize that heterogeneity observed in a meta- analysis is specific 
to the choice of effect measure or summary statistic. Ideally, a summary statistic for 
meta- analysis should be specified in advance (see Chapter 8).

In the following sections of this chapter, we describe subgroup analysis and 
meta-   regression as two useful approaches to understanding the causes of heteroge-
neity. If the results are considerably different, particularly if the direction of effect is 
inconsistent, calculating an average effect may be misleading. If attempts to explain 
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heterogeneity are unsuccessful, a standard option is to perform a random- effects meta- 
analysis to allow for the unexplained variation in effects across studies (see Chapter 9). 
Note that a random- effects meta- analysis is not a remedy for heterogeneity; it is 
intended primarily for incorporating heterogeneity that cannot be explained. Further, 
we should keep in mind that the confidence interval from a random- effects meta- 
analysis describes uncertainty in the location of the mean of systematically different 
effects among studies; it does not describe the degree of heterogeneity among them. 
In contrast, the prediction interval, also covered in Chapter 9, captures the impact of 
heterogeneity. The prediction interval can be interpreted as a summary of the spread 
of underlying effects in the studies included in the random- effects meta- analysis, 
providing there are sufficient studies for the interval to be reasonably accurate.

10.3  SUBGROUP ANALYSIS: DIVIDING THE EVIDENCE 
INTO SUBSETS

The direction and magnitude of an average effect from a meta- analysis of clinical trials 
help guide broad clinical practice and policy decisions. Its usefulness depends on the 
assumption that participants included in the contributing studies represent the people 
about whom decisions are being made. However, physicians are used to managing 
patients according to their specific characteristics [8]. It is implausible to assume that 
the effect of a given treatment is identical across different groups of patients, such as 
the young and the elderly, or those with mild or severe disease. Therefore, it may seem 
reasonable to base treatment decisions on the trials that included participants with 
similar characteristics to the patient under consideration, rather than on the totality of 
the evidence provided by a meta- analysis.

Decisions based on subgroup analyses are often misleading, however. Consider, 
for example, the story of the physician in Germany being confronted by the meta-  -
analysis of long- term beta- blockade following myocardial infarction that was pre-
sented in Chapter 2. While there was a robust beneficial effect in the overall analysis, 
in the only large trial recruiting a substantial proportion of German patients, the 
European Infarction Study (EIS)  [9], there was, if anything, a detrimental effect of 
using beta- blockers. Should the physician prescribe beta- blockers to German post-  -
infarct patients? Common sense would suggest that being German does not prevent 
a patient from obtaining benefits from beta- blockade. Thus, the best estimate of the 
outcome for German patients may actually come through essentially discounting the 
trial carried out in German patients and borrowing information from trials carried out 
in non- German patients. This may seem paradoxical. Indeed, the statistical expression 
of this phenomenon is known as Stein’s paradox [10] (see Box 10.1).

Box 10.1 Stein’s Paradox

Applying the findings from meta- analyses to clinical practice often means that 
results from a particular trial are disregarded in favor of the overall intervention 
effect estimate, assuming that the contradictory study results reflect the game of 
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Deciding whether to be guided by overall effects or by the results for a particular 
group of study participants is not just a problem created by meta- analysis; it also applies 
to the interpretation of individual clinical trials [12]. Trialists often spend more time on 
discussing the results seen within subgroups of patients included in the trial than on 
the overall results. Yet frequently, the findings of these subgroup analyses fail to be con-
firmed by later research. The various trials of beta- blockade after myocardial infarction 
yielded several subgroup findings with apparent clinical significance [13]. Treatment 
was said to be beneficial in patients under 65, but harmful in older patients; or only 
beneficial in patients with anterior myocardial infarction. These findings received no 
support when examined in subsequent studies [13] or a formal pooling project  [14]. 
This is not surprising: if an overall treatment effect is statistically significant at the 5% 
level (P < 0.05) and the patients are divided at random into two groups, then there is a 
1 in 3 chance that the treatment effect will be large and statistically highly significant in 
one, but small and nonsignificant in the other group [15]. Which subgroup apparently 
benefits from an intervention is thus often a chance phenomenon, inundating the 
literature with contradictory findings from subgroup analyses and wrongly inducing 
clinicians to withhold treatments from some patients [8, 16].

10.3.1  Between- Study and Within- Study Subgroups

In a subgroup analysis, the evidence in a meta- analysis is stratified (or grouped) 
according to a particular feature or characteristic, and a separate meta- analysis is car-
ried out within each subgroup. One option is simply to divide the studies into subsets 

chance. However, even if we assume that the effect in the patients included in 
a particular study truly differs, the overall estimate may provide the best effect 
estimate for that patient group, a manifestation of Stein’s paradox [10]. In 1955, 
Charles Stein of Stanford University showed that it is generally better to esti-
mate a quantity by also considering the results of related surveys rather than 
solely focusing on one particular study. His method can be used to show that the 
regional prevalence of a disease is more accurately estimated, on average, when 
the results of studies done in other parts of the country are considered. This may 
seem paradoxical: why should the Oxford data affect what we believe to apply 
to Bristol? The central principle of Stein’s method is to “shrink” the individual 
data points to the grand mean, i.e. to the average of all the studies. If the Oxford 
survey gives a higher prevalence than the UK as a whole, then the estimate for 
Oxford is reduced. Conversely, if the Bristol survey gives a lower prevalence, the 
figure for Bristol is increased. The amount of such shrinkage depends on the 
precision of the observed value: an extreme result from a small study is more 
likely to be due to chance than is a similar result from a large study. A deviant 
data point measured inaccurately will therefore be shrunk more than an outlier 
measured with precision. In the case of the beta- blockers trials in myocardial 
infarction discussed in the main text, the EIS results, which account for only 6.5% 
of the weight in the meta- analysis, would shrink a long way toward the overall 
estimate of a beneficial effect of beta- blockade [11].
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of studies. This is the only option if the characteristic is genuinely at the study level, 
e.g. the length of follow- up or the risk of bias. The approach can also be used when the 
characteristics vary within studies, for example by subgrouping studies according to the 
average age of participants (see also Section 10.5.2).

Often there are too few trials, or differences in the average characteristics of 
participants in the trials are too small to subgroup at the level of the study. It may then 
be possible to consider strata within the trials (e.g. male versus female, or those with 
or without existing disease). Thus, in a meta- analysis, subgroup analysis may be of 
subgroups of studies or participants, across or within studies.

10.3.2  Investigating Within- Study Variability through Meta- Analysis

Subgrouping participants within studies requires that data are available for each partic-
ipant subgroup separately (e.g. men and women), although such data are often lacking 
in practice. Comparisons of subgroups within studies are common when IPD are col-
lected (see Chapter 12). An IPD meta- analysis of trials of corticosteroids for patients with 
COVID- 19 is shown in Figure 10.2 [17]. In this collaborative meta- analysis, the trialists 
provided summary data separately for each participant subgroup, allowing consistent 
stratification by each characteristic. The left- hand side of the plot gives the effect estimate 
for the subgroups of participants receiving and not receiving invasive mechanical ven-
tilation when they were randomized in each trial, along with meta-   analyses for each 
subgroup. Note that some trials include only patients receiving invasive mechanical 
ventilation. The right- hand side of the plot shows the preferable way to investigate 
participant- level characteristics, which is to estimate subgroup differences within studies 
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FIGURE 10.2  Within- study subgroup analyses examining the effect of corticosteroids on 28- day 
mortality in patients critically ill with COVID- 19, stratified by whether or not patients received 
invasive mechanical ventilation (IMV) at the time of randomization. CI, confidence interval; n, 
deaths; N, total. Source: Redrawn using data from [17].
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and combine these across studies, rather than to combine across studies within each 
subgroup and then take the difference. These issues are further discussed in Chapter 12.

Differences in effects between different subgroups of participants reflect effect modi-
fication by the subgrouping characteristic, or interaction between that characteristic and 
the intervention, on the scale of the effect metric used to perform the analysis. As an 
aside, we note an alternative approach to detecting effect modification, which has been 
attracting attention in the meta- analysis literature. It is a meta- analysis based on the out-
come’s variances rather than the central values [18]. If an intervention interacts with par-
ticipant characteristics, some participants will see larger impacts on their outcome than 
others. In a trial comparing the intervention with no intervention, this effect modification 
will manifest as an increased variability (or variance) of the outcome in the intervention 
group compared with the control group. Conversely, if an intervention does not interact 
with participant characteristics, the variances are expected to be similar. Estimating the 
difference or ratio of variances between the two groups from each trial, and undertaking 
a meta- analysis of these differences, therefore provides a way to detect effect modifica-
tion. In one application of this approach across 52 trials of antipsychotic medications for 
schizophrenia, the variance ratio was 0.97 (95% confidence interval 0.95–0.99) [19]. This 
small reduction in variance was taken as evidence against arguments that patients vary 
substantially in their response to antipsychotics [19].

10.3.3  Examining Differences between Subgroups

When subgroup analyses are based on subsets of studies, the overall summaries cal-
culated for each subgroup can be inspected for evidence of whether effects vary across 
the subgroups, which would suggest that the stratifying characteristic is an important 
source of heterogeneity and so is associated with the magnitude of effect. An infer-
ence that the treatment effect differs between two or more subsets of the studies may 
be based on a formal statistical test. There are several methods to do this. If there are 
only two subsets, yielding estimates ˆ

A and B̂ with standard errors ˆ
ASE  and B̂SE ,  

respectively, the statistical evidence for a difference between the two subsets can be 
examined by considering the Z statistic:

2 2

ˆ ˆ

ˆ ˆ
A B

A B

Z
SE SE

The Z statistic is then compared with critical values of the normal distribution.
An alternative approach, which can be used regardless of the number of subsets, 

is to apply the standard test for heterogeneity (see Chapter 9) to examine the evidence 
for variability across the subsets of studies rather than across individual studies. The 
meta- analytic result for each subgroup takes the place of the result of each individual 
study. The test statistic is then compared with critical values of the χ2 distribution with 
S − 1 degrees of freedom, where S is the number of subgroups.

In a meta- analysis of clinical trials, the stratifying factor is often the type of inter-
vention. For example, a systematic review may include placebo- controlled trials of 
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several drugs, all for the same condition. A meta- analysis may then be stratified by 
drug, providing an estimate of the intervention effect for each drug separately. Here 
a test of differences between subgroups effectively involves making indirect compar-
isons of the effects of the different drugs. A better way to undertake such analyses is 
network meta- analysis, as discussed in Chapter 13.

10.4 META- REGRESSION

Subgroup analysis is used when studies are grouped into a few categories according to 
a particular study characteristic. Meta- regression generalizes this idea and can also be 
used when the characteristic is a continuous measure. Meta- regression is much like 
standard linear regression. Variation in a response variable (or dependent variable, or out-
come variable) is to be explained by one or more predictor variables (variously called 
covariates, moderators, explanatory variables, or independent variables). In a meta- 
regression, the response variable is the underlying effect size specific to each study 
measured as, for example, a mean difference or a (logarithmically transformed) odds 
ratio. The predictor variables are study features expressed as numeric or categorical 
variables. Thus, the meta- regression seeks to explain variation in effect sizes (i.e. het-
erogeneity) according to key study characteristics.

Berkey and colleagues introduced meta- regression methods in 1995, illustrating 
them using studies of the effectiveness of the Bacillus Calmette–Guérin (BCG) vaccine 
against tuberculosis from different parts of the world [20]. There was reason to believe 
that the vaccine might be less effective in warmer climates. Using each study location’s 
latitude (i.e. its distance from the equator) as a surrogate for climate, we can depict the 
relationship in a scatter plot, as illustrated in Figure 10.3. The X- axis represents the pre-
dictor variable (i.e. latitude of the study) and the Y- axis the effect estimate of the vaccine 
efficacy (i.e. log risk ratio). The regression coefficient obtained from the meta- regression 
analysis describes how the response variable changes with a one- unit increase in the 
continuous predictor variable. In the BCG vaccine example, the coefficient for latitude 
is −0.029, which means that every 1° of latitude corresponds to a decrease of 0.029 unit 
in log risk ratio (or multiplication by 0.971 of the risk ratio). The confidence interval 
around the regression coefficient can be used to evaluate whether there is a robust 
relationship between the (transformed) model’s performance and the predictor vari-
able. The analysis of the BCG vaccine trials has become a textbook example of meta- 
regression, because it provides a compelling case of variability in effects being well 
explained by a single predictor variable. In practice, meta- regression analyses are often 
less clean, with study- level predictor variables failing to provide good explanations of 
heterogeneity and several potential predictors competing for such a role.

10.4.1  Meta- Regression: Technicalities

For the same reasons that simple meta- analyses use weighted averages, meta-   regression 
analyses should be based on weighted regression. Also, in common with simple meta- 
analyses, meta- regression can be performed under either a fixed- effect model or a 
random- effects model (see Chapter 9). However, in most cases the latter is much to be 
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preferred. Simulation studies have shown that fixed- effect meta- regression analyses 
have a considerably greater risk of false- positive findings regarding the impact of the 
predictor variable(s) [21]. Furthermore, if heterogeneity is present among studies in 
a meta- analysis, it is usually considered unlikely that the specific predictor variables 
included in the model will account for it entirely. Therefore, meta- regression analyses 
are generally undertaken using a random- effects model.

In a random- effects meta- regression, the variance of each effect estimate has two 
components: the within- study variance (which is specific to the study) and the residual 
among- studies variance (which is common to all studies in the meta- analysis). The 
within- study variance is the same as that used in standard meta- analysis. For example, 
in the case of log odds ratios, the within- study variance is simply estimated as the sum 
of the reciprocal cell counts in the 2 × 2 table for that study (see Chapter 8). The among- 
studies variance represents the residual heterogeneity of effects; that is, the variability 
between true effects across studies not explained by the predictor variable. Specifically, it 
refers to the distribution of effects for studies with the same predictor variable(s) value.

To be explicit, consider the analysis presented in Figure 10.4. It shows the results of 
nine clinical trials of aerobic exercise interventions to reduce pain in people with knee 
osteoarthritis. The interest here is in examining whether the effectiveness of the exercise 
intervention depends on the number of supervised exercise sessions, a study-   level pre-
dictor variable. We index the trials by i = 1, . . ., 9. For the ith trial, we denote the observed 
standardized mean difference (SMD) in the pain score by yi, its estimated within- trial 
variance by vi, and the number of sessions by xi. The linear regression of the SMD in pain 
score on the number of sessions can be expressed as yi = α + βxi. We are not forcing the 
regression through the origin, and α represents the intercept of the regression line.
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FIGURE 10.3  Meta- regression analysis using latitude to explain variation in log risk ratio of 
Bacillus Calmette–Guérin vaccine efficacy among 13 randomized trials. lnRR, log risk ratio. In the 
regression model, the absolute latitude is centered at the mean 33.4615. Source: Based on [19].



 Exploring Heterogeneity 195

Overall, REML (I2 = 36.6%)

9

8

7

6

5

4

3

2

1

Study

0.65 (0.40, 0.91)

0.57 (–0.11, 1.25)

0.46 (–0.21, 1.13)

1.89 (1.00, 2.78)

0.56 (–0.07, 1.19)

1.29 (0.33, 2.25)

0.12 (–0.55, 0.79)

0.42 (0.12, 0.72)

1.00 (0.24, 1.76)

0.63 (0.21, 1.05)

Effect (95% CI)

100.00

9.77

9.87

6.45

10.73

5.76

9.87

22.24

8.23

17.07

Weight

%

–2 0 2
NOTE: Weights are from random-effects model

0
.5

1
1.

5
2

S
ta

nd
ar

di
ze

d 
m

ea
n 

di
ffe

re
nc

e

0 20 40 60 80

Number of sessions

FIGURE 10.4  Meta- regression analysis using the number of sessions to explain variation in 
the standardized mean differences (SMD) in pain scores among nine randomized trials of aerobic 
exercise interventions in people with knee osteoarthritis. CI, confidence interval; REML, restricted 
maximum likelihood.



196 Systematic Reviews in Health Research 

The purpose of the analysis is to provide estimates of α and β, together with their 
confidence intervals. The meta- regression analysis yields the results in Table  10.1. 
The interpretation of the β coefficient is as follows: for every 1 unit increase in super-
vised exercise session (i.e. for each additional session), there is a 0.023 unit increase 
in the SMD for pain. The 95% confidence interval for this improvement ranges from 
0.002 to 0.043.

The weights for the regression are equal to 2ˆ1 / iv , where 2ˆ 0.028 is the estimated 
residual heterogeneity variance. There are several ways of estimating τ2. The restricted 
maximum likelihood (REML) estimate is often recommended [22, 23] and is used here. An 
intuitive interpretation of the estimate of τ2 is not straightforward. However, we can consider 
its meaning for a particular prediction from the model. Consider the predicted SMD for pain 
in a trial running 20 sessions, which is estimated as −0.087 + 0.023 × 20 = 0.37. Given the 
heterogeneity between studies expressed by τ2, the 95% range of true SMDs for different 
studies is approximately 0 087 0 023 20 1 96 0 028. . . . ; that is, from 0.05 to 0.70.

Programs to carry out such random- effects weighted regression analyses are avail-
able in various software packages, including Stata, R, and Comprehensive Meta-  -
analysis (see Chapters 25–27). Note that these analyses are not the same as the usual 
weighted regression where weights are inversely proportional to the variances. In 
addition, assumptions of linearity of predictor variable effects or normality of the 
residual variation between trial results can be difficult to assess in practice [24].

10.4.2  Subgroup Analysis Is a Special Case of Meta- Regression

Subgroup analyses in which studies are grouped into subsets can be formulated as 
a meta- regression. To perform such a subgroup analysis as a meta- regression, S − 1 
dummy variables are created to indicate membership of the S subgroups in the stan-
dard manner used in multiple regression. The coefficients estimated for each of these 
dummy variables provide an estimate of the differences between the overall effect in 
the respective subgroup compared with the reference subgroup (which has no dummy 

TABLE 10.1  Meta- regression results using the number of sessions to explain variation 
in standardized mean differences (SMD) in pain scores among nine randomized trials 
of aerobic exercise interventions in people with knee osteoarthritis.

Coefficient Estimate 95% confidence intervala P valuea

Intercept, α −0.087 −0.799–0.626 0.78

Impact of an additional session, β 0.023 0.002–0.043 0.04

Heterogeneity statistics
Residual among- studies varianceb ( unexplained

2 ): 0.028
 I2 (residual): 10.9%
Adjusted R2: 45.2%

a Using Hartung–Knapp adjustment.
b Restricted maximum likelihood estimate.
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variable). If the subgroup categories are ordered, then meta- regression may be used 
to test for a trend by denoting group membership by a single variable indicating the 
ranked order of each subgroup.

10.4.3  Proportion of Variance Explained

A useful question is how much the between- study heterogeneity is reduced by tak-
ing into account the predictor variable(s). In meta- regression (and subgroup anal-
ysis formulated as meta- regression), we can define a statistic R2 (sometimes referred 
to as “adjusted R2”) as the proportion of total heterogeneity variance explained by 
predictor variables. The total variance is the variance estimated in a standard meta- 
analysis that ignores the predictor variables; we shall call this total

2  here. The R2 
statistic is defined as:

R2
2

2
explained

total

or, equivalently,

R2
2

2
1 unexplained

total

,

where unexplained
2  is the variance that remains after accounting for the impact of the 

predictor variable(s) in the meta- regression model (referred to as τ2 in Section 10.4.1). 
Using the knee osteoarthritis example, the total

2  for the full set of studies turns out to 
be 0.051 (using REML), and unexplained

2  after running the meta- regression was 0.028. So

R2 1 0 028
0 051

0 45.
.

. .

The interpretation is that the number of exercise sessions explains approximately 
45% of the between- studies variance. In general, R2 ranges from 0 to 1 (or 0 to 100%) 
and describes the percent reduction in true variance, analogous to the R2 index used in 
regression analyses of primary studies.

10.4.4  Extensions to Meta- Regression

Imaginative coding of predictor variables in meta- regression can make efficient use 
of meta- analytic evidence to answer novel questions, particularly about the effects of 
interventions. An example is provided by a meta- analysis addressing the impact of 
drinking- water sanitation on childhood diarrheal disease in low-  and middle- income 
settings [25]. Several water supply characteristics were examined: whether or not the 
water source was treated by chlorine, solar, or filters; and levels and quality of piped 
water supply into the premises. Each of these characteristics was represented by a 
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predictor in a meta- regression model. The specific intervention in each study could 
then be coded as a combination of the predictors. The meta- regression model enabled 
indirect estimation of sanitation approaches that had not been directly observed, 
following the ideas of network meta- analysis (Chapter 13). This approach is increas-
ingly popular to examine complex interventions  [26] and is sometimes known as 
component network meta- analysis. In a meta- analysis addressing psychological 
preparation for surgery, this approach allowed the authors to derive estimates of the 
effects of the individual components of the psychological interventions, even when 
delivered in combination [27]. These models can further explore whether the compo-
nent effects are additive or whether there are interactions between them [28, 29].

10.5  PRACTICAL PROBLEMS IN THE EXPLORATION 
OF HETEROGENEITY

10.5.1  Correlated Predictor Variables and Causal Conclusions

Associations between study characteristics and study results are observational and are 
subject to confounding. Study- level confounding occurs when an association observed 
between a study characteristic and the effect size arises not because one causes the 
other, but because a third study characteristic is a common cause of variation in both 
the characteristic of interest and the effect size. For example, drug trials and diet trials 
may have different degrees of success in lowering cholesterol. However, this may be 
due to differences in baseline cholesterol levels rather than due to the type of inter-
vention. In practice, it can be challenging to tell which aspect of a study (e.g. type of 
intervention, baseline characteristics, risk of bias) is the cause of any difference in 
effect estimates.

A related problem arises from the correlation between study characteristics. For 
example, in a meta- regression analysis of total mortality outcomes of cholesterol-  -
lowering trials, various factors appeared to influence the outcome: greater cholesterol 
reduction led to greater benefit; trials including participants at a higher level of coro-
nary heart disease risk showed larger mortality reductions; and the fibrate drugs led to 
less benefit than other interventions [30, 31]. These findings were difficult to interpret 
since the variables included were strongly correlated: the fibrate trials recruited lower- -
 risk participants, and fibrates lowered cholesterol less than statins. In this situation, all 
the problems of performing multivariable analyses with correlated predictor variables 
are introduced [32].

10.5.2  Aggregating Participant- Level Predictor Variables at 
the Study Level

Subgroup analysis or meta- regression that uses averages of participant characteris-
tics in each study (such as the average age of all the participants) can give misleading 
results. It is tempting to interpret the relationship between average age and effect size 
as if it applies to individual participants. This may, however, not be the case because of 
aggregation bias (sometimes called the “ecological fallacy”) [33]. Aggregation bias can 



 Exploring Heterogeneity 199

arise when aggregate data for a group are used to make inferences about individuals. 
For example, suppose that all studies had the same average age. In that case, any age 
dependence of an intervention effect will be missed, yielding a coefficient of zero in 
the regression analysis and the impression that age might not be important.

Evidence about the modifying effect of a participant- level characteristic is most 
robust when the characteristic varies substantially within studies, and the individual 
(within- study) data are available to the meta- analyst. Study characteristics that vary 
between studies only can be assessed at the study level and are more prone to con-
founding by other study- level factors.

10.5.3  Spurious Findings and Undetected Associations

Subgroup analysis and meta- regression can readily generate spurious findings, partic-
ularly when there are few studies [21]. Suppose two studies produce estimates with 
nonoverlapping confidence intervals. Then any factor that differs between studies will 
be strongly related to the “heterogeneity” between the studies, and hence a potential 
explanation of it. Many of the explanations will not be biologically or clinically plau-
sible. We could, for example, take the star sign of the first author. The likelihood of a 
false- positive result is greatest when there are few studies and substantial heteroge-
neity. In such situations, a permutation may be considered instead of the standard 
parametric test [34].

False associations are also more likely when many predictor variables are included. 
Indeed, performing multiple analyses is a major concern for spurious findings. The 
rule of thumb that 10 or 20 observations should be available per predictor variable 
should be observed. The numbers indicated by these rules of thumb may not be 
sufficient if the predictor variables are unevenly distributed across studies, for example 
if most of the studies are very similar in their characteristics or most of the variation 
is observed in a small proportion of them. If more than one or two characteristics are 
included in the model, adjustments for multiplicity might be considered. Different 
techniques are available, including correction of P values, testing all candidate char-
acteristics simultaneously, or using shrinkage estimators [35, 36]. More importantly, 
only a few scientifically justified characteristics should be selected for subgroup anal-
ysis or meta- regression. The credibility of a result is strengthened when such factors 
and their direction of effect are hypothesized a priori.

10.5.4  Statistical Artefacts when Investigating Small- Study Effects 
and Underlying Risk

Two particular sources of heterogeneity can lead to statistical problems when investi-
gated without due care. The first is study size. Small- study effects (see Chapter 5) refer 
to the phenomenon that smaller studies show different, often more beneficial, effects 
of interventions than larger studies. A common method of investigating small-   study 
effects is to examine the relationship between the effect estimates and their precisions, 
for example expressed as standard errors. This is the basis of the Egger test, which is 
widely used [37]. In principle, small- study effects will lead to the situation where larger 



200 Systematic Reviews in Health Research 

effect estimates are associated with larger standard errors. Unfortunately, in some situ-
ations an artefactual correlation is present between effect estimates and their standard 
errors, simply because they are computed from the same data and not because of any 
genuine small- study effects [38]. This issue led to the development of other tests for 
small- study effects, as discussed in Chapter 5 (Section 5.4.5).

Similar problems occur when examining the association between intervention 
effects and baseline risk. If the baseline risk is measured by the risks observed in the 
control groups of trials and a meta- regression, e.g. of the log odds ratios on the risks of 
the control groups, is performed, then a spurious association will emerge because both 
are calculated from the same 2 × 2 table. Specifically, a trial that observes a higher con-
trol group risk by chance alone will also observe a smaller odds ratio due to the same 
chance phenomenon. Similarly, a trial that observes a lower control group risk by 
chance alone will also observe a larger odds ratio. This will result in the impression of 
an association between the odds ratios and the baseline risks across trials, but drawing 
such an inference would be a spurious finding due to this statistical artefact [39, 40].

10.6 CLOSING REMARKS

Sources of heterogeneity in meta- analysis should always be investigated. In some 
types of meta- analysis, the focus is almost exclusively on understanding heterogeneity, 
with relatively little interest in overall average effects (see also Chapter 19). However, 
attempting to explore possible reasons for heterogeneity can come with overinter-
pretation, because such investigations are often inspired, at least to some extent, by 
looking at the results at hand. Moreover, apparent heterogeneity may be due to chance 
and searching for its causes would then be misleading. The problem is akin to that of 
subgroup analyses within an individual clinical trial. However, the degree of clinical 
and methodological diversity across different studies is greater than within individual 
studies and represents a more serious problem.

Guidelines for deciding whether to believe results from investigating heteroge-
neity depend on, for example, the magnitude and strength of evidence for the differ-
ences identified, the extent to which the potential sources of heterogeneity have been 
specified in advance, and indirect evidence and biological considerations that support 
the investigation  [41, 42]. The risk of overinterpretation is greatest when there are 
many differences between studies, but only a few studies are available. There may 
be several alternative explanations for statistical heterogeneity in such situations, and 
ideas about sources of heterogeneity can be considered only as hypotheses for evalua-
tion in future studies.
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Dealing with Missing Outcome 
Data in Meta- Analysis
Ian R. White and Dimitris Mavridis

This chapter addresses the inclusion of studies with incomplete outcome data in a 
meta- analysis. Missing data are not only a threat to the validity of the analysis of a 
single study [1], they can threaten the validity of a meta- analysis. Yet more attention is 
often paid to missing data in the analysis of single studies than in meta- analysis. This 
chapter explores what we may know about missing data, describes the analysis options 
in single studies, discusses the methods available in meta- analysis, and makes sugges-
tions for practice with a primary focus on aggregate data meta- analysis. A modified 
version of this chapter was previously published [2].

This chapter does not address meta- analyses in which entire studies are missing, or 
studies within which particular outcomes are unreported. These issues are addressed 
in Chapter 5. Throughout this chapter, the term missing data refers only to missing 
outcome data. We discuss the consequences of missing data for randomized controlled 
trials (RCTs) without adjustment for baseline covariates. The methods discussed here 
could equally be used in an observational study such as a genetic study in which 
adjustment for confounders is unnecessary.

11.1  ANALYSIS OF A SINGLE STUDY WITH MISSING DATA

Αn RCT sets the standard for testing the efficacy of an intervention. Randomizing with 
high numbers tends toward equal distribution of prognostic factors across arms, so 
that we have confidence that any systematic difference in outcome can be attributed 
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to the intervention. But participants can, for example, drop out, and under certain cir-
cumstances missing data may introduce bias and yield misleading conclusions. The 
problem is well recognized and many methods have been suggested to account for 
missing data in RCTs [3–6].

The intention to treat (ITT) principle requires all participants in an RCT to be 
included in the analysis in the arm to which they were randomized, to preserve ran-
domization and avoid bias introduced by dropout and protocol deviations [7]. However, 
there is no consensus on how to perform ITT analysis when outcomes are missing [8]. 
Some argue that the ITT principle requires missing values be imputed using methods 
such as last observation carried forward (LOCF) or multiple imputation [9].

From a statistical perspective, any analysis of a study with missing data makes an 
assumption about the missing data. A principled approach starts by considering what 
assumption is plausible and chooses a suitable primary analysis [10]. The validity of 
the analysis rests on the plausibility of its assumptions, not on whether or not missing 
values were imputed. Sensitivity analyses are then needed to explore how robust the 
results are to plausible deviations from the assumption in the primary analysis. These 
ideas lead to an ITT analysis strategy, which emphasizes the inclusion of all randomized 
participants in sensitivity analyses [11].

Assumptions about missing data are often described using Rubin’s framework [12]. 
Data are missing completely at random (MCAR) if missing data have the same distri-
bution as observed data. For example, blood pressure data are likely to be MCAR if 
they are missing due to breakdown of an automatic sphygmomanometer  [5]. Data 
are missing at random (MAR) if missing data have the same distribution as observed 
data, conditional on other variables included in the analysis. For example, blood 
pressure data are likely to be MAR if age, but no other factor, predicts blood pressure 
measurement. Finally, if data are not MAR then they are missing not at random 
(MNAR) or informatively missing (IM). For example, blood pressure data are likely to 
be MNAR if, within age groups, the outcomes for participants who dropped out might 
be worse than those for participants with observed outcomes. However, other assump-
tions are possible: for example, the assumption underlying an LOCF analysis is that 
missing values do not differ on average from last observed values, which does not fit 
neatly into the MCAR/MAR/MNAR framework.

In practice, the starting point of an analysis is usually to ignore missing data in an 
available case analysis (ACA), also called a complete case analysis. This assumes that 
data are MAR. If instead the data are MNAR, then ACA risks bias in the intervention 
effect, especially if dropout rates vary between arms [13].

Several approaches have been suggested to handle missing data in clinical trials. 
Some of the most popular methods are summarized in Table 11.1.

11.2  META- ANALYSIS WITH MISSING DATA

Inappropriate analysis with missing data in RCTs leads to biased meta- analytic esti-
mates. The meta- analyst therefore faces four tasks.
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TABLE 11.1  Methods for handling missing outcome data in clinical trials.

Method Description Assumptions 
about missing 
outcome data

Use in meta- analysis

Available 
case analysis

Ignores missing 
participants

MAR Common starting point in 
AD and IPD meta- analysis

Single imputation methods for binary data

Impute 
failure

Imputes missing 
values as failures

Always failures Possible starting point in 
AD and IPD meta- analysis 
(e.g. smoking cessation 
trials)

Worst-  
(best- ) case 
scenario

Imputes failures in 
the treatment arm 
and successes in the 
control (or vice versa)

Always failures or 
always successes 
depending on arm

Extreme assumption in AD 
and IPD meta- analysis that 
may be useful in sensitivity 
analysis

Single imputation methods for all data

Last 
observation 
carried 
forward

Imputes missing 
values with the 
participants’ last 
observation

The missing value 
for a participant 
has the same 
mean as the last 
observed value

Often used in trial reports, 
and hence also in AD meta- 
analysis; can be avoided in 
IPD meta- analysis. Usually 
an unrealistic assumption; 
can underestimate 
uncertainty [14]

Single 
imputation

Imputes missing 
values, usually 
borrowing 
information from 
observed outcomes 
(not necessarily from 
the same arm or 
study)

Missing values 
equal a pre- 
specified 
value without 
uncertainty

Does not take uncertainty 
in the imputed values into 
account

Methods that take uncertainty into account

Multiple 
imputation

Builds a model to 
predict missing 
outcome from 
the participants’ 
observed outcome, 
and adds appropriate 
random error [15]

MAR Useful in IPD meta- analysis 
but rarely used with AD

Likelihood 
methods

Fits a model to the 
observed data

MAR Useful in IPD meta- analysis 
but rarely used with AD

Fits a model to the 
observed data and 
the probability of 
being missing

MNAR Hard to implement but 
potentially useful in IPD 
meta- analysis
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11.2.1 Understand the Extent of Missing Data in Each 
Included Study

Standard data extraction yields the number of individuals analyzed in each arm with 
summary statistics (count, or mean and standard deviation). To allow for missing data, 
we also need to know at least the number of study participants with missing data in 
each arm. The CONSORT statement expects reporting of the number of participants 
who were randomly assigned, and the number of participants in each arm included 
in each analysis  [16]. This is usually available from the participant flow diagram 
(CONSORT diagram), which should report the number lost to follow- up. It is also 
usually available in results tables, where the numbers analyzed should be reported. 
Surveys have shown that 95% of trials in major medical journals report some missing 
outcome data [17] and 94% of palliative care trials report the number of participants 
not included in the primary outcome analysis  [18]. Systematic reviews have lower 
rates of reporting numbers of participants with missing data: 47% of Cochrane reviews 
and 7% of non- Cochrane reviews [19].

When possible, the number of missing values in each arm should be broken down 
by the reasons why the data are missing: for example, the number of missing values that 
were due to loss to follow- up and the number that were due to disillusioned patients 
withdrawing from a trial (which are likely to be MNAR with worse outcomes than 
those observed). The meta- analyst needs to define a classification of reasons to make 
results comparable between studies. If the outcome in the review is a trial’s secondary 
outcome, it may be necessary to use reasons reported for the trial’s primary outcome, 
which are likely to be better reported.

As an example, we use a meta- analysis of studies comparing haloperidol with 
placebo in the treatment of schizophrenia [20]. The outcome is coded as success or 
failure on the basis of clinical improvement. Information about missing values was 
extracted and analyzed by Higgins and colleagues [21], and reproduced in Table 11.2. 
Two studies have particularly large numbers of missing values; this may be because 
other studies imputed missing outcomes without reporting their numbers. Table 11.2 
also tabulates reasons for missing data using codes explained below.

TABLE 11.1  (Continued)

Method Description Assumptions 
about missing 
outcome data

Use in meta- analysis

Pattern 
mixture 
model

Builds a model 
for the outcome 
conditional on 
whether it is missing 
or not and a model 
for the missingness 
mechanism [13]

Addresses 
departures 
from the MAR 
assumption 
(MNAR)

Useful in AD and IPD 
meta- analysis. The relation 
between missing and 
observed outcomes can be 
informed by expert opinion 
or by a sensitivity analysis

AD, aggregate data; IPD, individual participant data; MAR, missing at random; MNAR, missing not 
at random.



TABLE 11.2  Haloperidol meta- analysis: main results and reasons for missing data. In some cases, reasons refer to a different outcome.

First author Year Main results data Reasons for missing data

Haloperidol arm Placebo arm Haloperidol arm Placebo arm

Successes Failures Missing Successes Failures Missing ICA- 0 ICA- 1 ICA- pC ICA- p ICA- 0 ICA- 1 ICA- pC ICA- p

Arvanitis 1997 25 25 2 18 33 0 17 0 17 0 30 0 5 0

Beasley 1996 29 18 22 20 14 34 19 0 15 5 32 0 13 1

Bechelli 1983 12 17 1 2 28 1 0 0 0 1 0 0 0 1

Borison 1992 3 9 0 0 12 0 0 0 0 0 0 0 0 0

Chouinard 1993 10 11 0 3 19 0 11 0 2 0 10 0 6 0

Durost 1964 11 8 0 1 14 0 0 0 0 0 0 0 0 0

Garry 1962 7 18 1 4 21 1 0 0 1 0 0 0 1 0

Howard 1974 8 9 0 3 10 0 0 0 0 0 0 0 0 0

Marder 1994 19 45 2 14 50 2 25 0 0 13 41 0 0 4

Nishikawa 1982 1 9 0 0 10 0 0 0 0 0 0 0 0 0

Nishikawa 1984 11 23 3 0 13 0 0 0 0 0

Reschke 1974 20 9 0 2 9 0 0 0 0 2 6 0 0 0

Selman 1976 17 1 11 7 4 18 4 0 0 7 8 0 0 10

Serafetinides 1972 4 10 0 0 13 1 0 0 0 0 1 0 0 0

Simpson 1967 2 14 0 0 7 1 0 0 0 0

Spencer 1992 11 1 0 1 11 0 0 0 0 0 0 0 0 0

Vichaiya 1971 9 20 1 0 29 1 0 0 0 1 0 0 0 1

Abbreviations are explained in Section 11.3.



  Dealing with Missing Outcome Data in Meta- Analysis 209

11.2.2 Understand How the Missing Data were Handled in Each 
Published Report

The quality of published analyses can be hard to judge: studies typically report results 
from ACA or from some simple imputation method, but reporting of methods used can 
be poor. For example, in 2000 only 34% of studies in PubMed reported the handling of 
attrition [22], but by 2013 methods could be classified in 100% of trials in major med-
ical journals [17].

Errors can arise by misunderstanding how data were handled. For example, a 
meta- analysis of the effectiveness of brief interventions targeting excessive drinkers in 
general practice set out to regard missing values as failures (thus giving a lower bound 
to the success rate) [23], but was overzealous: one study’s reported results included all 
participants, with missing values imputed as failures, but the reviewers took this study 
as reporting only available cases and applied a further correction [24].

11.2.3 Evaluate the Risk of Bias Due to Missing Data in Each 
Published Report

Participants in a focus group reported that the risk of bias due to incomplete outcome 
data was more difficult to assess than other biases [25]. The Cochrane Risk of Bias tool 
includes risk of bias due to missing data [26]. The original version of the Cochrane 
tool asked assessors to describe the completeness of outcome data for each outcome, 
the numbers in each intervention arm (compared with total randomized participants), 
and the reasons for attrition or exclusions. The revised version of the tool asks asses-
sors to think specifically about whether a missing outcome is likely to depend on its 
true value [26]. See Chapter 4 for more details.

11.2.4 Perform Alternative Analyses Exploring the Impact  
of the Missing Data under Different Assumptions

This is the main focus of this chapter. Valid statistical methods are needed to account for 
missing outcome data in meta- analysis, and several methods have been suggested [27]. 
As well as correcting for bias in individual studies and inflating the standard error of 
the pooled estimate to allow for uncertainty about missing data, we also aim to change 
the weights assigned to studies to reflect which studies are more uncertain. Studies 
with high missing rates should be penalized relatively more when pooled in a meta- 
analysis because their effect estimates are more likely to be biased (under MNAR).

The primary analysis is commonly an ACA; a sensitivity analysis is then needed to 
explore the impact of departures from the MAR assumption implied in an ACA on the 
point estimate and its standard error. The methods we propose are primarily intended 
to be used in such a sensitivity analysis. However, in a meta- analysis in which bias from 
missing data is a serious concern, the methods proposed could form a primary analysis.

In this chapter, we assume we have access only to aggregate data (AD), so we 
cannot use all the methods presented in Table 11.1 (e.g. multiple imputation). If we 
have individual participant data (IPD), suitable methods from Table 11.1 can be used 
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to analyze each study, as we note below; the methods in this chapter would be less 
appropriate for primary analysis, but would be useful in sensitivity analysis.

Among 140 systematic reviews in mental health published in the Cochrane Data-
base of Systematic Reviews since 2009, only 27 (19%) reported a sensitivity anal-
ysis [28]. In those 27 reviews, 14 considered a best/worst- case scenario and 13 of these 
did that only for the experimental arm. In 109 (78%) of the 140 reviews, missing data 
were imputed using LOCF in at least one study.

The best/worst- case scenarios are typically used as sensitivity analyses, but may 
produce unrealistic results in practice, especially if missing rates are high. Gamble and 
Hollis suggested that the discrepancy between best-  and worst- case scenarios should 
be used to inform the down weighting of studies with more missing data [29]. How-
ever, because best-  and worst- case scenarios are implausible in most meta- analyses, 
their method is unrealistically conservative. Methods based on single imputation such 
as imputing the worst observed mean have also been suggested for meta- analysis of 
continuous outcomes [30].

We next describe two improvements on the above methods. In Section 11.3, we use 
data on reasons for missing data to improve our analysis. In Section 11.4, we specify 
the magnitude of plausible departures from the MAR assumption.

11.3  METHOD 1: USING REASONS FOR MISSING DATA  
AND SIMPLE ASSUMPTIONS

Our first approach requires data on the distribution of reasons for missing data in at 
least some studies. The methods described here were proposed for meta- analyses with 
binary outcomes [21]. If reasons for missing data are unreported in some studies, then 
they can be imputed by the within- arm average across other studies.

The key idea is to consider the individuals in each reason group within each arm, 
and to impute the missing data by making specific assumptions about the missing 
data mechanism (an imputed case analysis, ICA). These specific assumptions could 
involve imputing failures (ICA- 0), imputing successes (ICA- 1), imputing the control 
arm proportion (ICA- pC), and imputing the arm- specific proportion (ICA- p) [21]. In 
the haloperidol meta- analysis in Table 11.2, ICA- 0 was used for reasons such as lack 
of therapeutic benefit, and ICA- 1 for positive response. ICA- pC was used for adverse 
events because patients with adverse events would withdraw from treatment and 
therefore might be expected to perform like untreated patients; this implicitly assumed 
that patients withdrawing from treatment did not differ in any other way from those 
remaining on treatment. Finally, ICA- p was used for reasons such as loss to follow- up, 
which could plausibly be considered to be MAR. Once imputations have been done, 
care is needed to obtain correct standard errors. It would be wrong to treat the imputed 
data as real data, since this would deflate standard errors and give too much weight to 
studies with missing data as well as overestimate the certainty of the results [21].

This approach is broad and equally applicable to AD or to IPD, subject only to what 
is known about reasons for missing data. For example, it includes best-  and worst- case 
analyses (by setting ICA- 1 in the treatment arm and ICA- 0 in controls, and vice versa). 
A further extension is given in Section 11.4.
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11.4  METHOD 2: QUANTIFYING DEPARTURES FROM MAR

The method in Section 11.3 only allows a limited range of assumptions within each 
reason group. Now we expand the range of assumptions by quantifying departures 
from MAR. We do not require data on reasons for missing data, although these can be 
used later.

Prior beliefs about missing data are expressed using an informative missingness 
parameter (IMP), which relates the mean outcome in the missing data to that in the 
observed data for each arm of each trial and expresses the degree of departure from the 
MAR assumption. The IMP is unknown and cannot be informed by the data; ideally, 
expert (clinical) opinion is used to elicit information about likely values of the IMP. 
These prior beliefs are then incorporated into the analysis in a two- stage approach [31]. 
At the first stage, we compute study- specific effect estimates and their standard errors 
adjusted for the prior beliefs about the missing data. At the second stage, the adjusted 
estimates are combined in a standard meta- analysis.

With binary outcome data, a suitable IMP is the ratio of the odds of the outcome 
among participants with missing outcomes to the odds of the outcome among observed 
participants, and is referred to as the informative missingness odds ratio (IMOR) [22]. 
The IMOR approach incorporates the best/worst- case scenarios as special cases, but 
allows less extreme assumptions. An IMOR of 2 in a beneficial outcome states that the 
odds of success in the missing participants are double the odds in the observed partici-
pants because, for example, participants left the study due to early response. An IMOR 
of 0.5 states that the odds in the missing participants are half the odds in the observed 
participants because, for example, participants lacking improvement left the study. 
Suppose we have 100 participants randomized in an arm, 40 of whom recovered, 20 of 
whom did not (odds in observed = 40/20), and there are 40 who did not provide any 
outcome data. Suppose that an expert believes that only 10 of the 40 unobserved par-
ticipants would have recovered (odds in missing = 10/30). Then the expert’s estimate 
of the IMOR is the ratio of the odds in missing to the odds in observed, and equals 1/6.

With continuous outcomes, the IMP compares the mean in missing participants 
to the mean in the observed participants  [32]. It may be defined as the informative 
missingness difference of means (IMDoM) or the informative missingness ratio of means 
(IMRoM). An IMDoM of 1 states that the mean value in the missing participants 
exceeds the mean value of the observed participants by 1 unit. An IMRoM of 1.5 states 
that the mean value in the missing participants is 1.5 times the mean value in the 
observed participants. The IMDoM or IMRoM can be elicited by giving an expert the 
mean value in the observed data and asking for the mean value in the missing data.

In practice, experts should express a range of plausible values of the IMP. These 
may be used in a sensitivity analysis. For example, if the plausible range of the IMP 
is from −2 to 2, then the meta- analysis could be performed with the IMP assumed 
to be −2 in all arms of all studies, and then repeated with −1, 0, 1, and 2. Alterna-
tively, the range of plausible values of the IMP may be viewed as a prior belief dis-
tribution specified by a mean IMP and a standard deviation. For example, the IMP 
above could be taken as normally distributed with mean 0 and standard deviation 
1 (so that the expert is 95% sure that the true IMP is within the plausible range). 
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In this approach, a nonzero mean IMP tends to shift the point estimates, while uncer-
tainty about the IMP (expressed through its standard deviation) tends to increase the 
study- specific standard errors, with two consequences: studies with fewer missing 
data tend to receive greater weight, and the standard error of the pooled estimate 
tends to increase. An important extension of the method allows the IMP to differ 
across treatment arms [13, 31].

The method has been extended for network meta- analysis models for both 
dichotomous and continuous outcomes [32, 33]. The methods of Sections 11.3 and 11.4 
can be combined so that one category of reasons is imputed with a specified IMP. In 
principle, a distribution of IMPs could be used for each reason group, but this is not 
currently available in statistical software. IPD would facilitate more complex analyses, 
perhaps using multiple imputation with MNAR mechanisms  [34]. Alternative fully 
Bayesian approaches have been proposed [35, 36].

11.5  TWO WORKED EXAMPLES

11.5.1 Haloperidol Meta- Analysis

These data with a binary outcome (clinical improvement) were introduced in 
Section 11.2 and are listed in Table 11.2. We consider fixed- effect meta- analyses for the 
risk ratio (RR; see Chapter 9).

We present four possible ways of handling the missing data out of a wide possible 
range. First, an ACA would be the standard choice. However, in this mental health 
setting, missing values are likely to show less improvement than observed values. A 
second analysis therefore imputes all missing values as failures (ICA- 0). Because the 
outcome here is clinical improvement, this may be considered to be an LOCF analysis. 
However, the truth about the missing data is likely to lie between ACA and ICA- 0. 
In our third analysis, we express this by using the reasons for missing data given in 
Table 11.2. Finally, our fourth analysis expresses uncertainty about the missing data 
by using a plausible distribution for the IMOR (Figure 11.1) in which the IMOR lies 
between 0.5 and 1 with probability 2/3.

Figure 11.2 shows the results of the four analyses. We first look at the study- 
specific estimates listed under RR (95% confidence interval) for the Beasley and 
Selman studies, which have substantial amounts of missing data, and more 
missing data in the placebo arm (Table  11.2). Compared with the ACA analysis, 
the ICA- 0 analysis tends to impute more failures in the placebo arm and therefore 
gives larger estimated risk ratios for these studies. The confidence intervals widen 
because uncertainty for the risk ratio increases with lower risk, outweighing the 
benefit of increased sample size; for other measures such as the odds ratio, the 
confidence interval would narrow. The analysis using reasons imputes some but not 
all missing values as failures and therefore gives smaller increases in the estimated 
risk ratios and confidence interval widths. The analysis using IMORs imputes the 
missing values as slightly more likely to be failures than does the ACA analysis, 
and slightly increases the estimated risk ratios, while the added uncertainty widens 
the confidence intervals. For the other 15 studies, all four analyses give similar 
estimates.
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The changes in confidence interval width reduce the weight given to the Beasley 
study from 31% in the ACA analysis to 25–27% in the other analyses, and similarly 
reduce the weight for the Selman study from 19% to 10–16%. The reduction in weight 
given to the Beasley study is important, because this study has a lower risk ratio than 
other studies. The meta- analysis results in Figure 11.2 therefore show that the pooled 
estimate increases from 1.57 in the ACA analysis to 1.68–1.90 in the other analyses, 
with corresponding increases in confidence interval width.

11.5.2 Mirtazapine Meta- Analysis

Our second example comprises eight studies comparing the effectiveness of mirtazap-
ine and placebo in patients with major depression [37]. The continuous outcome is 
the change in depression symptoms measured on a standardized rating scale. For both 
mirtazapine and placebo arms, we have the mean change, standard deviation, and 
numbers of patients with observed and missing data (Table 11.3). We synthesize the 
mean differences using a random- effects model.

We present two of the possible ways to handle the missing data. ACA is the starting 
point in the analysis. As an alternative, we use a plausible distribution for the IMDoM, in 
which the IMDoM is considered to lie between −3 and 3 with 95% probability (Figure 11.3). 
This implies that the mean value of IMDoM is zero. We do not believe that data are MAR, 
but we do believe that departures from MAR are equally likely in both directions.

Figure  11.4 shows the results. Both methods give the same point estimate for 
the individual studies because the IMDoM distribution in the MNAR analysis is cen-
tered at zero (its value in the MAR analysis). Study- specific confidence intervals are 
wider for MNAR than MAR analyses by 5–10% in most studies, but by 23% in the fifth  
study (MIR 003- 021), which has a larger proportion of missing data (Table 11.3). 

ICA–0:
IMOR = 0
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IMOR = 1

2/3 probability
that IMOR

lies between
0.5 and 1

0.25 0.5
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log IMOR
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Informative missingness odds ratio (IMOR)
1 2

D
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FIGURE 11.1  Plausible distribution for the informative missingness odds ratio (IMOR) in the 
haloperidol meta- analysis. ACA, available case analysis; ICA- 0, imputed case analysis imputing failures.
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Reschke (1974)
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FIGURE 11.2  Haloperidol meta- analysis under four different assumptions about the missing data. CI, confidence 
interval; RR, risk ratio.
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The MNAR analysis therefore assigns slightly smaller weight to MIR 003- 021. Since 
this is the only study favoring placebo, the summary estimate shifts slightly toward 
mirtazapine and the heterogeneity variance declines, which is reflected in the 
decreased I2 value and the narrower confidence interval about the summary estimate. 
Although the differences are not large, the MAR assumption gives a marginally non-
significant result, whereas the MNAR assumption gives a marginally significant 
result in favor of mirtazapine.

All these analyses may be performed using our software for Stata, available 
from the Statistical Software Components (SSC) archive. For binary outcomes, the 
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FIGURE 11.3  Plausible distribution for the informative missingness difference of means 
(IMDoM) in the mirtazapine meta- analysis. ACA, available case analysis.

TABLE 11.3  Mirtazapine meta- analysis: mean change in depression scores, 
s tandard deviations (SDs), and numbers of observed and missing outcomes for the 
mirtazapine and placebo arms.

Study Mirtazapine arm Placebo arm

Mean SD Observed Missing Mean SD Observed Missing

Claghorn 1995 −14.5 8.8 26 19 −11.4 10.2 19 26

MIR 003–003 −14.0 7.3 27 18 −11.5 8.3 24 21

MIR 003–008 −12.6 8.0 23 37 −11.4 8.0 17 13

MIR 003–020 −13.0 9.0 23 21 −6.2 6.5 24 19

MIR 003–021 −13.8 5.9 22 28 −17.4 5.3 21 29

MIR 003–024 −15.7 6.7 30 20 −11.1 9.9 27 23

MIR 84023a −14.2 7.6 35 25 −11.9 8.6 33 24

MIR 84023b −14.7 8.4 51 13 −11.8 8.3 48 18
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IMOR approach and the approach using reasons are implemented in the metamiss 
command  [38]. For continuous outcomes, the IMDoM and IMRoM approaches are 
implemented in the metamiss2 command [39].

11.6  RECOMMENDATIONS

Trial investigators should report the numbers of missing participants and results even 
if they go on to impute missing data, and they should collect and report the reasons for 
dropout by trial arm.

Reviewers should consider the possibility of missing outcome data when planning 
a systematic review and plan to extract data about numbers of missing values and rea-
sons why data are missing.

Reviewers should be alert to the possibility that missing values have already been 
imputed, and when conducting a systematic review should aim to extract the unim-
puted data so that alternative imputation approaches can be used.

When performing a meta- analysis, a simple analysis such as ACA or ICA- 0 will 
often be used as a main analysis, but the more sophisticated methods described above 
form important sensitivity analyses [21]. These should involve one or more analyses 
that make plausible assumptions about the missing data. The sensitivity analyses are 
typically specified after the systematic review so that the nature of the trials can inform 
the plausible assumptions. With large amounts of missing data, results can be adjusted 
in so many ways that it would be difficult to know which estimates to believe. Thus, it 
is sensible to define the relevant sensitivity analyses a priori in order to avoid the risk of 
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FIGURE 11.4  Mirtazapine meta- analysis under two different assumptions about the missing 
data. CI, confidence interval.
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data dredging. For example, if rich data on reasons are available, then imputation strat-
egies should be defined for each reported reason. Alternatively, background knowledge 
should be used to specify a plausible range of IMORs and thus to define an uncertainty 
approach. More suggestions for the uncertainty approach are given by White et al. [31].

Further research is needed in developing questionnaires to elicit values of the 
IMOR, IMDoM, or IMRoM [40]; in developing statistical methods allowing reason- 
specific IMPs with uncertainty; and in developing methods for using reasons for 
missing data with continuous outcomes.
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Individual Participant Data 
Meta- Analysis
Mark C. Simmonds and Lesley A. Stewart

Most systematic reviews analyze summary data from published reports of primary 
studies, extracting effect estimates and combining them across studies. An alternative 
and increasingly used approach (Figure 12.1) is to seek original datasets for each eli-
gible study and base meta- analysis on the assembled individual participant data (IPD). 
IPD meta- analyses have been done in many health care fields, although reviews of 
oncology and cardiovascular medicine predominate [1]. While most IPD analyses are 
of randomized trials, the approach is gaining popularity for meta- analyses of observa-
tional evidence.

IPD meta- analyses offer many advantages over meta- analyses based on summary 
data, such as the opportunity to mitigate publication and outcome reporting bias [1] 
and perform more sophisticated analyses, including of participant- level associations, 
for example to investigate potential effect modifiers. IPD meta- analysis projects are, 
however, more complex, time- consuming, and resource- intensive, and require greater 
expertise than standard systematic reviews with meta- analysis of aggregate data. Thus, 
before embarking on an IPD meta- analysis project, careful consideration needs to be 
given as to whether an IPD meta- analysis is necessary to address the research question 
posed and whether it is likely to be feasible. Benefits and challenges of IPD meta- 
analyses are listed in Box 12.1 and are discussed briefly in the following section.

This chapter provides an outline of IPD meta- analysis processes and overview 
of the main statistical approaches that can be taken. A more detailed account of the 
design, planning, conduct, analysis, and reporting of IPD meta- analysis projects can 
be found in the book edited by Riley, Tierney, and Stewart [2].
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FIGURE 12.1  Popularity of individual participant data (IPD) meta- analyses over time.

Box 12.1 Benefits and Disadvantages of Systematic Reviews  
Using Individual Participant Data (IPD)

Benefits of collecting IPD
• Supply of additional or updated data
• Improve overall follow- up
• Include previously excluded or missing participants
• Analyze outcomes not reported in publications
• Data can be checked and corrected

Benefits of analyzing IPD
• Analyze on the basis of allocated intervention
• Enable consistent adjustment for key confounding variables
• Analyze participant subgroups
• Analyze by time to event
• Greater choice of analysis methods

Benefits  of  collaborating  with  primary  investigators  in  the  conduct  of 
the review
• Better identification of studies
• More balanced interpretation of the results of the review



222 Systematic Reviews in Health Research 

12.1  ADVANTAGES AND CHALLENGES OF COLLECTING 
INDIVIDUAL PARTICIPANT DATA

12.1.1  Access to Additional Outcome Data

A particular benefit of the IPD approach is that data not presented in publications can 
be collected and analyzed. This may include data from unpublished studies, unpub-
lished long- term follow- up data, and outcomes or timepoints not reported in publi-
cations, as well as data not reported in a suitable format for meta- analysis. It may 
also be possible to obtain data from participants who were excluded from the original 
study analyses. These additional data can help to reduce the impact of publication and 
reporting biases.

12.1.2  Data in a Consistent and Usable Format

An important obstacle to undertaking meta- analyses using published data is that 
results are often presented in different ways: one study might report a risk ratio, another 
only an odds ratio, and a third only that a comparison was not statistically significant. 
Access to the participant- level data would allow any of these results to be computed 
from each study. Similarly, if an outcome measure has been defined using different 
cutpoints across the studies, or by taking different components of a measurement 
scale, or by combining outcomes into different composite outcomes, then IPD may 
enable the original data to be re- coded to a common measurement scale.

Time- to- event outcome data cannot conveniently be summarized using simple 
statistics like counts or means from each group. Results may be presented in several 
ways, including Kaplan–Meier curves, statistics from log- rank tests, and effect esti-
mates from proportional hazards models. Although various methods are available for 
extracting consistent results and converting approximately between them, the results 
of such different analyses cannot be easily combined in a meta- analysis [3–5]. Thus 
obtaining and analyzing IPD can be particularly useful for reviews with important 
time- to- event outcomes.

• Wider endorsement
• Increased possibilities for dissemination of the results of the review
• Better clarification of the implications for future research
• Possibilities for collaboration in future research

Possible disadvantages of IPD reviews
• May take longer and cost more
• Review team needs wider range of skills
• Data management is more complicated
• Statistical analysis may be more complex
• IPD may not be available from all relevant studies
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12.1.3  More Choice of Analysis Options

Provision of IPD enables standardization of data, and results may be combined across 
studies in ways they otherwise could not. IPD enable re- analysis of the data to include 
updated results, to perform intention- to- treat analysis, to analyze time- to- event data, 
and to correct flawed original study analyses. Access to IPD also permits much more 
flexible and powerful analyses than are possible using summary data, such as applica-
tion of methods to account for missing outcome data (see also Chapter 11).

12.1.4  Ability to Examine Individual- Level Characteristics

IPD datasets will generally contain demographic information such as age, sex, health 
condition, previous health care, and possibly socioeconomic variables for each partic-
ipant. This allows investigation of how such participant- level covariates might affect 
the impact of the intervention, exposure, or test under investigation. This ability to 
answer research questions about individual- level effect modification in ways that are 
typically not possible from aggregate data is a key advantage of IPD meta- analysis, and 
is often the main scientific reason for seeking IPD.

For all the above reasons and more, an IPD meta- analysis is taken to be the gold 
standard for meta- analysis [6, 7].

12.1.5  Challenges in Using Individual Participant Data

Despite the advantages, using IPD in meta- analysis poses challenges. IPD meta- analysis 
is strongly dependent on the availability of data from the studies, which will usually 
require study investigators to share their data. IPD may not be available for all studies, 
either because authors do not share data or because the data are no longer available. 
Considerable effort is be needed to manage and prepare IPD for analysis. The quantity 
of data is often large, and data may be provided in very different formats. Statistical 
analysis of IPD is also generally more complex than a conventional meta- analysis.

An IPD review generally takes longer, is more costly, and is more complex than 
a review of published results. Before embarking on an IPD review, reviewers should 
therefore consider whether the advantages of an IPD approach outlined here outweigh 
the extra effort required, particularly if the review question could be answered reliably 
using data from publications, perhaps supplemented by requesting additional data 
from authors [8].

12.2  PERFORMING A SYSTEMATIC REVIEW USING INDIVIDUAL 
PARTICIPANT DATA

12.2.1  Planning the Review and Identifying Studies

The rationale for a systematic review using IPD is the same as that for any systematic 
review, and many of the processes are similar. Differences occur mainly with respect to 
obtaining and managing data and in the type of analyses that can be done.
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It is particularly important to write a protocol for an IPD review, given the added 
complexity and potential to conduct multiple analyses and selectively report those that 
produce favorable results. The protocol is also a valuable communication tool that can 
be used to explain the proposed project to primary study investigators as an aid to 
obtaining the data and building collaboration.

As with any systematic review, an early step will be to identify all the studies 
relevant to the review following the methods discussed elsewhere in this book (see 
Chapter  3). Searches for gray literature may be particularly useful in identifying 
studies that have not been published, from which IPD could be sought. Searching 
trial registries may identify both unpublished studies and ongoing trials for which 
data may become available, as might clinical trial data repositories. Primary study 
investigators help identify additional studies, particularly regarding unpublished 
studies that they have completed or know of. Any available published material for 
potentially eligible studies should be obtained to confirm eligibility and help under-
stand and check the individual- level dataset, and for data extraction should IPD be 
unavailable.

A series of additional preparatory steps is usually required for IPD meta- analysis 
projects. Although full ethics approval may not be required for the IPD review, this 
should be investigated and clarified. This is important, since confirmation of ethical 
clearance may be needed before study investigators can gain approval from local ethics 
committees, institutional review boards, or managers to release IPD. Data protection 
and security regulations should also be checked to ensure compliance. Formal data- 
sharing agreements are used increasingly and having these ready as part of negotiating 
collaboration and provision of data is advisable, as is having prepared a detailed data 
dictionary that sets out the participant- level data items that the review seeks to collect. 
Most IPD reviews will require dedicated funding and a research team with appropriate 
skills and experience will need to be in place [9].

12.2.2  Obtaining Individual Participant Data

Careful consideration should be given to whether the review should be performed in 
collaboration with primary study investigators. A collaboration can yield substantial 
benefits and may also be the only means by which some investigators will release 
their IPD. Under this model, collaborators may be assured that their data are being 
stored and used appropriately (through the protocol and data use agreements), have 
some input to design through commenting on the protocol, and gain academic credit 
through group- authored publications. Such involvement, particularly if a dedicated 
meeting is held at which results are shared, can facilitate more nuanced interpre-
tation of findings, improve knowledge mobilization, and afford greater credibility 
among the wider target audience. Often, collaborators will be able to provide 
material such as trial protocols or adverse event report forms. Collaborations forged 
through an IPD review may be long- lasting and can facilitate updating the review, 
instigating new reviews, as well as in some cases leading to planning new clinical 
trials. However, independence of the central research team undertaking the meta- 
analysis is important in safeguarding against design and analysis being influenced 
by primary investigators, who are likely to know the studies and data well, in ways 
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that shape findings to reflect their own views. This may be particularly important in 
controversial areas.

An alternative, or complement, to obtaining IPD directly from trial investigators is 
to access IPD through one of the growing number of data- sharing platforms or repos-
itories. Although this may have potential to save time in obtaining IPD, at present the 
process of gaining approval to access data can be lengthy, and may not save time com-
pared with contacting trial investigators directly [10, 11].

IPD may be medically or commercially sensitive, and this must be considered when 
obtaining and handling the data for the review. In general, data should be requested to 
be supplied without names or identifying numbers. A data- sharing agreement that sets 
out the details of safe data storage and ensures that the limited number of researchers 
with access to the data will refrain from any attempt to re- identify individuals may 
be helpful.

12.2.3  Checking and Cleaning the Data

Once data are obtained they will generally need to be harmonized, since different 
studies will provide data in different formats and will have coded their data differ-
ently. Although trial investigators are often willing to re- code data to a specified meta- 
analysis format, it is likely that considerable data manipulation and transformation 
will be needed to convert the data received into a consistent format across all studies 
ready for the meta- analysis. Discussion with the study authors is usually necessary to 
clarify any areas of uncertainty around what the data contain and how they are coded. 
Data should also be checked to identify any omissions and possible errors. This could 
include checking for simple coding errors, checking clinical plausibility of the data, 
and comparing data with publications.

IPD may usefully contribute to, and supplement, investigations of study quality 
or risk of bias. For example, whether randomization was adequate in a clinical 
trial may be checked by examining the distributions of age, sex, and other basic 
participant characteristics across intervention arms of the trial. Randomization 
patterns such as dates of allocation of participants to each group may also be infor-
mative [12].

12.3  METHODS FOR META- ANALYSIS WITH INDIVIDUAL 
PARTICIPANT DATA

There are two broad statistical approaches to performing a meta- analysis using IPD. 
The first follows the strategy of a meta- analysis of aggregate data: each study is ana-
lyzed separately to produce a summary effect estimate and these summary effect 
estimates are then combined using standard meta- analysis techniques. This is the 
two-stage approach. The second approach is to analyze all the IPD in a single analysis 
using a statistical model that recognizes that the data come from independent studies. 
This is the one-stage approach. We discuss methods for the two approaches separately, 
focusing initially on estimation of a single overall effect such as a treatment effect 
across multiple randomized trials.
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12.3.1  Two- Stage Approaches for Overall Effect

In the two- stage approach to IPD meta- analysis, the meta- analysis is performed in two 
distinct parts. In the first stage, data from each study are analyzed separately to obtain 
estimates of effect and estimates of uncertainty in these estimates. For example, for 
dichotomous outcome data (e.g. death) in randomized controlled trials, the risk ratio or 
odds ratio and its 95% confidence interval (on a logarithmic scale) might be calculated. 
For continuously distributed outcomes (e.g. blood pressure), the mean difference or 
standardized mean difference between arms and its standard error might be computed.

In the second stage, the effect estimates are combined in a meta- analysis. Any 
of the standard meta- analytic techniques discussed in Chapter 9 could be used. For 
a fixed- effect meta- analysis, the standard inverse- variance weighted average may be 
used. For binary data, alternative methods such as the Mantel–Haenszel approach 
or Peto method may be used. For a random- effects meta- analysis, the DerSimonian–
Laird approach may be used [13].

An advantage of the two- stage approach is that any meta- analysis method used in 
standard analyses of published data may be used for IPD analysis, including assessment 
of heterogeneity using Cochran’s Q test or the I2 statistic to measure inconsistency in 
results  [14]. Furthermore, combining effect estimates based on IPD with effect esti-
mates obtained from study reports is straightforward. Forest plots of the results for each 
study along with the meta- analytic summary may also be presented. Since meta- analysis 
methods in a two- stage approach are common to IPD and aggregate data meta- analysis, 
and have been covered in other chapters, we do not discuss them in detail here.

12.3.1.1  Example: The PARIS Review (Part 1)

The Perinatal Antiplatelet Review of International Studies (PARIS) review was a 
collaborative systematic review and IPD meta- analysis of 31 randomized, placebo- 
controlled trials investigating the use of antiplatelets to prevent pre- eclampsia and 
associated outcomes in pregnancy [15]. The use of IPD afforded a number of benefits, 
among them a consistent definition of pre- eclampsia across the IPD (in contrast to 
publications that had used a variety of definitions). IPD were included from unpub-
lished trials and provided updated or more complete data from some of the trials. The 
IPD also contained results for more outcomes than had been reported in publications, 
and allowed a range of subgroup analyses to explore whether some women and their 
infants benefited more from antiplatelets than others.

The meta- analysis used a two- stage approach. For the primary outcome of pre- 
eclampsia, the numbers of women with and without pre- eclampsia in both antiplate-
let and placebo arms of each trial were determined and combined in the same way as 
if they had been extracted directly from publications. Figure 12.2 shows a forest plot 
of the results of the 24 trials that provided data on pre- eclampsia, with the summary 
odds ratio from a random- effects meta- analysis; the use of aspirin led to a modest but 
statistically significant reduction in pre- eclampsia with an odds ratio of 0.85. There is 
little apparent heterogeneity: the I2 value of 29% indicates that only one- quarter of the 
variation in point estimates is due to heterogeneity rather than within- study random 
errors [16].
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12.3.2  One- Stage Approaches for Overall Effect

The one- stage approach to IPD meta- analysis consists of fitting a single statistical 
model to all data from all studies simultaneously. The approach is much like analyzing 
one large study, except that allowance must be made for interstudy differences. Any 
suitable model may be used, but generalized linear modes are most common in prac-
tice. For a meta- analysis of randomized controlled trials, a suitable generalized linear 
model would include terms for the treatment effect and indicator variables for each 
study. Assumptions must be made for each parameter across studies. Each parameter 
may be assumed to be unrelated across studies, equal in every study, or randomly dis-
tributed across studies

Parameters representing baseline levels of the outcome across studies (e.g. under-
lying risks of the event) might reasonably be assumed to be unrelated across studies, 
replicating the assumptions involved in a standard meta- analysis and ensuring that 
between- individual comparisons across groups are made only within studies and not 
across studies. However, alternative model structures are possible, which may have 
model convergence and stability benefits [17].

The treatment effect is typically assumed to be either equal across studies (a 
fixed- effect meta- analysis) or randomly distributed across studies (a random- effects 
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meta- analysis). When random effects are included, the model is a generalized linear 
mixed model and the variance of treatment effects across studies represents the 
amount of heterogeneity in the treatment effect.

Detailed discussions are available for one- stage meta- analysis of IPD for contin-
uous outcomes using linear regression models  [18], dichotomous event data using 
logistic regression models [19], and ordered categorical data using a proportional odds 
models [20]; for count data, Poisson regression might be used. One- stage models for 
time- to- event data are discussed in Section 12.3.3.

12.3.2.1  Example: The PARIS Review (Part 2)

A re- analysis of the PARIS IPD meta- analysis compared one- stage and two- stage 
approaches to the impact of antiplatelet use on risk of pre- eclampsia  [16]. For the 
one- stage model, a fixed- effect model was fitted using a logistic regression model to 
estimate the odds ratio for the benefit of antiplatelets. A random- effects logistic regres-
sion model was also fitted to the same data. A summary of the results from the four 
models is given in Table 12.1. The results of the one- stage and two- stage approaches 
are very similar. The only difference is that the one- stage approach observed no het-
erogeneity (so that fixed-  and random- effects models have the same results). This is 
an artifact of using heterogeneity estimation methods that differ in the two analyses: 
two- stage analyses used the DerSimonian–Laird estimator, while the one- stage anal-
ysis used a restricted maximum likelihood approach.

12.3.3  Time- to- Event Analysis

Many IPD meta- analyses have been performed on time- to- event outcomes using 
survival analysis techniques  [21]. Survival analysis relies on knowing the timing of 
each event, not just how many events occurred in each group. As we have mentioned, 
the data required for these analyses are not generally available in publications, which 
means that there are considerable advantages of collecting IPD.

Both two- stage and one- stage approaches to meta- analysis of survival data are 
possible. A commonly used two- stage approach is to perform a log- rank test within 
each study. Briefly, this consists of calculating the difference between the observed 
and expected numbers of events along with its variance at a set of times, usually each 

TABLE 12.1  Results of one-  and two- stage analyses of PARIS review.

Method Odds ratio for 
effect of aspirin

95% confidence 
interval

Heterogeneity 
(τ2)

Two- stage fixed- effects 0.887 0.817 to 0.963 I2 = 29%

Two- stage random- effects 0.849 0.745 to 0.976 τ2 = 0.021; 
I2 = 29%

One- stage fixed- effect 0.886 0.816 to 0.963 −

One- stage random- effects 0.886 0.816 to 0.963 τ2 = 0



 Individual Participant Data Meta- Analysis 229

event time. These values are then summed across times to obtain an estimate of the 
log hazard ratio and its variance. This approach is discussed in detail by Simmonds 
et al. [22]. The log hazard ratios from each trial are combined in an inverse- variance 
meta- analysis, using either a fixed- effect or a random- effects approach. Alternatively, 
the hazard ratio in each trial may be estimated by fitting a Cox proportional hazards 
model [22] or a parametric survival model such as a Weibull model [23].

The most commonly recommended one- stage approach for survival analysis is 
to fit a random- effects Cox proportional hazards model [24, 25]. Stratification of the 
analysis by study is achieved by allowing a separate baseline hazard for each study. 
Alternatively, a Weibull model or other parametric survival model could be used in a 
one- stage approach, again stratifying by study and allowing the treatment effect to be 
equal or randomly varying across studies.

12.3.3.1  Example: Chemotherapy for Non- Small Cell Lung Cancer

An IPD meta- analysis of trials of preoperative chemotherapy for non- small cell lung 
cancer included 15 trials and 2385 patients [26]. An IPD approach was taken because 
the original publications did not present sufficient data to be able to meta- analyze 
hazard ratios for overall survival, and because it enabled subgroup analyses. A two- 
stage approach was used. Within each trial, the log- rank expected number of events 
and its variance were used to estimate the hazard ratio for the effect of preoperative 
radiotherapy on overall survival. Hazard ratios were then combined across trials using 
both fixed-  and random- effects meta- analyses. The result of this meta- analysis is 
shown in Figure 12.3.
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FIGURE 12.3  Results of the two- stage individual participant data (IPD) meta- analysis of non- 
small cell lung cancer trials. CI, confidence interval; E, expected; O, observed.
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12.4  GOING BEYOND ESTIMATING THE SUMMARY EFFECT

The IPD meta- analysis methods described so far have estimated overall effects such as an 
overall odds ratio for the effect of treatment versus control on a particular outcome. Most 
IPD analyses aim to do more than this and investigate the situations in which treatment 
effects are larger or smaller. Further analyses may therefore investigate how characteristics 
such as participant age or drug dose modify the effectiveness of a treatment. Investigating 
whether particular types of people benefit more or less from an intervention is important in 
“precision medicine” [27]. IPD are particularly useful for this, because data on individual- 
level covariates are generally not available from publications. When investigating the effect 
of covariates, it is helpful to distinguish between two categories of covariate:

• Study-level covariates are the same for all participants within a study, but vary 
across studies; common examples are intended drug dosage or treatment duration.

• Participant-level covariates vary across participants within each study, for 
example age or sex.

The nature of a covariate affects the choice of analysis. Some covariates may fall 
between these categories. For example, if we are interested in different subtypes of a 
disease, some studies may be restricted to only one disease type, while others include 
participants with a range of disease types.

The methods for investigating the effect of covariates in an IPD meta- analysis dif-
fer for one- stage and two- stage approaches.

12.4.1  Two- Stage Approaches for Investigating Covariates

The simplest two- stage method for investigating the effect of a covariate is subgroup 
analysis. For study- level covariates, this consists of estimating the treatment effect in 
each study, dividing the studies into subsets according to the value of the covariate 
in each study, and then performing separate meta- analyses for each subset of studies 
using standard meta- analysis methods (see Chapter  10). Continuously distributed 
study- level covariates may be investigated using meta- regression, in which the effect 
estimates from the studies are regressed against the study- level value of the covari-
ate [28]. Meta- regression has been found to be prone to bias and lacks statistical power, 
so it should be used with caution [29].

For individual- level covariates such as treatment effects in men versus women, we 
might calculate a treatment effect separately within each subgroup of individuals. For 
example, we might estimate the treatment effect among only men and the treatment 
effect among only women separately for each study, then undertake a meta- analysis 
across studies using the results for men and, similarly, a meta- analysis across studies 
from the results for women [29]. A preferable alternative is to focus on the interac-
tion between treatment and the covariate  [29–31]. The analysis of each study then 
targets estimation of this interaction term rather than estimation of the treatment 
effect, and these estimated interaction terms are combined across studies in the meta- 
analysis  [29]. One disadvantage of this approach is that it is currently unclear how 
to incorporate studies that do not have variability in the covariate of interest. For 
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example, if the interaction term of interest is between treatment and sex, then a study 
of only women may be difficult to include in the analysis.

12.4.2  One- Stage Approaches for Investigating Covariates

Investigating the effect of a covariate in a one- stage analysis requires adding interaction 
terms between treatment and covariate to the one- stage random- effects regression models 
discussed in Section 12.3.2 for estimation of overall effect. As for other parameters in the 
model, there is the option of assuming that these interaction terms are equal in every 
study, unrelated across studies, or randomly distributed across studies. This model can be 
used for both individual-  and study- level covariates, and for continuous or dichotomous 
covariates. For example, if the covariate is the dose of the drug, then the interaction term 
would quantify the dose–response relationship. If the covariate is sex, then the interaction 
term would give the difference in treatment effect between men and women. This model 
may also be extended to consider multiple covariates in the same model.

12.4.2.1  Example: The PARIS Review (Part 3)

The original analysis of the PARIS data considered several possible factors that might 
modify the effectiveness of aspirin to reduce pre- eclampsia. In a re- analysis of the 
impact of diabetes, hypertension, age, and gestational age on the effectiveness of 
aspirin in the PARIS review, two- stage and one- stage models were used to investigate 
the interactions between antiplatelet use and each of the four covariates. The results 
for both approaches, which are similar, are given in Table 12.2.

12.5  INDIVIDUAL PARTICIPANT DATA META- ANALYSIS 
OF OBSERVATIONAL STUDIES

The examples cited so far in this chapter have all been analyses of randomized trials. 
The use of IPD is growing in importance in meta- analyses of observational studies 
in health care, such as cohort and case–control studies. Because of the lack of ran-
domization in observational data, adjustments for potentially confounding factors are 
usually important to avoid biased results. Unfortunately, publications may not present 
suitably adjusted results, or the choice of adjustments may vary across studies. We also 
may be interested in the effects of multiple covariates on an outcome, not just a single 
treatment, and details of such multivariate analyses are rarely presented in publica-
tions. Obtaining the IPD can solve both these problems by allowing the reviewer to fit 
fully adjusted multivariate models (see also Chapters 17 and 18).

As with analyses of randomized trials, both one-  and two- stage approaches may be 
implemented with observational IPD. The models and methods are similar, although 
the treatment factor would be replaced with one or more covariates of interest. In a 
two- stage approach, we may again fit a suitably adjusted linear, logistic, or other model 
of the effect of the covariate(s) on the specified outcome within each study, and then 
combine the results of each analysis (typically expressed as a mean change, odds ratio, 
hazard ratio, or similar) in a standard meta- analysis. A one- stage analysis would fit a 
similar adjusted regression model to all data from all studies simultaneously.



TABLE 12.2  Results of one-  and two- stage analyses of the effect of covariates in the PARIS review.

Covariate Category Two- stage analysis One- stage analysis

Odds ratio
(95% CI)

P value for 
difference

Odds ratio
(95% CI)

Interaction odds ratio
(95% CI)

P value for 
interaction

Diabetes With 0.72 (0.49 to 1.04) 0.38 0.74 (0.50 to 1.11) 0.82 (0.57 to 1.20) 0.32

Without 0.86 (0.74 to 0.99) 0.90 (0.83 to 0.99)

Hypertension With 0.90 (0.69 to 1.17) 0.62 0.96 (0.75 to 1.23) 1.10 (0.90 to 1.35) 0.35

Without 0.83 (0.71 to 0.98) 0.87 (0.79 to 0.96)

Gestational age <20 weeks 0.85 (0.73 to 0.98) 0.54 0.89a (0.82 to 0.96) 1.004b (0.99 to 1.02) 0.55

≥20 weeks 0.91 (0.76 to 1.09)

Maternal age Under 20 0.99 (0.79 to 1.24) 0.19 0.89a (0.81 to 0.97) 1.001b (0.99 to 1.01) 0.92

20–35 0.81 (0.70 to 0.95)

Over 35 1.03 (0.79 to 1.33)

a Odds ratio of effect at average gestational/maternal age.
b Odds ratio per week/year increase in gestational/maternal age.
CI, confidence interval.



 Individual Participant Data Meta- Analysis 233

In either a one-  or a two- stage approach, we need to consider whether to incorpo-
rate the same or different adjustment factors within each study, and whether to assume 
that the effects of each covariate are unrelated across studies, equal in every study (as in a 
fixed- effect meta- analysis), or randomly distributed across studies (a random- effects meta- 
analysis). These choices may depend on the nature of the topic and the availability of data.

IPD methods may in principle be used in any meta- analysis. For example, esti-
mates of sensitivity and specificity in a meta- analysis evaluating the accuracy of a 
diagnostic test could be calculated from IPD and then combined using the methods 
described in Chapter 16.

12.5.1  Example: Aortic Pulse Wave Velocity 
and Cardiovascular Disease

An IPD meta- analysis sought to determine the association between aortic pulse wave 
velocity (aPWV) and later cardiovascular disease [32]. The review obtained IPD from 16 
prospective cohort studies. The primary outcome was the incidence of any cardiovascular 
event. A two- stage analysis was used. Within each included study, the time- to- event data 
for cardiovascular events were used to fit Cox proportional hazards models to determine 
the hazard ratio of cardiovascular events per standard deviation increase in aPWV. Such 
Cox models could only be fitted using IPD. Another advantage of using IPD was that the 
Cox model could be adjusted for key covariates such as age and sex consistently in every 
study. Hazard ratio estimates for each study were then combined in a random- effects meta- 
analysis to estimate the overall effect of aPWV and present a forest plot (see Figure 12.4).

Estimates with 95% confidence intervals
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1.27 (1.03, 1.57)
1.06 (0.57, 1.97)

FIGURE 12.4  Results of the individual participant data (IPD) meta- analysis for aortic pulse wave velocity 
(aPWV) and cardiovascular disease. CI, confidence interval; HR, hazard ratio; SD, standard deviation.
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12.6  COMBINING INDIVIDUAL PARTICIPANT DATA 
WITH PUBLISHED DATA

An obvious possibility in an IPD meta- analysis is that IPD are not available from all 
of the studies from which they are sought. Study authors may not be willing or able 
to provide data, or the data may no longer be available. Missing studies will lead 
to lower precision (wider confidence intervals) and possibly bias if, for example, 
data are made available only from studies with favorable results (sometimes called 
“availability bias”). To overcome these problems, a meta- analysis that combines the 
IPD with published results from studies from which IPD were not obtained will 
often be necessary.

In a two- stage approach, combining IPD with published data is straightforward. 
Provided suitable estimates of effect are presented in publications, these may be 
combined in a meta- analysis with similar estimates derived from the IPD from each 
study for which they are available [33]. It is possible that the results in the publica-
tions are from different types of analyses to those performed on the IPD. For example, 
analyses using IPD may be adjusted for potential confounding factors, but a publica-
tion may only present unadjusted results. Careful consideration should then be given 
to whether it is appropriate to combine the IPD with published data, and to what 
assumptions must be made to justify this. A sensitivity analysis to compare the results 
from combining published data and IPD with the original results from IPD alone may 
be desirable. If there are important differences, further exploration and explanation 
are required.

It is usually more difficult to incorporate published data into analyses of the effect 
of individual- level covariates, since data will generally not be available from publica-
tions. Sophisticated one- stage approaches, which combine a one- stage model of the 
IPD with an analysis of the published data, have been proposed but are more compli-
cated to perform [34].

12.7  REPORTING FINDINGS

Guidance on academic reporting of an IPD systematic review is available in the 
PRISMA- IPD statement, which expands on the existing PRISMA statement for 
reporting of systematic reviews and meta- analyses specifically to reviews containing 
IPD [35].Using a range of tailored outputs and approaches to dissemination will help 
reach the various audiences who may be interested in IPD review findings [36].

12.8  CONCLUSION

A systematic review based on IPD has many advantages over a systematic review of 
published aggregate (or summary) data. These advantages include more complete data-
sets, and the possibility of carrying out more detailed and flexible analyses and inves-
tigating the impact of individual- level covariates. But an IPD meta- analysis requires 
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access to the original data from each study, and greater expertise, time, and resources. 
Obtaining IPD can be time- consuming or difficult and usually requires close collab-
oration with study authors. However, given increasing pressure to make data from 
clinical trials available for re- analysis, access to IPD may become easier.

Statistical methods for a meta- analysis using IPD fall into two categories. Two- 
stage methods based on standard meta- analysis techniques are more familiar, but one- 
stage models offer greater flexibility. An IPD review can include both approaches; a 
two- stage approach may be used for the main outcomes to produce forest plots and  
a one- stage method can yield more detailed analyses of possible causes of heteroge-
neity. In general, the two approaches would be expected to produce similar results 
when estimating an overall effect, but are more likely to differ when estimating the 
impact of covariates.

Given the complexity of performing a review based on IPD and the additional 
time, expertise, and resource that they require, early consideration of whether IPD 
will reward the extra effort of obtaining them is necessary. IPD reviews may be most 
useful when important results have not been published, or when many participants 
have been excluded from published results. IPD can be particularly worthwhile for 
outcomes that are poorly reported, or reported in ways that are not amenable to meta- 
analysis such as adverse events, long- term outcomes, and time- to- event outcomes. 
Often an IPD approach is the only way to discern clinically significant differences bet-
ween subgroups of individuals. The IPD approach thus aligns well with the increas-
ingly prominent goals of precision medicine.
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Network Meta- Analysis
Georgia Salanti and Julian P.T. Higgins

Evaluation of the role of any health intervention in clinical and public health prac-
tice requires consideration of alternative options for intervention. However, the meta- 
analysis methods described in Chapters 9 and 10 address only pairwise comparison 
of two interventions. Network meta- analysis provides a methodology for analyzing 
trials that compare three or more interventions  [1–6]. For example, there are eight 
different percutaneous coronary interventions for the treatment of in-stent restenosis 
[7]. Various clinical trials have compared two or more of these interventions. Connec-
tions between the different interventions included in the trials may be viewed as form-
ing a network of evidence, as illustrated in Figure 13.1. A network meta- analysis is a 
statistical synthesis of evidence across such a network, with the aim of determining 
which of the available interventions work better for the condition of interest, and it has 
become increasingly popular in recent years [4, 8–14]. A growing literature highlights 
its advantages and limitations [15–28] and explores its properties in empirical investi-
gations [29–33] and simulation studies [9, 32, 34]. A glossary of terms commonly used 
in network meta- analysis is available from Cochrane (http://methods.cochrane.org/
cmi/glossary).

13.1  INDIRECT COMPARISON AND TRANSITIVITY

A key concept underlying network meta- analysis is that of indirect comparison. Sup-
pose we are interested in the relative effect of an intervention compared with another 
intervention, but no trials are available that have compared them directly. This 
is the case for bare metal stents versus everolimus- eluting stents in the network in 
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Figure 13.1 [7]. A comparison of these two interventions may be made using studies 
involving bare metal stents and different studies involving everolimus- eluting stents. 
Such a comparison is indirect because it is not derived from a direct, within- study 
comparison of the interventions.

A naive comparison of patient outcomes after an intervention (say, A) observed 
in one trial with patient outcomes after another intervention (B) observed in another 
trial is likely to be misleading, since results are confounded by other differences bet-
ween the two trials. A more appropriate indirect comparison can be made if both 
studies additionally include patients receiving a common reference intervention (C). 
The difference between A and B may then be estimated by using the difference bet-
ween A and C from one trial and the difference between B and C from the other 
trial. This approach to deriving indirect evidence is referred to as adjusted indirect 
comparison and lies at the heart of a network meta- analysis. The confounding pre-
sent in the naive indirect comparison is reduced by adjusting for outcomes with 
intervention C.

The argument that A can be compared with B via C reflects an assumption of 
transitivity  [35]. Indirect comparisons via the transitivity assumption are observa-
tional evidence even when they are based on randomized trials of A versus C and 
B versus C. Although participants are randomized within trials, interventions A and 
B have not been randomized against each other. The adjustment achieved through 
the common comparator intervention, C, adjusts for differences in baseline risk, or 
levels of a continuous outcome measure, across trials. However, it does not account for 

BA

BMS
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EE

PES

ROTA
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VBT

FIGURE 13.1 Complex evidence network of 26 trials comparing percutaneous coronary 
interventions in the treatment of in- stent restenosis. Nodes represent the different 
interventions and edges direct comparisons. The size of a node reflects the number of study 
arms assigned to the corresponding intervention, and the thickness of an edge reflects 
the number of studies of the corresponding direct comparison. BA, balloon angioplasty; 
BMS, bare metal stents; DCB, drug- coated balloons; EE, everolimus- eluting stents; PES, 
paclitaxel- eluting stents; ROTA, rotablation; SES, sirolimus- eluting stents; VBT, vascular 
brachytherapy. Source: Adapted from [7].
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differences in effect modifiers, i.e. in characteristics that are associated with the mag-
nitude of intervention effect. Effect modifiers may be related to the characteristics of 
patients included in a study such as their age, gender, or prevalence of comorbidities, 
or to study and intervention characteristics such as the inherent risk of bias (see also 
Chapter 4) or the intensity or delivery mode of an intervention. Effect modifiers are 
the sources of heterogeneity in a standard meta- analysis, but become potential sources 
of confounding in an indirect comparison. The validity of the indirect comparison 
relies on the A versus B studies being similar, on average, to the A versus C studies in 
all effect modifiers [9, 22, 30].

Transitivity can be violated under various scenarios [22, 35]. The nature of inter-
vention C may differ between the A versus C and the B versus C trials, for example 
with regard to administration or dose, or the A versus C trials may have been done in 
populations that differed from those in the B versus C trials. For example, in a network 
of four interventions for preventing dental caries (toothpaste, rinse, varnish, and gel 
compared with placebo), it was found that the toothpaste studies were on average car-
ried out much earlier than the other studies. Among other factors, both the quality of 
trials and the burden of dental disease have improved substantially over time, which 
might lead to violation of the transitivity assumption and an exaggeration of the 
relative effect of toothpaste [36].

Transitivity is an untestable assumption because it is impossible to identify and 
evaluate the comparability of the studies with respect to all possible effect modifiers 
whether measured or unmeasured. Nevertheless, comparability of suspected effect 
modifiers can increase confidence in the transitivity assumption.

13.2  INDIRECT AND DIRECT EVIDENCE

Sometimes both direct and indirect evidence are available for a particular comparison. 
In the example of the treatments of in-stent restenosis (Figure 13.1), 28 pairwise com-
parisons are possible between the eight active treatments (note that if the number of 
treatments is T, then the number of possible pairwise comparisons is T(T − 1)/2). For 
10 comparisons, both direct and indirect evidence is available; for two comparisons 
only direct evidence is available; and for the remaining 16 comparisons only indirect 
evidence is available.

Figure 13.2 presents a network of trials evaluating unfractionated heparin (UFH), 
low molecular weight heparin (LMWH), and an inactive control group or placebo in 
nonsurgical hospitalized patients at risk of venous thromboembolism [37]. Direct and 
indirect evidence exists for five out of six comparisons, but only indirect evidence was 
available for the comparison of greatest interest to the investigators: UFH given twice a 
day (bid) versus three times a day (tid). For this comparison, the authors used indirect 
evidence via either a control group (no intervention) or LMWH based on 13 trials [37]. 
In contrast, the comparison of UFH bid or UFH tid with LMWH can be estimated 
directly or indirectly via control. If transitivity holds and each set of studies is sim-
ilar with regard to effect modifiers, then the direct and indirect sources of evidence 
are regarded as estimating the same underlying effect. They can then be combined 
 statistically as described in Box 13.1.
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Control (C)

UFH tid (B)

LMWH (A)

UFH bid (D)

FIGURE 13.2 Network with two closed loops: low- dose unfractionated heparin (UFH) given 
twice a day (bid) versus three times a day (tid) and low molecular weight heparin (LMWH) 
to prevent thrombotic complications in nonsurgical hospitalized patients. The colors of the 
edges represent the risk of bias in the studies comparing pairs of interventions (red = high, 
yellow = moderate, green = low risk of bias). Source: Adapted from [37].

Box 13.1 The Statistics of Indirect Comparisons

The statistical manifestation of transitivity is called consistency and can be writ-
ten mathematically by the consistency assumption

 C BC (13.1)

where μXY denotes the average effect of any intervention X versus Y measured on a 
linear scale such as a mean difference, log odds ratio, or risk difference. Consider a 
network of trials of tyrosine- kinase inhibitors in the treatment of chronic myeloid 
leukemia (Figure 13.3) [38].

Let us suppose we undertake a meta- analysis of the nilotinib (A) versus 
imatinib (C) trials and a meta- analysis of the dasatinib (B) versus imatinib (C) trials, 
and denote the results as mAC

d  and mBC
d , respectively, where d denotes that these are 

based on direct (head- to- head) trials of the treatments. Either a fixed- effect or a 
random- effects meta- analysis can be used. An indirect estimate of the nilotinib 
 versus dacatinib difference – that is, of μΑΒ in Eq. 13.1 – is obtained via the intermediate 
comparator, imatinib, as

 m m mAB
i

AC
d

BC
d

 (13.2)

where the i denotes that the estimate is based on an indirect comparison. The 
variance of the indirect estimate is obtained simply by adding the variances 
of mAC

d  and mBC
d .

Now suppose we have the example of the network presented in Figure 13.2. 
An indirect estimate for the comparison LMWH (A) versus UFH tid (B) via control 
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Indirect evidence about two interventions may be produced via more than one 
route. For example, the comparison of LMWH versus UFH tid in Figure 13.2 has three 
sources of evidence: direct, indirect via control, and indirect via UFH bid and control. 
With multiple routes and multiple intervention comparisons, the network of evidence 
becomes complex and the simple statistical approach described in Box 13.1 becomes 
inefficient for estimating all effects.

(C) can be derived as described above. However, there is direct evidence for the 
LMWH versus UFH tid comparison, yielding a meta- analysis result mAB

d . Under the 
assumption of consistency, we assume this is also an estimate of μΑΒ in Eq. 13.1. 
Thus the indirect and direct estimates are considered to be estimating the same 
underlying intervention effect. They can therefore be combined using fixed- effect 
meta- analysis, i.e. using a weighted average with weights wAB

d  and wAB
i  equal to the 

respective inverse variances of the estimates mAB
d  and mAB

i . Specifically, we obtain

 
m

w m w m
w wAB

mixed AB
d

AB
d

AB
i

AB
i

AB
d

AB
i

 
(13.3)

as a further estimate of μΑΒ in Eq. 13.1, where the term “mixed” refers to the fact 
that the estimate is based on a mixture of direct and indirect evidence.

It is of interest to examine whether the direct and the indirect estimates of μΑΒ 
are statistically similar so that their combination is justified. The discrepancy, or 
inconsistency, between them is obtained simply as

 Inconsistency m mAB
d

AB
i

 (13.4)

The variance of this discrepancy is obtained by adding together the variances 
of mAB

d  and mAB
i . This simple procedure is known as a “loop- based” evaluation of 

inconsistency in the context of a network meta- analysis.
Network meta- analyses are built on the same reasoning as the formulae pre-

sented in this box. However, they use more sophisticated methods to obtain direct, 
indirect, or mixed estimates, and measures of discrepancy, simultaneously for all 
intervention comparisons across the network.

dasatinib (B)

imatinib (C)

nilotinib (A)

FIGURE 13.3 Network of trials of tyrosine- kinase inhibitors in the treatment of chronic 
myeloid leukemia.
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13.3  NETWORK PLOTS OF INTERVENTIONS

Network plots such as those in Figures 13.1 and 13.2 provide a useful visual represen-
tation of the evidence base. Nodes in these plots represent the interventions and edges 
represent the available direct comparisons. Three important aspects of the evidence 
can be examined using such plots.

1. Network structure. Plots facilitate understanding of the data structure. For 
each comparison, evidence may come only from direct evidence, only from 
indirect evidence, or from a mixture of direct and indirect evidence. A mixture 
of evidence happens if (and only if) the comparison is part of a closed loop, 
which is a closed polygon in the network plot. In a star network all evidence is 
either direct or indirect, and there are no closed loops. Figure 13.4 shows a star 
network of four antiepileptic drugs for the treatment of refractory seizures [39]. 
Figure 13.5, in contrast, shows a complex network of trials of new- generation 
antidepressants, which includes many direct comparisons between competing 
drugs [40]. Figures 13.1–13.5 were produced using the netgraph command in 
the network package in R [41]. Such plots can also be produced using the net-
work_plot command from the network_graphs package in Stata [42].

2. Properties of the evidence. Typically, the size of a node reflects the number of par-
ticipants assigned to the corresponding intervention, and the thickness of an edge 
reflects the number of studies of the corresponding direct comparison. Nodes and 
edges may alternatively (or additionally) be given attributes to represent potential 
effect modifiers, facilitating the detection of an uneven distribution of effect modi-
fiers across comparisons [43]. For example, in Figure 13.2 the risk of bias averaged 
over the studies examining the same direct comparison is shown in different colors.

3. Network connectedness. The network plot facilitates examination of whether 
the evidence is fully connected. A network is connected when there is a path 

Placebo

Eslicarbazepine

Lacosamide

Retigabine

Perampanel

FIGURE 13.4 Star network of trials of antiepileptic drugs for the treatment of refractory seizures. 
All active drugs have been compared with placebo, but no direct evidence is available between 
active drugs. It is thus impossible to test the consistency assumption by statistical means as there 
are no closed loops of evidence. Source: Adapted from [39].
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from each intervention to any other intervention in the plot. This means that 
every intervention can be compared with any other intervention either directly 
or via intermediate comparators. Network meta- analysis requires a connected 
network and investigation of the network plot for disconnected elements 
should precede any analysis.

13.4  SYSTEMATIC REVIEWS UNDERLYING NETWORK 
META- ANALYSIS

Systematic reviews underlying network meta- analyses follow the same general princi-
ples as those described earlier in this volume. Some special considerations are listed in 
Table 13.1. Guidance is available for writing protocols for systematic reviews that plan 
to synthesize the data using network meta- analysis [45]. Protocols should address issues 
that relate to the network of interventions to be compared, evaluation of assumptions, 
statistical methods to be employed, and methods for ranking the competing interventions.

Eligibility criteria for interventions and populations will need to be chosen so that 
they maximize the plausibility of transitivity. A helpful way to think about this is to 
require that all competing interventions are jointly randomizable for the population 
considered [22]. Interventions are jointly randomizable for the population if we can 
imagine a single multi- arm trial comparing all interventions of interest in the eligible 
participants. This avoids the inclusion of interventions in the network that are not 
indicated for the same condition. For example, interventions aimed at preventing an 
infection should not be included in a network with interventions aimed at treating its 
symptoms, because they will be studied in different populations.

Guidance is also available for reporting network meta- analyses in an extended 
PRISMA (Preferred Reporting Items for Systematic reviews and Meta- Analyses) 

Paroxetine

Sertraline

Citalopram

Fluoxetine

Fluvoxamine

Milnacipran

Venlafaxine

Reboxetine

Bupropion

Mirtazapine

Duloxetine

Escitalopram

FIGURE 13.5 Complex network of trials of 12 new- generation antidepressants that includes 
many direct comparisons between competing drugs. The assumption of consistency can be tested in 
several closed loops and in the entire network. Source: Adapted from [40].
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statement  [46]. This emphasizes the need for detail on how the interventions were 
structured into a network, description of the statistical methods employed, attention 
to how to report comparisons of many interventions (including measures such as 
intervention rankings), and the extent to which the required assumptions could be 
demonstrated to be met.

13.5  SYNTHESIS OF DATA

Network meta- analyses can be implemented using different yet equivalent statistical 
approaches, briefly described here. Key to all approaches are the consistency assump-
tions (see Box  13.1), which describe the mathematical connections between the 

TABLE 13.1 Special considerations in a systematic review and network meta- 
analysis compared with the traditional process for pairwise comparisons.

Steps of a systematic 
review

Considerations for a network meta- analysis

1.  Specifying the review 
question and eligibility 
criteria

Justify how the question would benefit from network meta- 
analysis
Define the interventions in the network and which 
comparisons are of primary and secondary interest

2. Identifying studies Search should be broad enough to capture interventions of 
interest

3.  Collecting data and 
assessing risk of bias

Collect information on potential effect modifiers that may 
violate the assumption of transitivity

4. Planning the synthesis Evaluate the network structure
Evaluate transitivity

5.  Undertaking the statistical 
synthesis

Conduct pairwise meta- analyses in addition to network 
meta- analyses
Use statistical models appropriate for network meta- 
analysis
Evaluate inconsistency
Summarize results for all intervention comparisons, using 
appropriate numeric or graphical tools such as league 
tables
If intervention hierarchy is of interest, use appropriate 
ranking statistics, such as SUCRA or mean ranks

6.  Interpreting results and 
drawing conclusions

Carefully interpret results, especially intervention hierarchy
Interpret results in context of outcomes examined
Evaluate the confidence in network meta- analysis results 
using the CINeMA framework [44].

7. Reporting findings Follow the PRISMA extension for network meta- analysis

PRISMA, Preferred Reporting Items for Systematic reviews and Meta- Analyses; SUCRA, surface under 
the cumulative ranking curve.
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underlying average effect sizes for the various intervention comparisons. In the net-
work of trials of heparins for the prevention of thrombotic complications [37] shown 
in Figure 13.2, six comparisons are possible. However, of these six possible compari-
sons only three are independent, while the remaining three can be written as functions 
of the first three using consistency assumptions. We call the three independent com-
parisons the basic comparisons and the derived comparisons the functional com-
parisons. The number of basic comparisons in a network meta- analysis is equal to the 
number of interventions minus one. Which comparisons are chosen as basic is unim-
portant provided that all interventions are represented in at least one basic comparison.

13.5.1 Assumptions About Heterogeneity

Network meta- analysis may take a fixed- effects or a random- effects approach to allow 
for between- study differences within each comparison. Under the random- effects 
model, studies of the same comparison are assumed to estimate different yet related 
intervention effects (see Chapter 9). The vast majority of network meta- analyses make 
the assumption that all pairwise comparisons have the same amount of heterogeneity. 
For example, in a simple A versus B versus C network, it is assumed that AB studies 
have the same heterogeneity as AC and BC studies. This is computationally convenient 
and reduces heterogeneity estimation problems when few studies are available for 
some of the comparisons. However, the assumption of equal heterogeneity variances 
needs to be justified in the context of the clinical setting. Empirical studies indicate 
that the amount of heterogeneity depends on the nature of the outcome and the types 
of interventions being compared; heterogeneity is in general higher when nonphar-
macological interventions are studied and when the outcome is subjective [47, 48]. If 
the assumption is unlikely to hold, more complex models are available in which het-
erogeneity is allowed to differ according to the interventions being compared [49]. For 
example, we might assume two heterogeneity parameters allowing variability in all 
placebo- controlled studies to differ from variability in active versus active drug studies 
(for an example see [50]).

The assumption of equal heterogeneity parameters across all comparisons can 
lead to apparently paradoxical situations: estimates from network meta- analysis may 
end up being less precise than estimates from pairwise meta- analysis. For example, 
assume that AB studies have no heterogeneity (τ2 = 0, see Chapter 9). When analyzed 
within an A versus B versus C network where AC and BC studies have important 
heterogeneity, this heterogeneity is propagated to the AB studies and the estimate for 
AB will have larger confidence intervals compared with those obtained by a pairwise 
meta- analysis of AB studies alone.

13.5.2 Statistical Methods

Three mathematically equivalent ways to implement network meta- analysis are 
meta- regression, multivariate meta- analysis, and hierarchical modeling. In meta- 
regression the basic comparisons are treated as different dummy variables to be 
included as covariates in a regression model, although careful coding of the model 
is required to implement the consistency assumptions (see Box  13.2). If a network 
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Box 13.2 Implementing Network Meta- Analysis Using 
Meta- Regression

Networks in which all studies compare two interventions can be analyzed using 
standard meta- regression (see Chapter 10). In the example of the star network 
of antiepileptic drugs (Figure 13.4), consider four dummy variables defined by 
the four basic comparisons of each active intervention (eslicarbazepine, lacosa-
mide, retigabine, perampanel; abbreviated as their first letter) versus a placebo 
control (abbreviated as C): IiEC, IiLC, IiRC, IiPC, where the index i refers to the 
study. If the ith study provides data on a basic comparison, say E versus C, then 
IiEC = 1 and the other three dummy variables are zero; if the study compares R 
and C, then IiRC = 1 and the other three are zero, and so on.

Denoting with yi the estimate of the relative intervention effect in study i, 
network meta- analysis can be fitted as a random- effects meta- regression without 
an intercept

y I I I Ii EC iEC LC iLC RC iRC PC iPC i i

The δi terms are random effects across studies within a comparison, with vari-
ance equal to the heterogeneity variance, and the εi terms represent random error 
within studies, with variances estimated from the data.

The estimated regression coefficients corresponding to each of the four 
dummy covariates are the network meta- analysis estimates for the respective 
comparisons. The analysis would also provide tests of significance and confi-
dence intervals for the four estimated relative intervention effects. To obtain 
network meta- analysis estimates for the other comparisons (the functional 
comparisons), we simply employ the consistency equations  – for instance, 
mER = mRC − mEC.

In this example, there are no head- to- head comparisons and all studies address 
one of the basic comparisons (i.e. an active intervention against C). If we had a 
study with a functional comparison, then the consistency assumptions need to be 
used to work out the values for the four dummies. For instance, if we had a study 
that compares E versus L, we would have IiEC = 1, IiLC =  − 1 and all other dummies 
zero in line with the consistency Eq. 13.1 in Box 13.1.

includes multi- arm studies, then these studies provide data for more than one 
comparison and thus contribute more than one effect size. Effect sizes belonging to 
the same study are correlated, and this needs to be taken into account. Salanti and col-
leagues provide further details [51].

Multivariate meta- analysis views the basic comparisons as if they were differ-
ent study outcomes. For the simple A versus B versus C network, we consider two 
outcomes of interest, AB and AC. An A versus B study reports on the first outcome; an 
A versus C study reports on the second outcome, while an A versus B versus C study 
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reports on both outcomes. This framework requires a reformatting of the data such 
that the results of each study are expressed in terms of the basic comparisons alone. 
In practice this may involve a procedure known as data augmentation, in which a very 
small amount of data is imputed to create a complete dataset for all basic compari-
sons (irrespective of whether they have been investigated in each study). This allows 
the analysis to work, but the information imputed is so little that it does not affect the 
final results. In the example above, because a B versus C study contributes neither an 
A versus B comparison nor an A versus C comparison, very small amounts of data for 
these comparisons are generated (for example, by imputing data for 0.001 patients in 
the A arm so that A versus B and A versus C comparisons are possible but with near- 
zero weight). For further details, see White and colleagues [52]. Once the study data 
are set up so that each study reports on at least one basic comparison, standard mul-
tivariate meta- analysis techniques are employed to synthesize the data [53, 54]. The 
network meta- analysis estimates for all other comparisons are obtained by computing 
them from results for the basic comparisons.

Hierarchical models implement a random- effects model by considering two 
levels of variation. At the first level, the observed data are used to estimate the under-
lying or true study- specific intervention effects for each study. At the second level, 
these underlying effects are combined for each pairwise comparison under constraints 
that ensure the transitivity assumption holds. Hierarchical models fitted in a Bayes-
ian framework are the most popular approach so far to network meta- analysis [8, 12]; 
details can be found in Lu and Ades, and in Salanti and colleagues [3, 51]. Bayesian 
implementations tend to produce slightly wider confidence intervals (more strictly, 
these are credible intervals) because, unlike standard implementations of frequentist 
methods, they allow for full uncertainty in all unknown quantities.

The results from network meta- analysis of trials of heparins for the prevention 
of thrombotic complications [37] (Figure 13.2) are summarized in Table 13.2. These 
were obtained using a multivariate meta- analysis approach fitted in Stata using the 
mvmeta command from the network package [55] and assuming that all comparisons 
share the same heterogeneity parameter. We can see from the width of the confidence 
intervals that most of the evidence comes from studies comparing active interven-
tions versus control. The precision of all comparisons is improved with network meta- 
analysis compared with pairwise meta- analyses.

13.6  INTRANSITIVITY AND INCONSISTENCY

When transitivity holds, estimates from direct and indirect comparisons are expected 
to be in agreement (within the margins of random error and heterogeneity). If clinical 
or methodological study characteristics that are effect modifiers differ across inter-
vention comparisons, then transitivity will not hold. This can be seen in the data 
as inconsistency: estimates from direct and indirect comparisons differ. Several 
statistical methods are available to detect inconsistency  [11, 22, 35, 56, 57]. These 
methods can be broadly classified into local approaches and global approaches. Local 
approaches detect whether a particular part of the network is inconsistent. They 
include a loop- based approach  [43, 58], the node- splitting approach  [59], and the 



 Network Meta-Analysis 249

net- heat matrix [60].  Perhaps the most useful of these is the node- splitting approach. 
Confusingly named in relation to a network plot, this takes each edge in the network 
plot and separates the evidence into the direct (pairwise) comparison represented 
by this edge and the indirect comparison obtained by synthesizing all the rest of the 
network. Global approaches evaluate whether the network is consistent as a whole, 
and test whether all potential sources of local inconsistency are simultaneously zero. 
They can be implemented by comparing results under a consistency assumption with 
results under either a model that allows the inconsistencies to vary freely (a fixed- 
effects inconsistency model) or a constrained model (a random- effects inconsistency 
model). Global tests might be referred to as tests of “design-by-treatment interac-
tion” [41, 60–62].

In the network meta- analysis of trials of heparins for the prevention of throm-
botic complications, local inconsistency (using a loop- based approach) can be esti-
mated by comparing the direct and indirect intervention effects within each of the two 
closed loops of evidence, ABC and ADC. For instance, the indirect odds ratio (OR) of 
UFH tid versus LMWH via control is 0.37, obtained as 0.17/0.46 from Table 13.2, while 
the direct OR is 1.27. A statistical test for the discrepancy between the two ORs gives 
P = 0.07. Following a similar approach, the other closed loop gives P = 0.17. Given 
the low power of the test and the small number of studies, there are concerns about 

TABLE 13.2 Results from network meta- analysis and pairwise meta- analysis for 
the network of interventions to prevent thrombolitic complications presented in 
 Figure 13.2. The overall odds ratio (OR) for efficacy and a 95% confidence interval 
(CI) are presented. Control describes an inactive control group or placebo.

Network meta- 
analysis

For comparison: 
pairwise  
meta- analyses

Statistical noteOR 95% CI OR 95% CI

UFH tid vs. 
Control

0.46 (0.30–0.69) 0.17 (0.05–0.59) Basic comparison, directly 
estimated by the network  
meta- analysis

LMWH vs. 
Control

0.39 (0.29–0.52) 0.46 (0.34–0.62) Basic comparison, directly 
estimated by the network  
meta- analysis

UFH bid vs. 
Control

0.32 (0.13–0.76) 0.10 (0.01–0.79) Basic comparison, directly 
estimated by the network  
meta- analysis

UFH tid vs. 
UFH bid

1.45 (0.59–3.57) – – Functional comparison, computed 
from the basic comparisons

UFH tid vs. 
LMWH

1.18 (0.86–1.61) 1.27 (0.37–2.36) Functional comparison, computed 
from the basic comparisons

UFH bid vs. 
LMWH

1.23 (0.53–2.86) 1.06 (0.42–2.70) Functional comparison, computed 
from the basic comparisons
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inconsistency in the loop formed by UFH tid, LMWH, and control. The global test for 
this network suggests the presence of inconsistency in the whole network (P = 0.03). 
These findings warrant further investigation of the inconsistency to explain why dif-
ferent sources of evidence yield different conclusions, possibly by accounting for dif-
ferences in effect modification.

Empirical evidence has shown that about 9% of closed loops of evidence (net-
works consisting of three interventions) and about 13% of whole networks show 
inconsistency [34, 56]. Because tests for inconsistency have low power [34, 63], the 
proportion of networks in which inconsistency is present is likely to be higher than 
this. Moreover, different assumptions and different ways of estimating the heteroge-
neity variance can influence detection of inconsistency [63]. Consequently, test results 
should be interpreted with caution and the absence of statistically significant inconsis-
tency should not be taken as proof of consistency, particularly for networks with few 
studies or large heterogeneity. To overcome some of the limitations of statistical tests, 
I2 measures analogous to those for pairwise meta- analysis (see Chapter 9) have been 
developed for network meta- analysis [62].

When inconsistency is present, efforts should be made to explain the disagreement 
between direct and indirect evidence, for example by using network meta- regression 
techniques to account for differences in study characteristics [36, 64]. When no expla-
nation is found, investigators may use models that accommodate inconsistency in the 
network meta- analysis by adding extra variability to account for the disagreement bet-
ween the various sources of evidence [3, 52, 62]. However, such models should be used 
only if the amount of unexplained inconsistency is small in relation to the variation in 
mean effect sizes across comparisons.

13.7  RANKING INTERVENTIONS

The estimated relative intervention effects for all comparisons are the typical output 
from a network meta- analysis. Prediction intervals on top of the confidence intervals, 
as described in Chapter 9, can also be presented to convey the magnitude of heteroge-
neity [65]. These comparison- level effects can, however, make it difficult to determine 
whether there is evidence for the superiority of one intervention over other interven-
tions. Estimating a hierarchy of the competing interventions involves calculating rank-
ing probabilities (the probability that an intervention is at a specific rank) based on the 
distributions of intervention effects [18, 35]. 

Rankograms are a graphical way to present both ranking probabilities and their 
uncertainty [66]. A rankogram is a plot of the probabilities that an intervention takes 
each of the possible ranks. A cumulative rankogram presents the cumulative versions 
of these probabilities. The surface under the cumulative ranking curve (SUCRA, a 
transformation of the mean rank) and the median rank are numerical summaries of 
a rankogram and can be used to provide a hierarchy of the interventions [66]. They 
can also be useful in comparing results from different analyses, for example different 
meta- regression models.

Figure 13.6 shows the rankograms from the network meta- analysis of the example 
on antidepressants presented in Figure 13.5. For the studied outcome (improvement 
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FIGURE 13.6 Rankograms from network of trials of 12 new- generation antidepressants for improvement in symptoms. The horizontal axis shows the 12 
possible ranks and the vertical axis the probability of each rank. Source: Adapted from [40].
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in depression symptoms) mirtazapine and escitalopram have a higher probability of 
being among the best two interventions, whereas reboxetine has a high probability 
of ranking as the least effective.

Figure 13.7 shows a network that compares the effectiveness of six biologics in 
patients with rheumatoid arthritis [67]. Small- study effects where the smaller studies 
show larger intervention effects than the larger studies were examined in the data (see 
also Chapter 5). Figure 13.7 shows cumulative rankings from a re- analysis of these 
data in which intervention effects were adjusted for small- study effects in network 
meta- regression analysis.

13.8  CONCLUSIONS

Network meta- analyses allow the simultaneous synthesis of multiple clinical trials 
making different comparisons from among a specific set of alternative interventions. 
Network meta- analyses play an increasingly important role in evidence- based health 
care, generalizing the traditional meta- analysis method to facilitate selection of those 
intervention options that have the most favorable trade- off between benefit and harm. 
Network meta- analyses are built on the notion of adjusted indirect comparisons, 
exploiting mathematical connections between the different pairwise comparisons of 
interventions in the network. The assumptions underlying network analyses require 
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Network meta-regression
model (adjusted for small-study
effects)

Placebo

Abatacept

Adalimumab

Anakinra

Etanercept

Inflixumab
Rituximab

FIGURE 13.7 Cumulative ranking for six biologics for rheumatoid arthritis with respect to 
improvement in ACR50. The horizontal axis shows the six possible ranks and the vertical axis the 
cumulative probability for each intervention to be among the best x options, where x ranges from 
1 to 7. Solid lines are cumulative ranking probabilities estimated from network meta- analysis. 
Dashed lines are cumulative ranking probabilities estimated from network meta- regression, 
adjusting for small- study effects. Source: Adapted from [67].
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careful examination, however. It is important to ensure that the studies contributing 
evidence to the different intervention comparisons in the network are sufficiently sim-
ilar in all important characteristics.
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Dose–Response  Meta- Analysis
Nicola Orsini, Susanna C. Larsson, and Georgia Salanti

Dose–response relationships are of great interest in epidemiology and medicine. They 
are important in the context of etiological, public health, and clinical questions. Recent 
examples include the relationship between dietary fiber intake and coronary heart dis-
ease; markers of immune activation/inflammation and non- Hodgkin lymphoma; and 
body mass index and COVID- 19  mortality  [1–3]. The existence of a dose–response 
mechanism between a presumed cause and the occurrence of an outcome is one of the 
nine criteria famously proposed by Bradford Hill that should be considered “before 
deciding that the most likely interpretation of it is causation” [4].

A strategy for meta- analytical assessment of the effect of quantitative predic-
tors and outcomes in observational studies with individual participant data has been 
recently proposed  [5]. The main focus of this chapter is a two- stage dose–response 
meta- analysis based on summarized data. Studies comparing outcomes at different 
levels of exposure or different doses of an intervention are often reduced to a table of 
contrasts relative to a chosen referent [6]. When summarizing these published sets of 
contrasts, it is quite common to focus on the highest versus lowest contrast, and to syn-
thesize these effect sizes across multiple studies using standard meta- analytic models. 
An example in nutritional epidemiology is processed meat consumption in relation to 
mortality risk [7]. This approach is straightforward and easy to implement. It avoids 
any assumptions about the shape of the relationship between the different levels of 
exposure and the outcome. However, it does not use all the information contained in 
the data. Also, the size of the effect may differ across studies, depending on the defini-
tion used for the highest and lowest exposure category, thus introducing heterogeneity 
(see also Chapters 9 and 10) [8].
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A dose–response meta- analysis estimates the change of a response along the 
range of a quantitative exposure combining findings from multiple studies. In the 
most popular two- stage model, a dose–response analysis is taking place within each 
study  [9–11]. A particular shape for the dose–response association is assumed (e.g. 
linear, quadratic), informed by content knowledge and epidemiological or clinical 
hypotheses in light of the available information. Then the within- study shape char-
acteristics (e.g. the coefficients of a linear trend) are synthesized across studies. In a 
single- stage model or mixed- effects model, within-  and across- studies dose–response 
shape is estimated in one step  [12, 13]. Today, dose–response meta- analysis is con-
ducted in a variety of disciplines (i.e. oncology, public health, nutrition, cardiology). 
Several methodological developments have taken place that enable flexible modeling 
of dose–response associations, assessment of publication bias, assignment of a typical 
dose to an exposure interval, assessment of the goodness of fit of the model, and a 
Bayesian approach based on hierarchical models [10, 12, 14–21].

In this chapter we provide an introduction to methods for summarizing aggre-
gated dose–response data from multiple studies. We will illustrate how to investigate 
linear and nonlinear dose–response relationships using empirical data on coffee con-
sumption and all-cause mortality as a motivating example.

14.1  EXAMPLE: COFFEE CONSUMPTION AND MORTALITY RISK

We illustrate the methods by re- analyzing the association between coffee consumption 
(cups/day) and all- cause mortality rates arising from 15 prospective cohort studies, 
including a total of 118 865 deaths [22]. Information was collected on sex, number of 
subjects (total number of deaths and total cohort size or total number of deaths and 
person- years of follow- up), coffee consumption, and estimated adjusted risk ratio (RR) 
with the studies’ 95% confidence intervals. Since seven cohorts presented results by 
sex, the data include a total of 22 different tables of summarized dose–response data. 
Code (Stata, R) is available on this book’s website (www.systematic-reviews3.org).

14.2 ESTIMATING DOSE–RESPONSE ASSOCIATION 
WITHIN A STUDY

Table 14.1 presents the data from the study by Klatsky et al. associating coffee con-
sumption with mortality risk [23]. The reference dose category is zero cups/day, and 
the four estimated RRs, together with their standard errors, are presented. The shape 
implicit in this parametrization is a step function with jumps at the study- specific cut 
points used to categorize coffee consumption.

14.3  A LINEAR TREND FOR A SINGLE STUDY

The aim is now to associate the increase in the dose of coffee to the change in mortality 
risk using data in Table  14.1. The four empirical (log) RRs measure the estimated 
change in the mortality risk comparing 0.5, 2, 5, and 8 cups/day relative to 0 cups/
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day. We can specify a linear regression model, without an intercept, for the expected 
change in mortality RRs (on the natural log scale) according to changes in coffee con-
sumption (cups/day) as follows:

 E RR dose dose dosek k k refln( | ) . 

The dose is centered about the reference dose because the dependent variable is an 
empirical change in responses. The exponentiated regression coefficient exp(β) repre-
sents the expected RR of mortality (or the relative increase/decrease in the outcome 
risk) associated with every one additional coffee cup per day in the kth study. As in 
meta- regression, each empirical estimate is weighted in the analysis by the inverse 
of the variance of ln(RRk). Additionally, the four risk ratios are not independent, 
because they share the same reference category – 0 cups/day. Consequently, appro-
priate statistical methods, such as generalized least squares, need to be employed that 
account for the positive correlation of the ln(RRk) [9, 16, 24]. These methods involve 
an estimate of the covariances between the log RRs. If the RRs were unadjusted, then 
the covariance between any two log RRs would be simply 1 1

c tref ref

, where cref and tref 

are the number of cases and total individuals in the reference group, respectively. If 
the ln(RRk) are adjusted for potential confounding factors, then the covariances can be 
computed using the methods presented by Greenland and Longnecker [9], Hamling 
et al. [25], or Easton et al. [26, 27].

Using the Greenland and Longnecker method, the meta- regression coefficient 
estimated for the study by Klatsky et  al.  [23] is ˆ   – 0.014 (95% CI 0.029–0.001). 
Figure 14.1 shows the estimated linear trend.

14.4  A QUADRATIC TREND FOR A SINGLE STUDY

The linear association above can be extended into a quadratic shape by adding a 
quadratic transformation of the dose. The model is then

 
2 2

1 2ln( | )k k k ref k refE RR dose dose dose dose dose  

TABLE 14.1  Summarized data for the study by Klatsky et al. [23] including the 
number of deaths, total number of participants, adjusted RRs with 95% confidence 
intervals, the natural logarithm of the RRs with standard errors by levels of coffee 
intake measured in cups per day.

Level Dose (cups/day) Deaths Total RR (95% CI) ln(RR) SE(ln(RR))

0 0 832 34 755 1.00 (ref) 0 (ref)

1 0.5 564 18 106 0.96 (0.86, 1.08) −0.041 0.059

2 2 2081 53 596 0.94 (0.86, 1.02) −0.062 0.044

3 5 658 15 541 0.93 (0.83, 1.04) −0.073 0.058

4 8 274 5522 0.88 (0.76, 1.02) −0.128 0.075
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where the two coefficients β1 and β2  jointly define the shape of the relationship. Of note 
is that any squared dose is centered about the squared reference dose. The centering 
of the dose transformations is done internally in the R dosresmeta and Stata drmeta 
programs. The same considerations regarding covariances apply as before, and then a 
multivariate meta- regression model with one quadratic transformation of the dose is 
fitted. Figure 14.1 shows the predicted quadratic relationship between coffee consump-
tion and mortality risk for the Klatsky et al. study [23]. For this study we estimated 

1̂  −0.024 and 2
ˆ  0.001. To illustrate this result, the predicted RR comparing 6 versus 

0 cups/day can be computed as  2 2
6 0 exp 0.024 6 0 0.001 6 0 0.90vsRR . 

Statistical inference (confidence intervals, hypothesis tests) about the predicted RR 
can be conducted using the delta method.

14.5  A RESTRICTED CUBIC SPLINE MODEL FOR A SINGLE STUDY

The constant change, on the log scale, of the RR throughout the exposure range, i.e. 
the linearity assumption, is a strong assumption that may not be supported by the 
data or available knowledge. For instance, the dose–response association might be U 
shaped, hockey- stick shaped, or J shaped. In this situation, a model that allows for 
these nonlinearities would be in a better position to detect the mechanism underlying 
the empirical data. One option here is to use cubic splines.

To fit a restricted cubic spline model, first the number of knots is required. Here, 
knots are the dosages that separate the data into intervals. A restricted cubic spline 
requires at least three knots and splits the data into four dose intervals. Within each 
interval, a cubic polynomial is fitted, and the polynomials are forced to join smoothly 
at the knots. The additional constraint of being linear before and after the last knot 
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FIGURE 14.1  Dose–response association between coffee consumption and all-cause mortality 
risk estimated for the study by Klasky et al. [23]. Summarized data were fitted using a linear (solid), 
quadratic (short dash), and restricted cubic spline (long dash) function in an inverse variance/
covariance weighted linear regression model. No coffee consumption (0 cups/day) served as referent.
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greatly reduces the number of dose transformations to be included in the model. 
A restricted cubic spline model with three knots can be defined using two regression 
coefficients: β1 for the linear part (the first spline is the dose) and β2 for the nonlinear 
part (the second spline f is a nonlinear function that involves the dose and the knots):

 
E RR dose dose dose f dose f dosek k k ref k refln( | ) 1 2 ,

 
where the two coefficients β1 and β2 jointly define the shape of the relationship, sim-
ilar to the quadratic scenario  [28]. In general, a comparison of predicted responses 
comparing any two dose levels will involve both regression coefficients. The first 
spline coefficient β1  measures the relative increase in predicted response for an 
increase of 1 cup/day before the first knot. Interpretation of the second spline coef-
ficient β2 is not straightforward. To make predictions of the expected RR of the out-
come comparing two particular doses, we need to involve both coefficients and 
the values of the splines. The estimated coefficients are 

1̂
−0.028 and 

2
ˆ  0.018. 

For example, the predicted RR comparing 6 versus 0 cups/day can be computed as 


6 0 exp 0.028 6 0 0.018 4.135 0 0.91vsRR . The values 4.135 and 0 are the 
values of the second spline evaluated at 6 and 0 cups/day, respectively.

For the Klatsky et al. study [23], we fitted restricted cubic splines with three knots 
at 0.495, 2.000, 4.500 cups/day. The location of the knots is based on fixed percen-
tiles of the exposure data points available from all the studies. The fitted curvilinear 
 relationship between coffee intake and mortality risk is shown in Figure 14.1.

14.6  SYNTHESIZING DOSE–RESPONSE ASSOCIATION 
ACROSS STUDIES

A linear function, easy to fit and interpret, is often used to approximate the dose–
response relationship that might be underlying multiple studies. In our example, 
the investigator may assume that every 1 cup/day increment of coffee consump-
tion is conferring the same effect on (log) mortality risk in all studies. This single 
regression coefficient (slope) can be estimated as the weighted average of all study- 
specific coefficients (under the univariate fixed- effect model), or the mean of a dis-
tribution of different yet related study- specific coefficients (under the univariate 
random- effects model, see Chapter  9). Heterogeneity measures can then be esti-
mated using quantities and tests as described in Chapter 9. The two- step approach 
can be extended to answer more complex dose–response questions involving more 
than one regression coefficient using multivariate meta- analytic models. For 
example, the dose–response relationship between alcohol intake and colorectal 
cancer rate can be modeled using splines of degree 0, 1, 3 or even some combination 
of them [24].

In Figure 14.2, we present the meta- analysis of the study- specific regression coef-
ficients from all the studies using a random- effects linear dose–response model. The 
estimated mean linear trend is ˆ 0.033 with a standard error  ˆ 0.005SE . Under 
the assumption of a linear dose–response function, every 1 cup/day increment in coffee 
consumption was associated with a 3% lower mortality risk (RR = e−0.033 ± 2(0.005) = 0.97; 95% 
CI 0.96–0.98; Figure 14.3 Panel a). The estimated heterogeneity variance of the linear 
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trends across studies is 2ˆ  0.0003. This quantity can be used to compute a plausible 
range of estimates (prediction interval) for future studies. About 95% of the studies 
are expected to have mortality RRs associated with every 1 cup/day between 0.93 
and 1.00, that is e 0 033 2 0 005 0 00032. . . . The Cochran Q- test for residual heterogeneity was 
Q = 77 (df = 21), P value < 0.0001 and I2 statistic = 75% (see Chapter 9). Possible expla-
nations for heterogeneity are that coffee composition can vary substantially across 
populations, where differences may be related to different types of coffee powder, 
different methods of preparation, and different serving sizes [22]. Furthermore, in a 
dose–response meta- analysis another source of heterogeneity can be a poorly specified 
functional relationship. For example, the modeling assumption of a constant change 
in all- cause mortality risk associated with every additional cup of coffee contrasts with 
two previous meta- analyses where no further risk reduction was observed for high 
coffee consumption ( 4 cups/day) as compared with moderate coffee consumption 
(2–4 cups/day) [22].

Therefore, we next estimate a dose–response pattern with no particular constraints 
on its form. We specified a two- stage random- effects model with coffee consumption 
modeled using restricted cubic splines with three knots at fixed percentiles (0.5, 2, and 
4.5 cups/day). The estimated mean mortality RR presented in Figure 14.3 Panel b does 

FIGURE 14.2  Summary of the study- specific (log) linear trends, expressed for every 1 cup/day 
increment, of the association between coffee consumption and all-cause mortality risk estimated 
using a two- stage random- effects model. Study- specific trends were estimated using an inverse 
variance/covariance weighted linear regression model.
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not appear to be constant throughout the coffee consumption range. Compared with 
no coffee consumption, the mortality risk decreased up to 17% at 3 cups/day, with no 
material reduction above that level of coffee consumption. In comparing the two mod-
eling strategies (splines versus linear function), the linear function underestimates the 
magnitude of the beneficial effect of moderate coffee consumption and overestimates 
the one for high coffee consumption. Selected mean RRs predicted by the random- 
effects model using either splines or linear functions are presented in Table 14.2.
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FIGURE 14.3  Mean dose–response association between coffee consumption and all- cause 
mortality in a dose–response meta- analysis of prospective cohort studies [22]. Coffee consumption 
was modeled with linear function (Panel a) and restricted cubic splines with three knots at 0.5, 2, 
and 4.5 cups/day (Panel b) in a two- stage random- effects dose–response model. Estimates obtained 
with the restricted maximum likelihood method. Dashed lines represent the 95% confidence 
intervals for the mean dose–response association (solid line). No coffee consumption (0 cups/day) 
served as the reference value.
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14.7  TESTING DEPARTURE FROM A LINEAR DOSE–RESPONSE 
RELATIONSHIP

Since the simpler linear dose–response relationship is nested within the restricted cubic 
spline model, a formal statistical test can be performed to detect a possible departure 
from linearity  [24]. Consider the restricted cubic spline random- effects model with 
three knots involving two regression coefficients that we applied in our example in the 
previous section. The magnitude of the regression coefficient (β2) reflects the degree of 
departure from a linear dose–response relationship. It should be noted that linearity is 
evaluated on the natural log scale when modeling multiplicative measures of association 
such as odds ratios, risk ratios, or hazard ratios. Under the scenario described by the 
null hypothesis H0 : β2 = 0 – a linear dose–response relationship – the sampling distri-
bution of the Wald- type statistic 

2

2 2
ˆ ˆ/W SE  follows approximately a χ2 distribu-

tion with 1 degree of freedom. If the investigator is testing at a significance level of 5%, 
a value of the computed statistic W falling beyond the 0.95 quantile of a χ2 distribution 
with 1 degree of freedom, that is 3.841, would be taken as indicative of disagreement 
(P value < 0.05) between the data and the null hypothesis. This is concisely and com-
monly reported as the “P value for nonlinearity.”

The result of the statistical test should be interpreted with caution, keeping in mind 
common fallacies. Failing to reject the hypothesis of linearity with the data at hand 
because the P value is large (say, greater than 0.05) does not imply that the summary 
dose–response relationship is truly linear. Furthermore, rejecting the hypothesis of lin-
earity because the P value is small (say, smaller than 0.05) does not provide insight into 

TABLE 14.2  Mean risk ratio (RR) for all-cause mortality and 95% confidence 
 intervals (CI) for various levels of coffee consumption (1–8 cups/day) versus no  coffee 
consumption.

Coffee cups/day Restricted cubic splines Linear

RR 95% CI RR 95% CI

0 1.000 Referent 1.000 Referent

1 0.920 0.900–0.941 0.968 0.958–0.978

2 0.860 0.825–0.895 0.937 0.918–0.956

3 0.832 0.793–0.873 0.907 0.880–0.935

4 0.826 0.787–0.868 0.878 0.843–0.914

5 0.828 0.789–0.869 0.849 0.808–0.893

6 0.830 0.790–0.873 0.822 0.774–0.873

7 0.832 0.790–0.877 0.796 0.741–0.854

8 0.834 0.789–0.883 0.770 0.710–0.835

Note: Estimates obtained with a two-stage random-effects dose–response model with restricted cubic 
splines with three knots at fixed percentiles of coffee consumption and a linear function. Estimates 
obtained with the restricted maximum likelihood method. The rounding to three digits after the decimal 
separator is for comparison of the two modeling strategies.
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the possible shape of the relationship, the values of the dose for which this departure 
from linearity is occurring, or the subject- matter relevance of this departure.

In our example, the Wald- type statistic χ2 = 37.6 is well above the 0.95 quantile of 
the χ2 distribution with 1 degree of freedom. So the test leads to a rejection of H0 : β2 = 0 
(P value < 0.05), indicating that the data strongly disagree with a simpler monotonic 
linear trend between coffee consumption and mortality risk. A tabular (Table 14.2) or 
graphical presentation (Figure 14.3) is then important to interpret the estimated dose–
response model and to determine what range of coffee consumption is associated with 
the lowest mortality risk.

14.8  EXTENSIONS, LIMITATIONS, AND DEVELOPMENTS

Although we have presented the model to combine results arising from prospective cohort 
studies, a similar approach can be employed with other study designs (randomized 
trials, case–control, cohort studies). Recent extensions for mean differences and stan-
dardized mean differences have been proposed in combining results of randomized 
trials on the effectiveness of different dosages of antipsychotic drugs in schizophrenia 
patients [19] and approaches to evaluate the goodness of fit for the various competing 
models have been developed [20].

An important limitation of the two- stage model is that the dose–response shape 
needs to be estimated within each study. When the assumed shape is non linear, then 
each study needs to examine at least three different doses so that two different effect 
sizes can be estimated and both coefficients are identifiable. This requirement might 
result in a reduction of the available number of studies: the studies that compare the 
outcome only between two doses must be excluded. Specification of a single mixed- 
effects dose–response model can overcome this limitation, through synthesis within 
and across studies in one step [12, 13].

Another limitation of assuming a common transformation for all the studies is 
that the chosen function may poorly fit the data in some studies, and combining dose–
response coefficients may discard information about study- specific exposure range. 
For example, the typical coffee consumption in Japan may be lower than in Europe 
and the USA. Nevertheless, the regression coefficient estimated in Japan over a nar-
rower exposure range would contribute to the overall combined dose–response rela-
tionship over the entire range of the exposure.

Although the typical dose (mean, median) within each interval is usually pub-
lished, the assignment of the dose may represent an additional source of uncertainty in 
conducting dose–response meta- analysis. Sensitivity analysis varying the assignment 
of the dose values, particularly at the extremes of the distribution, may be required to 
examine the overall stability of the combined dose–response relationship.

The methods illustrated for dose–response meta- analysis have been implemented 
in major statistical packages, for example the drmeta command in Stata [29] or the 
dosresmeta package in R [30] (see also Chapters 25 and 26). Both the dosresmeta 
and drmeta procedures offer a one- stage approach [12], an extension to mean differ-
ences and standardized mean differences [19], and measures of goodness of fit [20]. 
Despite the various methodological and technical developments in the field, special-
ized training opportunities are still scarce, and reporting guidelines tailored to dose–
response meta- analysis are lacking.
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14.9 CONCLUSIONS

We have introduced dose–response meta- analysis through examples based on a previ-
ously published quantitative review of prospective cohort studies. Given summarized 
dose–response data arising from the categorization of a quantitative exposure, we have 
illustrated how to conduct inference on the dose–response pattern with single and mul-
tiple studies, how to summarize study- specific trends, how to detect a departure from 
linearity based on a spline model, and how to present the summary dose–response 
relationship in a tabular or graphical form.

Creating a table of summarized data is relatively quick, easy to share, and sus-
tainable over a long period of time. Nevertheless, its careful analysis requires compu-
tational and statistical skills coupled with subject- matter knowledge. It is particularly 
important to know what defines the dependent and independent variables, how to 
relate them, and how to compare alternative models.

Modeling relative changes in estimated responses rather than absolute responses 
makes graphical comparison of alternative functional relationships particularly chal-
lenging. Sometimes a fitted trend will not even pass through the published estimates 
that are used as the dependent variable in the dose–response regression. An example 
is alcohol consumption and colorectal cancer rates when never drinkers are used as a 
comparison group [24]. The greater uncertainty in predicted responses due to sparse 
data at the extremes may incorrectly give the visual impression of a possible non-
linear relationship. Dose–response models specified according to a plausible mecha-
nism generating the data can overcome some of the misleading intuitions provided by 
naively graphing tables of summarized data points.

This is particularly important in case of flexible modeling using restricted cubic 
splines. Here the interpretation of the estimates may not be straightforward and typ-
ically a graphical presentation is required to appreciate the estimated functional rela-
tionship. On the other hand, a reasonable graph of the summary dose–response shape 
with related confidence bands requires the combination of the estimated parameters 
with the exposure data or some transformation of it that may not be available in the 
aggregated data.

Although the statistical methods are implemented in user- friendly packages, wise 
application of the methodology is likely to require more than one line of code and 
familiarity with the programming language. The computer practical associated with 
this chapter (see www.systematic-reviews3.org) provides a good starting point.
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This chapter concerns systematic reviews of nonrandomized studies of interventions 
(NRSIs) and systematic reviews that include both randomized and nonrandomized 
studies of interventions. An NRSI is a study that compares the effectiveness and/or 
safety of interventions in which interventions are not randomly allocated to partici-
pants (or to clusters of participants) [1]. This includes studies that are often described 
as observational. For example, a cohort study might compare remission of type 2 
diabetes in participants with obesity who underwent gastric bypass surgery (interven-
tion 1) compared with those following a supervised very low energy diet (intervention 2), 
where the allocation to surgery or diet did not involve randomization. The choice of 
the intervention received may have been made for one of several reasons. It may have 
been on the basis of participant suitability: for example, because surgery was consid-
ered to have a high risk of complications for the patient, or the patient was considered 
unlikely to adhere to a very strict diet. Alternatively, it may have been on the basis of 
the participant’s preference for surgery versus diet; or perhaps as a consequence of the 
availability of the interventions (e.g. if different hospitals offer different approaches to 
management of diabetes in patients with obesity). In this example, two active interven-
tions are compared; other NRSIs may compare outcomes in participants who received 
an intervention of interest (e.g. obesity surgery) with those who did not.

Observational studies are often used in the study of etiology (i.e. risk factors, or 
causes, of diseases and other health outcomes). Reviews of etiology are explored in 
Chapter 19; in the current chapter we restrict our attention to systematic reviews on the 
effects of health interventions. For example, a systematic review on the effects of obe-
sity on type 2 diabetes investigates whether obesity is a risk factor for developing type 2 
diabetes, so addresses a question of etiology. In contrast, a review evaluating the effects 
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of interventions to treat obesity (e.g. surgery vs. diet) on the remission of type 2 diabetes, 
as in our previous example, addresses a question about interventions [2]. In reality, inter-
ventions are a subset of the broad range of exposures that can be examined in observa-
tional studies, and the distinction between interventions and risk factors is not always 
clear. For instance, a review addressing the effect of taking nutritional supplements, or 
of eating more or less red meat, has features of both intervention and etiology reviews.

There are many situations in which NRSIs provide valuable evidence about effec-
tiveness and safety of an intervention (see Section  15.1). Sometimes NRSIs are the 
only source of evidence, while in other situations they may supplement evidence from 
randomized controlled trials (RCTs). An early challenge when considering inclusion 
of NRSIs is to decide on the most appropriate study designs to include in the review 
to address the research question. There are many types of NRSIs. Cohort studies and 
case–control studies are the most widely used designs, but there are several variants of 
each of these, and numerous others, as we discuss in Section 15.2.2. When conducting 
an intervention review that includes both RCTs and NRSIs, the two categories may be 
used for different purposes. For example, a review might address questions of inter-
vention effectiveness using only RCTs, but address potential harms of the intervention 
using both RCTs and NRSIs [3].

Many aspects of systematic reviews of NRSIs are similar to systematic reviews of 
RCTs that have already been covered in previous chapters. The absence of randomi-
zation poses a genuine threat to internal validity, making risk of bias assessment even 
more important than for RCTs. Other challenges include choosing the appropriate 
results to extract (e.g. from multiple statistical analyses arising from models adjusting 
for different variables), strategies for synthesis, and dealing with heterogeneity, all of 
which we address in this chapter.

15.1 THE IMPORTANCE OF NONRANDOMIZED STUDIES  
IN THE EVALUATION OF INTERVENTIONS

Systematic reviews of interventions aim to determine and quantify causal interven-
tion effects on the outcomes of interest. If evidence comes from well- conducted RCTs, 
causality can generally be inferred. In situations where evidence from RCTs is incom-
plete, unavailable, or scarce, nonrandomized studies may provide valuable evidence. 
In particular, evaluation of the impact of interventions on rare events (including many 
important adverse effects) or long- term outcomes often requires larger sample sizes 
and longer follow- up time than is generally feasible in RCTs. In some cases, restricting 
a review to RCTs might lead to an inaccurate impression of long- term or rare effects 
of an intervention. In one such example, a systematic review of effectiveness of meth-
ylphenidate for attention deficit hyperactivity disorder (ADHD) in children included 
only RCTs and found no evidence of serious adverse effects linked to the drug  [4]. 
However, observational studies have linked methylphenidate with rare, but serious, 
adverse events, including sudden death and psychosis. The reliance on RCT evidence 
had been insufficient, and a follow- up systematic review of NRSIs focusing on serious 
adverse events of methylphenidate found evidence of a potential increase in risk of 
some serious adverse events [5].
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NRSIs may also be used to provide information on specific populations or settings 
that have not been evaluated in RCTs. Sometimes results of RCTs are difficult to gen-
eralize. This may be because their participants are atypical or unrepresentative due 
to strict inclusion criteria or low recruitment rates; or because health care settings or 
interventions involved in RCTs are atypical of routine care; or because some partici-
pant outcomes (e.g. quality of life or compliance) do not closely resemble what would 
be observed outside of the context of the RCT [6].

NRSIs are often the main source of evidence for public health interventions, 
because RCTs can be difficult to conduct in such settings. For example, the World 
Health Organization recommends introduction of taxes on sugary drinks as a mea-
sure to tackle obesity  [7], based on nonrandomized intervention studies conducted 
in countries that have already introduced such taxes  [8] and systematic reviews of 
nonrandomized studies [9].

Randomized evidence may not be available for some interventions, for a variety 
of other reasons. Ethical considerations may prevent the conduct of a randomized 
experiment, for example because of objections to random allocation of individ-
uals to intensive care versus ward care [6]. Experimentation may be impossible (for 
example due to unwillingness of health professionals or patients to participate for 
lack of individual equipoise or for logistical reasons) or controversial (for example for 
political, legal, or commercial reasons) [6]. In other cases, randomized trials may be 
inappropriate because random allocation reduces the effectiveness of the intervention, 
for example when the effectiveness of the intervention depends on the participants’ 
active participation (e.g. psychotherapy or physical exercise). However, it should be 
emphasized that the mere absence of RCTs does not add to the validity of NRSIs.

15.2 DEFINING THE RESEARCH QUESTION AND ELIGIBILITY 
CRITERIA FOR THE REVIEW

As described in Chapter 2, the key component to any systematic review of an interven-
tion is a clearly defined research question, addressed in a PICO format – participants, 
intervention(s), comparator(s), outcome(s).

15.2.1 SpecifyingPICOin Reviewsof NonrandomizedStudies
of Interventions

Defining the participants or population of interest is usually similar to the same task for 
reviews of RCTs. The eligibility criteria for participants may be broader in individual 
NRSIs than in individual RCTs (which may exclude older or younger people, or people 
with comorbidities). This is often considered an advantage of NRSIs in terms of gen-
eralizability.

Defining the intervention of interest requires close attention in a review of NRSIs. 
In the absence of a predefined intervention protocol to follow, NRSI may group inter-
ventions into broader categories, and these may not be particularly well suited to 
guiding treatment policies. For example, NRSIs of the effects of exercise on back pain 
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may have combined different forms of exercise (cycling, running, yoga, dog walking, 
strength training, etc.) into one broad category called “exercise,” which addresses 
a somewhat broader question than an RCT of the effect of a “prescribed” exercise 
program (such as the implementation of a daily 30- minute yoga program). Even if a 
review of such NRSIs shows that those who exercise experience less back pain, the 
broad exposure categories cannot directly provide evidence for specific actions that 
could be taken to improve back pain in the population at large.

Comparator interventions are sometimes poorly defined in NRSIs, especially in 
studies focused on comparing outcomes in people who received an intervention of 
interest with those who did not. In many cases, those not receiving the intervention of 
interest may receive an array of different interventions that are often poorly described, 
and sometimes this information is not collected at all.

Outcomes collected in NRSIs may differ from those collected in RCTs. Most RCTs 
have clearly defined outcome measures, and one of the main challenges in a systematic 
review of RCTs is how to combine outcomes across studies. The situation is more com-
plex with NRSIs. Some prospective NRSIs have predefined outcome measures, but 
others rely on routinely collected outcome data from administrative databases (e.g. 
electronic medical records, health insurance records, registries). It is important to 
consider what is the outcome of interest (e.g. presence or severity of depression) and 
what measures of this outcome are acceptable for the review (e.g. depression mea-
sured using a validated scale, or an ICD- 10 code entered by the patient’s doctor into 
the patient’s electronic medical record).

15.2.2 DefiningTypesof NonrandomizedStudyto Include

NRSIs comprise a broad range of study designs. Systematic reviews should consider at 
the protocol stage which study designs are the most appropriate for the review question 
and thus will be eligible for inclusion. Designs often used for studying intervention 
effects are cohort  [10], case–control  [10], and self- controlled studies  [11], although 
some less common designs are increasingly used, including controlled before- and- 
after studies, interrupted time series (ITS), and regression discontinuity designs. 
Study design terminology is often confusing and inconsistently applied for NRSIs. 
Eligibility criteria should preferably be defined on the basis of desired study design 
features, e.g. consecutive recruitment of participants; identification of new users of a 
drug; comparisons made within the same participants over time, or between different 
groups receiving different interventions. Checklists are available to help identify study 
features to consider when determining eligibility criteria for NRSIs [12].

The most straightforward design is the cohort study, where participants receiving 
the intervention of interest and participants not receiving that intervention (either 
receiving a comparator intervention or no intervention) are followed up over time 
and their outcomes compared [10]. Such a design resembles the classic RCT, with one 
crucial distinction: intervention is not allocated by randomization but determined by 
some other factors, such as disease characteristics, or patient and clinician preferences. 
Cohort studies that are the most similar to RCTs will have a study protocol – including 
plans for collection of participant information and outcomes, and an analysis plan – 
developed before participants have received their interventions or been followed up. 
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Such studies can ensure that all known confounding characteristics are validly mea-
sured, and that researchers have control over which outcomes to measure and how.

It is possible to use existing sources of routinely collected health data for clinical 
research (e.g. electronic patient records, health insurance data, dispensing records). 
These large databases of patient data can be considered cohorts of participants. Using 
such data is efficient and low cost, but the type of data collected (interventions, out-
comes, and confounders) may be limited by what has been routinely collected. Patient 
record data are often used to study adverse effects of drugs and other interventions. For 
example, Douglas et al. used a UK- based electronic database of patient records to explore 
whether the use of proton pump inhibitors (PPIs) decreases effectiveness of clopidogrel 
and aspirin (a drug combination taken to prevent myocardial infarction by people at 
high risk) [13]. The researchers identified a cohort of 24 471 patients receiving clopido-
grel and aspirin prescriptions and linked them with data from other registries to identify 
cases of death and incident myocardial infarction. They compared outcomes occurring 
in people receiving a PPI with those not receiving a PPI, and found that PPI use was 
associated with a higher incidence of death or incident myocardial infarction (adjusted 
hazard ratio 1.37, 95% confidence interval [CI] 1.27–1.48). For this research question, a 
randomized study is not feasible as the sample size required is very large. To address it in 
an observational study, confounding should be carefully considered, as PPI use is related 
to lifestyle and body mass index (BMI), known risk factors for myocardial infarction.

In self- controlled studies, patients are compared with themselves under differ-
ent interventions in different time periods. These studies may be reported under dif-
ferent names, such as “case- only” studies or “self- controlled series.” Self- controlled 
designs are equipped to study intervention effects for acute outcomes when exact tim-
ings are available for intervention (e.g. drug use) and outcome occurrence [11]. The 
main advantage is that stable confounders (e.g. dietary patterns, socioeconomic status) 
are controlled by design. In addition to the cohort design described earlier for the effect 
of PPIs on the effectiveness of clopidogrel and aspirin, the researchers also used a self- 
controlled design, comparing periods of PPI use with periods of nonuse within the 
same participants. In contrast to the previous analysis, they found very weak evidence 
of a protective association between PPI use and myocardial infarction (rate ratio of 
0.75, 95% CI 0.55–1.01). The authors concluded that the discrepancy between findings 
of the comparisons between and within people suggests that the observed associa-
tions in the standard cohort design are unlikely to be causal. This demonstrates the 
strengths of this self- controlled design in minimizing confounding [13].

Case–control studies are mainly used, in the context of intervention evaluations, 
to study rare adverse effects. An example is provided by the investigation of venous 
thrombosis risk due to oral contraceptive use, which was first studied in a case–control 
setting [14]. In this study, women who had developed deep venous thrombosis without 
any other underlying diseases were compared with healthy women sampled from the 
general population as controls. Analysis showed that the risk of thrombosis among 
users of oral contraceptives was increased fourfold. Cross- sectional studies are not 
well equipped to study intervention effects, because the temporal relation between 
intervention and outcome often cannot be established.

Some NRSIs rely on instrumental variable analysis, exploiting naturally occur-
ring “randomness” in allocation of interventions  [15]. An instrumental variable, or 
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instrument, influences receipt of the intervention, but does not have an independent 
impact on the outcome. Any association between the instrument and the outcome is 
then assumed to have resulted from the impact of the intervention on the outcome. 
An instrumental variable sometimes used to study treatment effectiveness is physician 
preference, exploiting the variation that occurs when different doctors prescribe dif-
ferently for exactly the same patient [16]. Such physician preferences have been used 
to study the effect of oral contraceptives on thrombosis risk [17]. Instrumental vari-
able studies aim to circumvent (unmeasured) confounding. However, common causes 
of the instrument and the outcome can introduce confounding in these studies [18]. 
Instrumental variable studies harbor additional analytic complexities and assessing 
risk of bias requires in- depth understanding of the methodological complexities and 
assumptions of the design.

A regression discontinuity approach exploits opportunistic cut- offs, such as 
arbitrary eligibility criteria for intervention, which create a “discontinuity” that can 
be used to evaluate the effect of the intervention by comparing outcomes in groups of 
participants below and above the cut- off. In the region of the cut- off, intervention allo-
cation is deemed to be made almost by chance. For example, a study investigated the 
effect of human papillomavirus (HPV) vaccination on participation in cervical cancer 
screening, by exploiting the recommended vaccination age cut- off (a “discontinuity”) 
as an instrument for the effect of the HPV vaccine on taking up screening  [19]. 
The hypothesis is that women aged just below and above the maximum age cut- off 
will be highly comparable in ways other than their eligibility to receive the vaccine. 
A narrower age range for participant selection into the study reduces the risk of 
 confounding, but also reduces the available sample size and thus precision.

All of these examples are of studies in which interventions are applied, and outcomes 
measured, at the individual level. Further approaches are available where interventions 
are at an organizational level. Kontopantelis et  al.  [20] exploited a so- called natural 
experiment on the introduction of a pay- for- performance scheme in UK primary care in 
2004–2005 by the UK government to reward general practices for achieving clinical and 
nonclinical targets to evaluate the scheme’s effectiveness. This voluntary intervention 
was introduced nationally and was adopted almost universally by general practitioners 
due to its associated financial rewards. A simple before- and- after (or pre- post) analysis 
would not account for any trends in performance over time, so the researchers used ITS 
analysis to assess whether the performance on the incentivized targets improved. This 
approach involves measuring outcomes at multiple timepoints before and after the intro-
duction of the intervention and comparing trends and patterns (e.g. regression slopes) 
before and after the intervention (the “interruption”) (Figure 15.1).

There is increasing interest in using observational data (e.g. from electronic health 
records) to emulate a hypothetical “target trial.” Eligibility criteria for the target trial 
are applied to the participants in the electronic records, along with the timepoint that 
would be appropriate for randomizing the individual into the target trial, which is 
used as the start of follow- up. Even in the presence of strong confounding by indi-
cation, some argue that this approach can lead to effect estimates that are consistent 
with those from randomized trials [21–23]. The target trial approach is not a panacea, 
however. There are examples in which this approach has yielded effect estimates dif-
ferent from those observed in RCTs. Danaei et al. attempted to emulate a target trial of 



 Systematic Reviews of Nonrandomized Studies 279

antihypertensives versus no antihypertensives and found a 12% increase in death rate 
in the antihypertensives group, in contrast to data from RCTs that consistently show 
survival benefit of antihypertensives [21].

15.3 SEARCHING FOR NONRANDOMIZED STUDIES 
OF INTERVENTIONS

The general principles of searching for studies described in Chapter 3 also apply for 
systematic reviews of NRSIs. Searches of bibliographic databases will often focus on 
combining terms for intervention, population, and, where appropriate, outcomes and/
or comparisons (see Chapter 3, Section 3.5). These components of the search strategy 
will often be similar to those of RCTs of the same population and intervention(s). 
Chapter 3 (Section 3.4) provides some guidance for searching for studies other than 
RCTs. Restricting the search based on indexing terms for study designs (e.g. prospec-
tive cohorts) is problematic. Nonrandomized studies can be described in diverse ways 
in publications (e.g. “retrospective non- comparative interventional case series” [24]), 
which creates difficulties in identifying and indexing studies by their design. Moreover, 
study design labeling can be simply wrong: for example, a considerable proportion 
of studies labeled as case–control studies are in fact not case–control studies  [25]. 
Applying study design filters is thus often discouraged, since it may compromise the 
sensitivity of the search. In practice, the omission of a study design filter will often 
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FIGURE 15.1 Interrupted time series of a pay- for- performance scheme. The observed 
performance increased more than was predicted based on pre- intervention trends (“pre- trend,” 
dashed line), leading to a level change. Additionally, the subsequent observed slope was less 
than the slope predicted based on reapplying the pre- intervention trend after this level change 
(“pre- trend,” solid line). Source: Kontopantelis et al. [20], reproduced under Creative Commons 
Attribution (CC BY 4.0) license.
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result in a large number of retrieved records, of which only a small proportion may 
eventually meet eligibility criteria (i.e. the search has low specificity [26]), leading to a 
substantial workload at the record- screening stage of the review.

Studies indicate that the coverage of one single database will not be adequate for 
identification of observational studies [27], and searching a broader range of databases 
and nondatabase sources (e.g. reference checking and citation searches) can reduce 
the possibility of important studies being missed. Specific guidance is available to opti-
mize search strategies for identification of adverse effects [28].

15.4 RISK OF BIAS

Potential for bias is a key consideration when including NRSIs in a review, because in 
the absence of randomization it is much more difficult to ascertain that the observed 
intervention effects are causal. In an RCT, randomization and concealment of alloca-
tion, if successfully implemented, ensure that the factors that predict the outcome (e.g. 
disease severity) do not influence the process of allocation to intervention groups. In 
the absence of randomization, NRSIs are prone to confounding. NRSIs are also vulner-
able to selection biases that do not affect RCTs. Some types of bias are common to both 
RCTs and NRSIs. For example, while blinding is easier to apply in an RCT, especially 
when placebos are used, blinded assessment of outcomes may, in principle, be equally 
possible in NRSIs and RCTs. Loss to follow- up and selective outcome reporting are 
problems common to all types of prospective study. However, a detailed protocol is 
often not registered for an NRSI, which makes it difficult to assess whether results are 
reported selectively based on the findings.

15.4.1 Confounding

Confounding arises when there is a common cause of intervention and outcome. 
Its presence in an NRSI hampers the causal interpretation of effect estimates. For 
example, in a nonrandomized study evaluating the effect of statins on cardiovascular 
outcomes, higher cholesterol may increase the likelihood of statin treatment, while 
also being a risk factor for cardiovascular disease. The higher cholesterol levels of 
statin users at baseline could lead to different cardiovascular outcomes between the 
intervention groups being incorrectly attributed to the statin (Figure 15.2). This is an 
example of confounding by indication, where the indication for intervention (e.g. 
cholesterol level) is inherently a confounder in a study of the intended effects of an 
intervention (e.g. statin). Controlling for indication is often difficult in NRSIs, since it 
requires knowledge of all the indications involved in the decision to prescribe an inter-
vention [29]. The extent of confounding is linked to the strength of the association 
between intervention allocation and prognosis  [30]. When studying and comparing 
two (or more) treatments for the same indication, confounding may be less of an issue.

Randomization prevents confounding by breaking the link between intervention allo-
cation and prognosis (outcome). However, some treatment decisions in clinical practice 
may not be related to prognostic factors. This can be the case for unintended outcomes 
of the intervention, including adverse events with physiological mechanisms that differ 
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from those leading to the clinical benefit for which the treatment was prescribed  [29, 
31]. For example, a urinary tract infection could be treated with a choice of two antibi-
otics. Although the severity of the condition or laboratory assessments of a pathogen’s 
sensitivity to various antibiotics may be considered in making a treatment decision, the 
probability of an allergic reaction is unlikely to play a role in the treatment decision, as 
allergic reactions from drugs cannot be predicted in a patient who has not received the 
drug before. This means that there should be no link between prognosis and treatment in 
an NRSI comparing the two antibiotics, so confounding is unlikely in relation to the risk 
of an allergic reaction. There is empirical evidence that adverse events can sometimes be 
studied validly in NRSIs [32–34], facilitating the investigation of some rare or long- term 
adverse effects for which RCTs lack the required sample size or duration of follow- up.

This does not mean that NRSIs always provide unconfounded estimates for adverse 
events. For example, a study assessing the risk of cardiovascular disease (adverse 
event) associated with postmenopausal hormone replacement therapy (HRT)  [35] 
found that HRT halved the risk of cardiovascular disease. Although HRT is prescribed 
to women to reduce their menopausal symptoms (indication), a decision whether to 
prescribe it was likely influenced by a woman’s general health, which was predictive 
of subsequent cardiovascular disease risk. Indeed, a subsequent RCT has shown that 
HRT in fact increased the risk of cardiovascular disease [36].

Confounding can also occur in prevention studies, when an intervention is taken 
up preferentially by healthier individuals. One such example is a healthy vaccinee 
bias, which occurs, for example, when healthy people are more likely to follow recom-
mendations to take up seasonal influenza vaccination [37]. If the analysis is not ade-
quately adjusted for markers of general health and health- seeking behavior, this may 
lead to an overestimation of vaccine effectiveness. On the other hand, confounding by 
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In a non randomized study comparing cardiovascular events between statin and
non-statin users, results may be confounded by cholesterol levels, body mass
index, and socio economic status, as these factors predict the outcome and also
influence a doctor’s decision whether to prescribe a statin.

Confounding factor is a
common cause of the
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Example:

FIGURE 15.2 Graphical representation of confounding in nonrandomized studies of 
interventions shows that confounding factors influence both the intervention and the outcome.



282 Systematic Reviews in Health Research 

indication is also likely to occur because people who are at higher risk of complica-
tions from disease are preferentially targeted by vaccination campaigns or encouraged 
by their doctors to get vaccinated, and this may lead to an underestimation of vaccine 
effectiveness. With these biases operating in opposite directions, the overall direction 
and magnitude of bias due to confounding may be difficult to predict [38].

A key task in a systematic review of NRSIs is to determine whether confounding 
has been adequately dealt with in the included studies. This requires subject matter 
knowledge (what are important confounding factors?) and methodological knowledge 
(are the statistical models used appropriate to deal with confounding?). Most statistical 
approaches (restriction, multivariable regression analysis, propensity score, inverse 
probability weighting, g- estimation) rely on the non- testable assumption that all 
important confounding factors have been (adequately) measured [39]. The full spec-
trum of characteristics that influence intervention decisions (prognostic factors, dis-
ease status and severity) is generally not completely recorded in a study dataset. For 
this reason, it is difficult to control completely for confounding by indication [39].

15.4.2 SelectionBias

Selection bias occurs if selection of either people or person- time into the study or into the 
analysis is related to both the intervention and the outcome under study. For example, 
selection bias will occur in a study of the harmful effect of corticosteroids on osteopo-
rosis that is restricted to patients in whom bone mineral density is measured (thus select-
ing a subset of eligible patients). In routine care, patients taking corticosteroids will be 
monitored closely, often including measurements of bone mineral density or assessment 
for vertebral fractures. Patients not receiving corticosteroids will not generally have bone 
mineral density measured unless they have other risk factors for osteoporosis. Thus, 
selection into the study will be related to both corticosteroid use and risk of osteoporosis, 
introducing a selection bias leading to underestimation of osteoporosis risk in corticoste-
roid users. This type of bias is also sometimes referred to in epidemiological literature as 
“collider bias” [40]. To minimize this bias, a study was carried out comparing systemic 
corticosteroid users with nonsystemic corticosteroid users, assuming a similar follow- up 
with regard to osteoporosis and related fractures  [41]. The magnitude of this bias can 
sometimes be so large that the observed effect is in the direction opposite to the causal 
effect (i.e. the study shows the intervention is protective when it is harmful).

In case–control studies, selection into the study is related to the outcome by design, 
i.e. cases and controls are selected because they have or have not experienced the out-
come, respectively. Selection bias will occur if the selection of cases and controls is 
also related to whether they have received the intervention of interest. This is more 
common in case–control studies where controls are recruited from hospitals [42]. For 
example, in a case–control study of the efficacy of BCG revaccination for preventing 
tuberculosis, two different control groups were recruited: the first was selected from 
subjects presenting for routine prevention and care at the same health center where 
cases with tuberculosis had attended; the second was selected from the neighborhoods 
of the cases. Controls recruited from the health unit overrepresented exposure to BCG 
revaccination and would have resulted in overestimation of vaccine efficacy, so the 
investigators used the neighborhood controls for their analysis [43].
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Selection biases due to exclusion of initial person- time of follow- up can arise in 
NRSIs when the start of the intervention and start of the follow- up time do not coin-
cide. Such biases will not arise in RCTs (unless peculiar analysis strategies are fol-
lowed). We will illustrate this type of selection bias using the Nurses’ Health Study 
of HRT for menopausal symptoms (mentioned earlier). They assigned women to the 
HRT group if the women stated that they had been taking HRT. Thus, they were “prev-
alent users” of the intervention rather than new, “incident” users, as would be the 
case in an RCT [35]. Although residual confounding is likely to have occurred in this 
study, re- analyses of the data using the target trial approach indicate that the inclusion 
of prevalent HRT users was the main contributor to the incorrectly estimated effect 
of HRT on cardiovascular events [23]. Women who had started HRT but had already 
experienced an event before the start of their follow- up were excluded from the anal-
ysis, as were any who died before follow- up started. An early elevated risk of cardiovas-
cular events after starting HRT was therefore missed due to selection bias. This type of 
selection bias is also referred to as prevalent user bias, survivor bias, or lead- time bias.

A different example of selection bias is provided by a study comparing patients 
taking beta- blockers after acute myocardial infarction with similar patients who were 
not prescribed beta- blockers. The investigators concluded that longer beta- blocker 
use was related to lower mortality risk [44]. Beta- blocker use was defined as at least 
two prescriptions after the myocardial infarction, so to be included in this group, 
patients could not have died in the period between myocardial infarction and the sec-
ond prescription. Patients who only received one prescription, changed to a differ-
ent beta- blocker, or had long intervals between prescriptions were excluded from the 
study. Thus, selection of participants into this study was related to both intervention 
(excluding those with only one prescription of beta- blockers) and outcome (not dying 
between myocardial infarction and second prescription), thereby introducing selec-
tion bias. The bias led to the underestimation of mortality risk in beta- blocker users. 
This type of selection bias is also referred to as immortal time bias [45]. Understanding 
of the mechanisms of selection bias, including its recognition in individual studies, 
requires in-depth understanding of epidemiological concepts.

15.4.3 InformationBias

Information bias occurs when there are errors in the measurement, collection, 
recording, or handling of information in a study. It can arise from assessment of inter-
vention, outcome, and other characteristics, such as confounding factors. Intervention 
misclassification may occur, for example, in register- based studies where the registers 
rely on prescription information, which may not be an accurate indicator of actual 
drug use. Many outcomes are prone to misclassification. In RCTs, outcome assessment 
is often blinded, especially in placebo- controlled trials, which minimizes the risk of 
differential measurement error (errors that differ by intervention group). Even in trials 
where participants and care providers are not blinded, blinded outcome assessment 
is often implemented for specific outcomes, e.g. by a blinded endpoint committee. 
It is possible for outcome assessors to be unaware of the intervention in an NRSI – 
for example, researchers might score endpoints without knowledge of intervention 
status – but this is rarely implemented. A blinded outcome assessment will in general 
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lower risk of measurement error for outcomes that require interpretation (e.g. reading 
an electrocardiogram or an X- ray). The extent and direction of bias due to misclassifi-
cation and measurement errors should be judged separately for each estimate of effect.

15.4.4 ReportingBias

Reporting biases occur when studies do not get published at all (e.g. because the result 
was undesirable to the investigators), or when study results are selectively reported in 
publications on the basis of the findings (see Chapter 5). The former is usually referred 
to as publication bias and the latter as selective reporting bias. The literature on pub-
lication bias is dominated by studies on RCTs, with less information on its effect on 
syntheses of NRSIs, but there is some evidence that the problem is more prevalent for 
studies other than RCTs [46]. The factors favoring or preventing publication might dif-
fer between RCTs and NRSIs. Since analyzing existing datasets is often quick and easy 
(and cheap), we might suspect that many such analyses never get reported, especially 
when they did not produce the results the investigators hoped for or journals were 
interested in. Publication bias and selective reporting may thus represent a substantial 
problem for reviews of NRSIs. However, Egger et al. argue that publication bias and 
reporting biases may be less important than confounding and other biases in terms of 
the heterogeneity of evidence available for syntheses of NRSIs [47].

Detailed assessment of the risk of selective reporting requires comparison of 
the original protocol and/or analysis plan with the final study report(s). Whereas a 
registered protocol is the norm for RCTs, it is still uncommon for NRSIs. Consequently, 
empirical evidence on the extent of deviations from study protocols and analysis plans 
in NRSIs is lacking, and systematic review authors will often be unclear whether 
the analyses presented in study reports had been pre- planned or are the results of a 
“fishing expedition” for statistically significant findings.

15.4.5 AssessingRiskof Biasin NonrandomizedStudiesof Interventions
Includedin aSystematicReview:A Domain-BasedApproach

Many tools have been developed to assess the quality or risk of bias of observational 
studies [48]. Most of these do not distinguish between etiological studies and NRSIs. 
Two widely used tools are the Downs and Black and Newcastle–Ottawa tools  [49, 
50]. As discussed in Chapter 4, methods for critiquing studies included in systematic 
reviews have shifted away from composite scales and summary scores measuring meth-
odological quality, as in the Downs and Black and Newcastle–Ottawa tools, toward a 
component- based assessment of risk of bias, such as that adopted in the Cochrane 
Risk of Bias tools for RCTs [51, 52].

The ROBINS- I (Risk Of Bias In Non- randomized Studies of Interventions) tool 
was designed specifically to assess risk of bias in NRSIs [53]. It examines specific com-
ponents of the study design, conduct, analysis, and aspects of reporting (referred to as 
“bias domains”) and their potential to introduce bias in the estimate of the treatment 
effect. ROBINS- I approaches assessment of risk of bias in the results of an individual 
NRSI by comparing it with a “target” trial – a hypothetical, pragmatic, and unbiased 
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randomized trial, whose results would validly answer the question addressed by the 
NRSI [53]. The benefits of this approach can be seen in relation to identifying selection 
bias in the Nurses’ Health Study discussed in Section 15.4.2. In the target randomized 
trial for this study, the start of HRT and the start of follow- up would coincide for all 
participants. However, in this NRSI, some of the participants were already receiving 
HRT before they were included in the analysis, introducing bias. Comparison of the 
NRSI with the target trial allows the user to identify such differences, flagging up 
methods that could have led to bias in the comparison of the intervention groups.

ROBINS- I contains seven bias domains (Table 15.1). Each domain includes a set 
of “signaling questions,” which are reasonably factual questions that aim to elicit 
information relevant to a judgment about the risk of bias in that domain. For example, 
questions include “Did the authors control for all the important confounding domains?” 
within the domain “Bias due to confounding,” and “Were start of follow- up and start 

TABLE 15.1 Risk of bias domains assessed in the ROBINS- I tool.
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Domain Explanation Issues addressed
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Source: Adapted from Sterne et al. [53].

TABLE 15.1 (Continued)

0005256753.INDD   286 04-26-2022   18:45:49



 Systematic Reviews of Nonrandomized Studies 287

of intervention the same for most participants?” within the domain “Bias in selection 
of participants into the study.” The overall risk of bias judgment for each study result 
will usually be the highest risk of bias judgment for individual domains (e.g. if the 
study result was judged to have a serious risk of bias for confounding and low risk 
for all other domains, the overall risk of bias for that result would be a serious risk of 
bias). Like the risk of bias tool for RCTs (RoB 2), ROBINS- I differentiates between the 
effect of assignment and effect of adhering to the intervention (Chapter 4). Users of 
ROBINS- I are encouraged to seek out and interrogate all available information about 
an NRSI when assessing risk of bias, such as protocols, analysis plans, publications, 
and correspondence with investigators, to reduce the impact of poor or incomplete 
reporting on the accuracy of the risk of bias judgments.

15.5 SYNTHESIZING RESULTS

As with most systematic reviews, three considerations are key for the decision on 
whether and how to combine effect estimates from NRSIs: between- study heteroge-
neity; risk of bias in the results of individual studies; and potential for publication 
bias (and related reporting biases). Heterogeneity in effect estimates can be due to 
numerous features of the studies, including differences in the interventions examined, 
study populations, outcomes assessed, and risks of bias. Exploration of heterogeneity 
should be a central element of every review that includes NRSIs.

15.5.1 ExploringHeterogeneity

It is advisable to examine heterogeneity both in study characteristics and in study 
results. Differences in study characteristics can usefully be tabulated to enable readers 
to judge study diversity in detail. Statistical measures of heterogeneity (statistical tests, 
estimates of variability in effect size, and measures of consistency such as the I2 sta-
tistic) are based on comparison of effect estimates across studies  [54]. Methods to 
explore heterogeneity more formally include stratified analyses (comparing studies 
with and without a specific characteristic) and meta- regression (see Chapter 10). If 
there are sufficient studies, it may be informative to use such methods to explore 
whether differences in design, clinical characteristics, or risk of bias translate into dif-
ferent reported estimates. Unfortunately, differences in study characteristics do not 
necessarily translate into statistical heterogeneity, and explanations for statistical het-
erogeneity often cannot be found in the known differences in study characteristics. 
In any event, it is useful to examine whether all effect estimates point in the same 
direction and are of similar magnitude.

15.5.2 TheRoleof Meta-Analysis

After careful consideration of study diversity, statistical heterogeneity, risk of bias, and 
potential of publication bias, a decision will often be needed on whether it is sensible 
to combine all (or a subset of) studies quantitatively. As a general rule, results should 
only be combined in a meta- analysis if the studies are sufficiently similar in terms 
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of populations, interventions, and outcomes for a combined result to be meaningful. 
The presentation of a combined estimate at the bottom of a forest plot will give the 
reader the impression that included studies are indeed combinable, even if the authors 
include notes of caution in their discussion. Unfortunately, there is no simple answer 
to the question “What amount of bias and heterogeneity is acceptable?” This must 
a be a careful and thoughtful decision made by the review team informed by their 
combined clinical, epidemiological, and statistical expertise.

Sources of diversity in study features such as interventions and study populations 
may be addressed by restricting the meta- analysis to studies that are very similar to 
each other, preventing large between- study heterogeneity, but possibly at the expense 
of the amount of evidence available to answer the research question.

With regard to risk of bias, authors should consider whether limitations of the 
included studies are acceptable to provide a combined estimate, or whether a subset of 
the studies were designed and conducted in a way that is likely to provide a more valid 
effect estimate for the intervention under study.

The potential of publication bias and the impact of missing studies on the overall 
evidence may be assessed following strategies described in Chapter 5. Funnel plots and 
similar methods may be helpful for larger meta- analyses [55, 56]. However, funnel plots 
may be less informative for NRSIs than for RCTs, since relationships between effect 
estimates and study sizes may not be the same. For example, a very large record linkage 
study may have limited information on confounding factors and thus may produce very 
precise but possibly biased estimates. In contrast, a small cohort study with meticulous 
attention to measurement of confounders and appropriate statistical modeling may 
provide a more accurate estimate, but with a wider confidence interval. If data from 
these two studies were to be combined in a meta- analysis, the data from the larger, 
biased study would dominate the meta- analysis, producing a biased summary estimate.

There may be further technical complications when including NRSIs in a meta- 
analysis. Different studies will most likely include a variety of different covariates in 
their analyses to adjust for confounding, and there will be several adjustment models 
presented in most studies. Selecting the best adjustment model to combine with other 
studies may be daunting. The ROBINS- I tool for assessing risk of bias recommends 
that the review team decide in advance the key confounding domains that will be rele-
vant for all studies [53]. This is helpful for assessing risk of confounding, but it can also 
be useful to guide a decision on which adjusted result to select from each study for a 
formal meta- analysis. In addition, different studies may have reported different effect 
measures (e.g. hazard ratio, odds ratio, risk ratio, risk difference, or mean difference). 
When an event is rare, there is likely to be little difference between hazard ratios, 
odds ratios, risk ratios, and rate ratios. For some circumstances, statistical methods 
are available for converting various statistics to a common metric to use in the meta- 
analysis [57, 58].

If more than two intervention options for the same condition have been studied, 
network meta- analysis may be an option. This enables the mutual comparison and 
ranking of multiple interventions (see Chapter 13). An example is a network meta- 
analysis in which the authors combined results of observational studies – cohort or 
(nested) case–control studies – of healthy women to compare thrombosis risk for dif-
ferent oral contraceptives [59].
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15.5.3 CombiningResultsfrom RandomizedandNonrandomized 
Studies

There are many instances where data from RCTs and NRSIs have produced conflicting 
results, and where combining these data would have been inappropriate. A striking 
example of this was a meta- analysis of beta- carotene and the risk of cardiovascular 
disease described by Egger et al. in 1998 (Figure 15.3) [47]. Data from NRSIs sug-
gested a reduced risk of cardiovascular disease associated with beta- carotene. How-
ever, data from RCTs found a harmful effect of beta- carotene. Had only evidence 
from the NRSIs been available, the lack of heterogeneity in their results might have 
suggested that increasing beta- carotene would be beneficial. In this example, there 
are clear differences in the research questions asked by the cohort studies compared 
with the RCTs. The cohort studies compared groups with high and low beta- carotene 
dietary intake or serum beta- carotene concentration, whereas the trials examined 
beta- carotene supplementation. It is difficult to establish from the results in the 
forest plot whether it was high risk of bias in the cohort studies (or indeed the RCTs) 
or the differences in the research questions that led to the opposing conclusions from 
the different designs.

A second example is presented in Figure 15.4. It shows NRSIs and RCTs, collated 
in 2012, examining all- cause mortality after intensive surveillance including annual 
colonoscopy versus a less intensive surveillance (no or with less frequent colonos-
copy), in patients who have had a curative resection for colorectal cancer. Here the 
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FIGURE 15.3 Forest plot showing relative risk of cardiovascular events for beta- carotene 
supplementation compared to nonuse. Source: From [47].
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research questions were more similar, so it is likely that the differences were due to 
higher risk of bias in the NRSIs. In the RCTs, patients were randomized to intensive 
surveillance with annual colonoscopy versus a less intensive (“standard”) surveillance 
program [60–63]. The NRSIs may be expected to be at risk of bias due to confounding. 
For example, in one NRSI, mortality was compared between patients who underwent 
surveillance compared with patients considered inappropriate for colonoscopic sur-
veillance due to advanced malignancy, age, frailty, or severe comorbid conditions [64]. 
In the other two NRSIs, mortality was compared between those who adhered and did 
not adhere to intensive surveillance, who might have differed importantly in their 
prognostic factors [65, 66].

If both NRSIs and RCTs are included in a systematic review, we suggest that a 
stratified analysis by study design be performed before considering whether summary 
estimates for the different designs are sufficiently similar that an overall summary 
estimate would be appropriate. In Figure 15.4, the meta- analysis is stratified by study 
design, showing separate subgroup estimates for RCTs and NRSIs. A random- effects 
meta- regression is used to estimate the ratio of risk ratios comparing NRSIs with 
RCTs and its confidence interval. However, statistical comparisons across designs can 
be misleading, since there is often insufficient evidence to conclude that there is a 
difference, whereas lack of evidence of a difference cannot be taken as evidence of 
similarity of results across design.
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Outcome: All-cause mortality
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FIGURE 15.4 Forest plot showing risk ratios for all- cause mortality for a comparison of 
annual colonoscopy surveillance with less frequent or no colonoscopy in randomized and 
nonrandomized studies.
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15.6 CONCLUSIONS

Systematic reviews may need to include NRSIs to answer their research questions, 
especially when these questions concern long- term or rare outcomes, such as treatment 
harms (adverse events), or to evaluate interventions in fields where RCTs are difficult 
to conduct. However, the mere absence of RCTs does not add to the validity of NRSIs. 
Review methods for NRSIs are broadly similar to those for reviews of RCTs. Assessing 
risk of bias is a particularly important step for NRSIs, because NRSIs have an inher-
ently greater risk of confounding, selection biases, and information biases than RCTs. 
The decision on whether to combine estimates from NRSIs statistically should be 
guided by the similarity of study designs, populations, interventions, and outcomes in 
included studies, and informed particularly by the risk of bias assessment. Statistical 
synthesis of results from studies of different designs should be approached with cau-
tion; careful consideration and exploration of difference in study characteristics and 
statistical heterogeneity are essential.
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Systematic Reviews 
of DiagnosticAccuracy
Yemisi Takwoingi and Jonathan J. Deeks

Tests are routinely used in medicine to screen for, diagnose, grade, and monitor the pro-
gression of disease. Diagnostic information is obtained from various sources, including 
imaging and biochemical technologies, pathological and psychological investigations, 
and signs and symptoms elicited during history- taking and clinical examinations [1]. 
Each item of information obtained from these sources can be regarded as a result of a 
separate diagnostic or screening test, whether it is obtained for the purpose of iden-
tifying diseases in sick people, or for detecting early disease in asymptomatic individ-
uals. Systematic reviews of assessments of the reliability, accuracy, and impact of these 
tests are essential to guide optimal test selection and the appropriate interpretation of 
test results.

To make sense of a diagnostic investigation, a clinician needs to be able to make an 
inference regarding the probability that a patient has the disease in question according 
to the result obtained from the test. Tests rarely make a diagnosis 100% certain, but 
they may provide enough information to rule in or rule out a diagnosis in a pragmatic 
manner [2]. That is, they may make a diagnosis certain enough for the expected ben-
efits of treating the patient to outweigh the expected consequences of not treating 
them. This chapter focuses on systematic reviews of studies of diagnostic accuracy that 
describe the probabilistic relationships between positive and negative test results and 
the presence or absence of disease, and therefore indicate how well a test can separate 
diseased from nondiseased patients.
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16.1  RATIONALE FOR UNDERTAKING SYSTEMATIC REVIEWS 
OF STUDIES OF TEST ACCURACY

Systematic reviews of tests are undertaken for the same reasons as systematic reviews 
of therapeutic interventions: to produce estimates of performance based on all avail-
able evidence, to evaluate the methodological quality of published studies, and to 
account for variation in findings between studies [3, 4]. It is the norm to observe vari-
ability in test accuracy between studies that is much more than would be expected due 
to chance alone. Measures of test accuracy are not fixed properties of a test and are not 
usually transferable across different populations and settings [5]. Other factors may 
affect test performance, including the threshold for defining a positive versus a nega-
tive test result, characteristics of the test and its conduct (including skill and experience 
of assessors or practitioners), and definition of the target condition. Reviews of diag-
nostic test accuracy (DTA) studies, in common with systematic reviews of randomized 
controlled trials (RCTs), involve key stages of question definition, literature searching, 
evaluation of studies for eligibility and quality, data extraction, and data synthesis (see 
Chapter 2). However, the details within many of the stages differ. In particular, the 
design of test accuracy evaluations differs from the design of studies that evaluate 
the effectiveness of treatments, which means that different criteria are needed when 
assessing study quality in terms of the potential for bias and applicability. Additionally, 
each study reports a pair of related summary statistics (for example, sensitivity and 
specificity) rather than a single statistic, requiring alternative statistical methods for 
combining study results.

In this chapter we provide an overview of the most established methods and 
current issues in undertaking systematic reviews of diagnostic accuracy. We also high-
light recent methodological developments and areas where further research and eval-
uation are needed.

16.2  FEATURES OF STUDIES OF TEST ACCURACY

To ensure a representative sample, the people recruited into a test accuracy study 
should ideally be a consecutive (or randomly selected) series of patients/participants 
suspected of having the target condition (or disease) who are recruited from a clinical 
setting in which the test(s) will be used in practice. The terms “target condition” and 
“disease” are used interchangeably in this chapter for simplicity. Studies of test accu-
racy assess test results of patients with and without the target condition, each of whom 
undergoes one or more index tests (new or existing tests of interest) as well as the 
reference standard, sometimes known as the “gold” standard.

The relationship between the results of an index test and disease status is described 
using probabilistic measures, such as sensitivity, specificity, and likelihood ratios. It is 
important that the results of the reference standard are very close to the truth, or else 
the accuracy of an index test will be poorly estimated  [6]. Therefore, the reference 
standard is the best available test for verifying true disease status. To achieve this, a 
reference standard may not be a single test, but rather a battery of clinical tests and 
other available clinical evidence (often termed a composite reference standard) [7], or 
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may involve undertaking invasive procedures or lengthy periods of follow- up to ascer-
tain disease status. If a composite reference standard is used, it should not include the 
index test, or else diagnostic accuracy will most likely be overestimated. Such an effect 
is known as incorporation bias [8].

16.3  SUMMARY MEASURES OF DIAGNOSTIC ACCURACY

16.3.1 Typesof Data

A test may yield a nominal (binary), ordinal (ordered categories), discrete (count), 
or continuous result. Standard methods for assessing test accuracy rely on binary 
classification of the results of the index test and the reference standard. For nonbi-
nary data, thresholds (cut- offs) are needed to dichotomize the data to define positive 
and negative test results. The threshold may be numeric (e.g. serum levels of prostate 
specific antigen, PSA) or may be non- numeric and based on subjective visual interpre-
tation or judgment (e.g. qualitative interpretation of an ultrasound scan). The results 
of a test accuracy study are presented in a 2 × 2 table, with individuals classified as true 
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), based 
on cross- classification of the results of an index test against those of the reference stan-
dard (Table 16.1).

16.4  MEASURES OF DIAGNOSTIC ACCURACY

The most commonly used measures of test accuracy are defined in Box 16.1. Paired 
measures  – sensitivity and specificity, positive and negative predictive values, and 
positive and negative likelihood ratios (LR+ and LR−) – are typically used to quantify 
test performance because of the need to distinguish between the presence and absence 
of the target condition. Probably the most commonly seen measures are sensitivity, 
which describes the proportion of those with the target condition who (correctly) have 
a positive test result, and specificity, which describes the proportion of those without 
the target condition who (correctly) have a negative test result. Note that calculations 

TABLE 16.1 Cross- classification of index test and reference standard results in a 
diagnostic test accuracy study.

Reference standard 
positive

Reference standard 
negative

Total

Indextest
positive

Truepositives(TP) Falsepositives(FP) Testpositives(TP + FP)

Indextest
negative

Falsenegatives(FN) Truenegatives(TN) Testnegatives(FN + TN)

Total Diseasepositives
(TP + FN)

Diseasenegatives
(FP + TN)

Studytotal
(TP + FP + FN + TN)
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of sensitivity, specificity, and likelihood ratios are undertaken on the columns of 
Table 16.1, and give the same results if the numbers of participants with the disease 
and the numbers without the disease change. These values are therefore not directly 
affected by changes in the prevalence of the disease in a study sample.

In contrast to sensitivity and specificity, the calculations of predictive values are 
undertaken on the rows of the 2 × 2 table, and therefore directly depend on the prev-
alence of the disease in the study sample. The more common a disease is, the more 
likely it is that a positive result is right and a negative result is wrong. Clinicians often 
consider predictive values to be the most useful measures of diagnostic performance 
when interpreting the test results of a single patient. However, disease prevalence 

Box 16.1 Definition of Common Measures of Test Accuracy

Test accuracy 
measure

Formulaa Definition

Sensitivity TP/(TP + FN) Proportionofthosewiththetarget
conditioncorrectlyidentifiedashaving
thecondition

Specificity TN/(FP + TN) Proportionofthosewithoutthetarget
conditioncorrectlyidentifiedasnot
havingthecondition

Positivepredictive
value

TP/(TP + FP) Proportionofthosewiththetarget
conditionamongthetestpositives

Negativepredictive
value

TN/(FN + TN) Proportionofthosewithoutthetarget
conditionamongthetestnegatives

Positivelikelihood 
ratio(LR+) TP / TP+FN

FP / FP+ TN

Ratiooftheproportionoftest
positivesamongthosewiththetarget
conditioncomparedtotheproportion
oftestpositivesamongthosewithout
thetargetcondition

Negative 
likelihoodratio 
(LR−)

FN / TP+FN
TN / FP+ TN

Ratiooftheproportionoftest
negativesamongthosewiththe
targetconditioncomparedtothe
proportionoftestnegativesamong
thosewithoutthetargetcondition

Diagnosticodds 
ratio

(TP × TN)/(FP × FN) or

sensitivity
1-sensitivity
specificity

1-specificity

 

orLR+/LR−

Ratiooftheoddsofpositivityin
thosewhohavethetargetcondition
comparedtotheoddsofpositivityin
thosewithoutthecondition

a ExpressedusingthenotationinTable 16.1.
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is rarely constant across studies included in a systematic review, so there is often 
an unacceptably high level of heterogeneity among positive and negative predictive 
values, making them an unsuitable choice of accuracy measures in systematic reviews 
and meta- analyses. There is an analogy here with the estimation of risk differences 
in systematic reviews of RCTs (Chapter 8), which are the easiest summary statistic to 
understand and apply, but are rarely the summary of choice for a meta- analysis as they 
are commonly heterogeneous across trials.

Different thresholds will produce different sensitivities and specificities. When 
several thresholds have been considered in a test accuracy study, the diagnostic accu-
racy of the test can be illustrated using a graph known as a receiver operating 
characteristic (ROC) plot of the TP rate (sensitivity) against the FP rate (1- specificity). 
For a test where presence of the target condition increases the value of a biomarker, 
e.g. PSA, as the threshold decreases, sensitivity increases while specificity decreases, 
and vice versa. The ROC plot (Figure 16.1) shows this trade- off between sensitivity and 
specificity across endometrial thickness thresholds used in endovaginal ultrasound for 
detecting endometrial cancer.

A likelihood ratio describes how many times more likely a person with disease is 
to receive a particular test result than a person without disease. Binary tests have two 
likelihood ratios: a positive likelihood ratio (LR+; usually a number greater than 
one) and a negative likelihood ratio (LR–; usually a number between zero and 
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FIGURE 16.1 Receiver operating characteristic plot for detecting endometrial cancer by 
endovaginal ultrasound.
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one). Likelihood ratios can be applied in clinical practice to update an individual’s 
estimated chance of disease according to their test result using Bayes’ theorem: the 
post- test odds that a patient has the disease are estimated by multiplying the  pre- test 
odds by the likelihood ratio. The post- test odds are then converted to post- test prob-
abilities (see Chapter  8 for an explanation of the differences between odds and 
probabilities). A nomogram (developed by Fagan) is a tool often used to calculate 
and graphically illustrate these post- test probabilities [9]. The predictive values of a 
test can be thought of as post- test probabilities, and hence estimated from likelihood 
ratios by application of Bayes’ theorem [10]. In this situation the pre- test probability 
is estimated by the population prevalence: application of the positive likelihood ratio 
yields the positive predictive value. The negative predictive value can be calculated 
by application of the negative likelihood ratio, and subtracting the resulting post- test 
probability from one.

Sensitivities and specificities, and positive and negative likelihood ratios, can 
be combined into a single summary of diagnostic performance known as the diag-
nostic odds ratio (DOR) [11]. When a test provides no diagnostic evidence (sensi-
tivity + specificity = 1), the DOR is 1. Note that while the DOR summarizes the results 
into a single number, crucial information contained in sensitivity and specificity or in 
likelihood ratios is discarded. Notably, the DOR cannot distinguish between tests with 
high sensitivity and low specificity and tests with low sensitivity and high specificity. 
For example, given two tests with an identical DOR of 14, one of the tests can have 
a sensitivity of 0.9 and specificity of 0.6 while the other test has a sensitivity of 0.6 
and specificity of 0.9. This loss of information on the error rates in the diseased (FPs) 
and nondiseased groups (FPs) limits the clinical usefulness of the DOR. These error 
rates are important for judging the extent and likely impact of the downstream conse-
quences of testing.

16.5  SYSTEMATIC REVIEWS OF STUDIES OF DIAGNOSTIC  
ACCURACY

A systematic review of DTA may summarize the accuracy of one or more tests individ-
ually, or compare their accuracy. There are three major ways in which systematically 
reviewing studies of diagnostic accuracy differs from reviewing therapeutic interven-
tions: the choice of search terms for electronic literature searches, the criteria for the 
assessment of study quality, and the methods for the statistical combination of results.

16.5.1 LiteratureSearching

The identification of studies for a systematic review typically involves undertaking 
both electronic and manual searches. The manual searches may include hand- 
searching key or unindexed journals, reviewing reference lists and bibliographies, and 
contacting experts (see Chapter 3). This process is no different for systematic reviews 
of diagnostic accuracy than for reviews of RCTs.

However, electronic database searches for studies of diagnostic accuracy are more 
difficult than searches for RCTs because of inconsistent study design terminology and 
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poor indexing due to lack of appropriate indexing terms. Occasionally a simple search 
using just the test name will prove to be sensitive, but many diagnostic technologies 
(such as ultrasound, X- rays, and serology tests) are used across a variety of fields in 
medicine, so that a mixture of appropriate and inappropriate studies will be retrieved, 
and the search will not be specific.

To reduce the risk of missing relevant studies, search strategies for identifying 
DTA studies usually include key elements of the review question such as the index 
test(s), target condition, and target population. Other terms such as the reference stan-
dard or measures of test accuracy may be included. However, care is needed to avoid 
retrieval of an overwhelming number of irrelevant records to screen. Methodological 
filters that can be added to target condition and index test(s) searches have been devel-
oped in an attempt to increase the precision of searches. These search filters consist of 
text words and database indexing terms. Beynon et al. have shown that search filters 
do not perform consistently, and should not be used as the only approach in formal 
searches to inform DTA systematic reviews  [12]. This finding supports current rec-
ommendations in the Cochrane Handbook for Systematic Reviews of Diagnostic Test 
Accuracy [13].

Given the complexity of conducting searches for DTA studies, we recommend 
involving a librarian or information specialist who has previous experience of DTA 
reviews or expertise in designing complex systematic review search strategies. The 
combination of their technical expertise and clinical/content expertise from other 
members of the review team will aid in development of a comprehensive search 
strategy that captures the myriad ways in which the index test(s), target condition, and 
population are described in the literature. In future, text- mining techniques and other 
automation tools, coupled with better indexing in electronic databases, may improve 
the efficiency and accuracy of searches [14, 15].

16.5.2 Assessmentof MethodologicalQuality

Flaws in the design and conduct of test accuracy studies can contribute to between- 
study variability and lead to biased results  [16, 17]. Quality assessment is essential 
in systematic reviews of diagnostic accuracy studies to identify the potential for bias 
and the applicability of study results to the review question. The results of the quality 
appraisal may also guide investigations of heterogeneity and sensitivity analyses. The 
assessments should ideally be performed independently by at least two review authors, 
with a process for resolving disagreements.

The most commonly used tool is the Quality Assessment of Diagnostic Accuracy 
Studies (QUADAS), the more recent version being QUADAS- 2  [18, 19]. This is the 
only tool recommended by Cochrane [20]. The QUADAS- 2 tool explicitly addresses 
two aspects of study validity – risk of bias (internal validity) and applicability (external 
validity) – and consists of four domains: patient selection, index test, reference stan-
dard, and flow and timing. Each domain is assessed in terms of the risk of bias (low, 
high, or unclear risk), and the first three domains are also assessed in terms of con-
cerns about applicability (low, high, or unclear concern)  [19]. If a review evaluates 
more than one index test, the index test domain should be assessed separately for 
each index test, as there may be differences between tests. Signaling questions that 
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address aspects of study design are used to facilitate risk of bias judgments within each 
QUADAS- 2 domain. The QUADAS- 2 tool must be tailored to each review by adding 
or omitting signaling questions and developing review- specific guidance on how to 
assess each signaling question. The QUADAS- 2 tool is available from the QUADAS 
website (www.quadas.org). The tool was not designed for the assessment of test com-
parisons and an extension, QUADAS- C, for assessing risk of bias in comparative accu-
racy studies has been developed [21].

It is essential that the quality of the studies included in a review is assessed and 
reported so that appropriate inferences can be drawn. Results of methodological 
quality assessments may be tabulated or summarized graphically to show individual 
study results or across studies. Figure 16.2 summarizes the risk of bias and applica-
bility concerns across 49 studies that evaluated Xpert MTB/RIF and Xpert Ultra for 
detection of active tuberculosis in children [22]. The numbers shown on the bars for 
each domain are the number of studies in each response category.

Assessments of methodological quality are often hindered by poor report-
ing, leading to ratings of “unclear” in one or more domains for several studies. For 
example, in Figure 16.2, the reference standard domain was rated “unclear” in 26 out 
of 49 (53%) studies. A study report should include clear descriptions of the reference 
and index tests, with definitions of positive and negative results for both, and descrip-
tions of demographic characteristics, comorbidities, source, and referral history of 
patients. The Standards for Reporting Diagnostic Accuracy (STARD) statement 
aims to improve completeness and transparency in reporting of diagnostic accuracy 
studies [23].

16.6  META- ANALYSIS OF STUDIES OF DIAGNOSTIC ACCURACY

Based on the types of questions and objectives that can be addressed in a DTA review, 
the three main types of analyses are:

1. Analysis of the accuracy of a single test.
2. Analysis comparing the accuracy of multiple tests.
3. Investigations of heterogeneity to assess the effect of clinical and methodolog-

ical characteristics on test accuracy [24].

Patient Selection 5 5 39 17 8 24

Index Test: Xpert MTB/RIF 49 1 11 37

Index Test: Xpert Ultra 3 3

Reference Standard 26 23 4 45

Flow and Timing 4 1 44

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
Risk of Bias Applicability Concerns

High Unclear Low

FIGURE 16.2 Summary of review authors’ risk of bias and applicability concerns ratings 
presented as percentages across studies for each QUADAS- 2 domain. Source: Reproduced with 
permission from Kay et al. [22].



304 Systematic Reviews in Health Research 

Following an explanation of the general principles of DTA meta- analysis, we describe 
each type of analysis and illustrate them with examples. Further details and additional 
examples can be found in the Cochrane Handbook for Systematic Reviews of Diagnostic 
Test Accuracy [25].

16.7  GENERAL PRINCIPLES OF DIAGNOSTIC ACCURACY 
META- ANALYSIS

Diagnostic threshold is often a source of variation in meta- analyses of diagnostic accu-
racy because studies included in a systematic review may have used different thresh-
olds to define positive and negative test results. Besides numeric thresholds, there may 
be naturally occurring variations in diagnostic thresholds between observers or bet-
ween laboratories. Therefore, a general principle for synthesizing sensitivity and speci-
ficity across studies is to allow for potential correlation between these paired measures.

As with any statistical analysis, the first step is to understand the data. Estimates 
of sensitivity and specificity may be plotted on forest plots and in the ROC space 
for preliminary investigations of the data prior to meta- analysis. Figure 16.3 shows 
estimates of sensitivity and specificity at a particular threshold from each of the 30 
studies included in a systematic review of the accuracy of the mood disorder question-
naire (MDQ) for detection of any type of bipolar disorder in mental health center set-
tings [26]. The total score for the MDQ ranges from 0 to 15 points and the developers 
of the questionnaire recommend a threshold of 7 for defining test positivity [27].
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FIGURE 16.3 Forest plot of the mood disorder questionnaire for detection of bipolar disorder 
in mental health center settings. FN, false negative; FP, false positive; TN, true negative; TP, true 
positive. The studies are sorted by threshold, sensitivity, and specificity in descending order. Source: 
Adapted from Takwoingi et al. [24].
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Traditional univariate fixed- effect or random- effects meta- analytic methods (see 
Chapter  9) summarize sensitivity and specificity separately, thus ignoring potential 
correlation between the two measures. Such analyses can give misleading results [28]. 
The summary receiver operating characteristic (SROC) curve approach developed by 
Moses et al. [29] is a fixed- effect method that accounts for potential heterogeneity in 
threshold by combining sensitivity and specificity to produce an SROC curve. How-
ever, this SROC approach has methodological limitations that lead to inaccurate stan-
dard errors, making formal statistical inference invalid [30–32].

To overcome the limitations of simple univariate methods and the Moses SROC 
approach, hierarchical models (also known as mixed or multilevel models) are rec-
ommended  [25, 33]. These hierarchical methods are more complex than methods 
routinely used for synthesizing the effects of interventions. The standard hierar-
chical models for meta- analysis of a pair of sensitivity and specificity from each 
included study are the bivariate model  [34, 35] and the hierarchical summary 
receiver operating characteristic (HSROC) model [36]. The bivariate model focuses 
on estimation of a summary point (summary sensitivity and specificity), while the 
HSROC model focuses on estimation of a summary curve. Both models account 
for correlation between sensitivity and specificity across studies, as well as vari-
ability within and between studies. Between- study variation is modeled through the 
inclusion of random effects.

Although the parameters of the bivariate and HSROC models differ (Box 16.2), 
the models are mathematically equivalent when no covariates (e.g. test type) are 
included  [37]. Therefore, SROC curves can be computed from bivariate models 
and summary points from HSROC models, and model choice for meta- analysis 
of a single test is unimportant  [24, 25, 37]. However, when comparing test accu-
racy or investigating heterogeneity, model choice becomes important and is likely 
to be informed by variation in thresholds reported in the included studies, as well 

Box 16.2 Basic Parameters of Hierarchical Models for Diagnostic 
Test Accuracy Meta- Analysis

Bivariate model HSROC model

Meanlogitsensitivity Meanaccuracy

Meanlogitspecificity Meanthreshold

Varianceofrandomeffectsforlogitsensitivity Varianceofrandomeffects
foraccuracy

Varianceofrandomeffectsforlogitspecificity Varianceofrandomeffects
forthreshold

Correlationbetweenthelogitsofsensitivity 
andlogitsofspecificity

ShapeofSROCcurve

Eachmodelhasfiveparameterswhennocovariatesareincluded.
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as whether the focus of inference is a comparison of summary points or summary 
curves. Both classic and Bayesian hierarchical methods are available, but the latter 
are rarely used [38].

Extensions of these hierarchical models have been proposed to account for 
imperfect reference standard [39–43], disease prevalence [44–46], inclusion of multiple 
thresholds (i.e. multiple 2 × 2 tables from each study) [47–52], network meta- analysis 
of test accuracy [53–55], and other data complexities in a DTA meta- analysis [56–59]. 
However, the focus of this chapter is on recommended and well- established methods 
for meta- analysis based on a single 2 × 2 table from each study and assuming a perfect 
reference standard.

16.8  METHODS FOR META- ANALYSIS OF A SINGLE TEST

16.8.1 Estimationof aSummarySensitivityand Specificity 
ata CommonThreshold

The bivariate model enables joint inferences about sensitivity and specificity such 
that confidence and prediction regions can be plotted around the summary point. 
Confidence regions show the uncertainty around the point estimate (analogous to a 
confidence interval), while prediction regions illustrate the extent of between- study 
heterogeneity. This means that a 95% confidence region shows the region within 
which we are 95% certain the average sensitivity and specificity values will lie, while 
a 95% prediction region shows the region within which we are 95% certain the sen-
sitivity and specificity of a new study will lie. Chu et al. have shown that a binomial 
likelihood should be used for modeling within- study variability [35, 60]. This bivar-
iate generalized linear mixed model (GLMM) can be fitted in SAS, Stata, R, rjags, 
and WinBUGS.

For the interpretation of a summary sensitivity and specificity to be clinically 
meaningful, the meta- analysis should include only studies using thresholds that are 
the same or deemed to be similar. Using the MDQ data shown in Figure 16.3, bivariate 
meta- analysis of the 19 studies that used a common threshold of 7 gave a summary 
sensitivity (95% CI) of 0.65 (0.57 to 0.72) and summary specificity (95% CI) of 0.79 
(0.72 to 0.84). Figure 16.4 shows an SROC plot with the summary point for the MDQ 
surrounded by 95% confidence and prediction regions. The scatter of study points on 
the SROC plot indicates substantial variation in the estimates of both sensitivity and 
specificity, even though only studies that used the same threshold were included in 
the analysis.

Bivariate meta- analysis of likelihood ratios and predictive values is possible. Zwin-
derman and Bossuyt [61] have shown that bivariate meta- analysis of likelihood ratios 
is not trivial and so they recommend meta- analysis of sensitivities and specificities. If 
likelihood ratios are required, they can be derived using functions of the parameters 
of the standard bivariate or HSROC models. Leeflang et al.  [62] proposed bivariate 
meta- analysis of predictive values, but the main disadvantage is interpretation of the 
results and translation into practice, given the direct impact of prevalence on predic-
tive values.
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16.8.2 Estimationof anSROCCurve

The Rutter and Gatsonis HSROC model is a nonlinear generalized mixed model that 
can be fitted in SAS, rjags, or WinBUGS. The model requires a 2 × 2 table from each 
eligible study for estimation of an SROC curve across different thresholds. Figure 16.5 
shows the estimated SROC curve for the full set of 30 MDQ studies, drawn within 
the range of specificities (0.47 to 1.00) observed among the included studies to avoid 
extrapolating beyond the data. Given the relationship between the bivariate and 
HSROC models mentioned earlier  [37], a clinically meaningful summary point can 
be estimated using the HSROC model by restricting the studies included in the meta- 
analysis to only those that reported a 2 × 2 table at the threshold of 7, thus reproducing 
the SROC plot shown in Figure 16.4.

An SROC curve can be numerically summarized using the DOR (exponent of the 
accuracy parameter) if the shape of the curve is symmetric, i.e. the shape parameter = 0, 
implying that accuracy does not depend on threshold. The DOR is not appropriate as 
a single summary if the curve is asymmetric, i.e. the shape parameter  0, because the 
DOR will be different at different points along the curve. One approach that can be 
used to aid in interpretation of the curve is to estimate sensitivity at fixed or clinically 
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FIGURE 16.4 SROC plot of the mood disorder questionnaire (MDQ) at a common threshold of 
7 for detection of bipolar disorder in mental health center settings. Each study point was scaled 
according to the precision of sensitivity and specificity in the study; the greater the height (or 
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indicating the 95% confidence region and by a dashed line indicating the 95% prediction region. 
Source: Adapted from Takwoingi et al. [24].
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relevant values of specificity (or vice versa), e.g. at median and interquartile range (IQR) 
values of specificity from the included studies, as shown in Table 16.4.

16.9  QUANTIFYING AND INVESTIGATING HETEROGENEITY

The extent of heterogeneity in a meta- analysis can be quantified, but statistical approaches 
for assessing or describing heterogeneity in DTA meta- analysis are still developing. 
Unexplained heterogeneity is frequently described using the I2 statistic proposed by Hig-
gins et al. for traditional univariate meta- analysis (see Chapter 9) [63]. This I2 statistic 
is not recommended for routine use in DTA meta- analysis because it does not account 
for potential threshold effects [25]. There are also issues with the I2 statistic that could 
lead to misleading conclusions [64–66]. Multivariate and DTA- specific I2 statistics have 
been proposed [64], but are yet to be used routinely. The estimates of between- study var-
iance (Box 16.2) quantify heterogeneity and are akin to the quantity τ2 in random- effects 
models for meta- analysis in Chapter 9. However, between- study variances are unlikely 
to be reliably estimated when there are sparse data and are also not easily interpreted 
because they represent variation in parameters expressed on log odds scales [25]. There-
fore, these between- study variances are not usually reported in DTA reviews.

To investigate whether a study- level covariate is associated with test accuracy, 
exploratory analyses can be performed by visually inspecting forest plots and SROC 
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plots to observe patterns in the data. Ideally, covariates should be pre- specified in the 
review protocol with a clear justification for their selection (see Chapter 10). Hierar-
chical models are regression models and so can be extended readily to meta- regression 
models by adding covariate terms to investigate association between test accuracy and 
a potential source of heterogeneity [34, 36].

16.9.1 Comparisonof SummaryPoints

The bivariate meta- regression model enables assessment of the effect of covari-
ates on sensitivity, specificity, or both. Kay et  al. used bivariate meta- regression to 
investigate the effect of age group on the sensitivity and specificity of Xpert MTB/
RIF (Figure  16.6)  [22]. There was statistical evidence of a difference in sensitivity 
but not in specificity (Table  16.2). Comparing children aged 5–14 years with those 
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FIGURE 16.6 Accuracy of Xpert MTB/RIF for detecting pulmonary tuberculosis in children 
using induced sputum specimens, stratified by age group. FN, false negative; FP, false positive; 
TN, true negative; TP, true positive. Studies are sorted by sensitivity and specificity. Source: Data 
from Kay et al. [22].

TABLE 16.2 Effect of age group on sensitivity and specificity of Xpert MTB/
RIF for detection of pulmonary tuberculosis using induced sputum specimens 
from children.

Age group Studies Number of 
children (cases)

Sensitivity (95% CI) Specificity (95% CI)

5–14 years 5 627(65) 0.80(0.67to0.89) 0.98(0.94to0.99)

0–4 years 7 2062(143) 0.49(0.32to0.65) 0.99(0.97to1.00)

Absolutedifference 0.32(0.12to0.52),
P = 0.002

−0.01(−0.03to0.01),
P = 0.34

Source: Adapted from Kay et al. [22]. P values reported for the absolute differences in sensitivity and 
specificity are from Wald tests.
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aged 0–4 years, the absolute difference in sensitivity (95% CI) was 0.32 (0.12 to 0.52, 
P = 0.002), and the absolute difference in specificity (95% CI) was −0.01 (−0.03 to 
0.01, P = 0.34).

16.9.2 Comparisonof SummaryCurves

The HSROC meta- regression model allows assessment of the effect of covariates on 
the accuracy, threshold, and/or shape parameters. If SROC curves are assumed to have 
the same shape (i.e. parallel curves) or are symmetric, differences in test accuracy can 
be expressed using the relative diagnostic odds ratio (RDOR), because the RDOR is 
constant across all values of the threshold parameter. However, when the shapes of 
the curves differ, the RDOR represents the relative accuracy of the points on the curves 
where they intersect the diagonal line in ROC space given by sensitivity = specificity, 
which may not be meaningful [25]. As stated in section 16.8.2, estimating sensitivity at 
fixed values of specificity (or vice versa) is a preferred approach.

Using HSROC meta- regression, Carvalho et al. investigated the effect of language 
(Asian versus non- Asian) on the accuracy of the MDQ by comparing SROC curves for 
the two subgroups of the covariate in one HSROC model [26]. By including covariate 
terms for only the accuracy and threshold parameters, the final model assumed the same 
shape for the two SROC curves. The RDOR (95% CI) of 0.55 (0.25 to 1.19) indicated 
that the DOR of Asian versions of the MDQ was 0.55 times that of the non- Asian ver-
sions, though there was little statistical evidence of a difference in accuracy (P = 0.13).

16.10  COMPARISONS OF THE ACCURACY OF TWO  
OR MORE TESTS

16.10.1 TestComparisonStrategy

For clinical and policy decision- making about test selection, it is important to know 
how the accuracy of a new test compares with that of an existing test or current prac-
tice. Ideally in primary studies, the diagnostic accuracy of competing tests should be 
compared in the same study population, but comparative studies are scarce [67]. There 
are two basic comparative accuracy study designs: a within- subject (paired) design 
in which all patients undergo all tests; and a randomized design in which patients 
are randomized to receive one of the index tests but all patients undergo the refer-
ence standard [67]. Such head- to- head evaluations from well- designed studies provide 
robust estimates of comparative accuracy.

Systematic reviews of comparative accuracy may undertake meta- analyses using 
indirect and/or direct comparisons [67, 68]. An indirect comparison includes all eli-
gible studies that have evaluated at least one of the tests of interest, making the most 
of the available data, while a direct comparison includes only the comparative studies. 
Unlike adjusted indirect comparisons that are exploited in network meta- analyses 
of interventions (see Chapter  13), these naive indirect test comparisons do not use 
a common comparator test  [69]. Since heterogeneity is the norm in test accuracy 
reviews, direct comparisons should provide the most reliable evidence on relative 
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test accuracy by ensuring an unbiased comparison. However, such analyses may not 
always be feasible due to limited availability of comparative studies [67]. For example, 
in a systematic review comparing the diagnostic accuracy of computed tomography 
(CT) and magnetic resonance imaging (MRI) for clinically significant coronary artery 
disease, although 103 studies were included in the meta- analysis, only 5 of the studies 
evaluated both CT and MRI in the same study population [70]. Therefore, reviewers 
typically rely on indirect test comparisons. Takwoingi et al. provided empirical evi-
dence of differences in the results from direct and indirect comparisons, although they 
found no evidence of a systematic direction in the differences [67].

16.10.2 Methodsfor Comparisonsof TwoorMoreTests

Various methods have been used for comparing test accuracy in published systematic 
reviews [68, 71]. Network meta- analysis methods that extend either the bivariate or 
HSROC model have been proposed [72]. Cochrane currently recommends a hierar-
chical meta- regression approach to compare summary points or summary curves by 
adding test type as a covariate to the bivariate or HSROC model [20, 25]. This meta- 
regression approach, similar to the approach for investigating heterogeneity, is flex-
ible, allowing the comparison of multiple tests. For example if there are N tests, 
N–1 indicator variables that take the value 0 or 1 are added to the model. Thus the 
effect of test type on model parameters can be estimated: the regression coefficients 
estimate the performance of one test relative to that of the test used as the reference 
category (note this test is not the reference standard, but another index test or compar-
ator test) for the test type covariate. Additional variance terms for the random- effects 
parameters can also be added to either the bivariate or HSROC model to determine 
whether assumption of common variances is justified or separate variances for each 
test are needed [71]. It should be noted that as the models become increasingly com-
plex, the number of additional parameters to estimate increases and can be difficult to 
fit, especially when there are few studies.

Figure  16.7 illustrates a comparison of summary points using bivariate meta- 
regression to compare the accuracy of CT and MRI. The indirect comparison shown 
in panel a included all 103 studies (84 CT studies,14 MRI studies, and 5 CT vs. MRI 
studies) in the analysis, while only the 5 paired studies of CT versus MRI were included 
in the direct comparison shown in panel b. Paired studies do not commonly report the 
joint classification of the results of two index tests within the diseased and nondis-
eased groups, but rather report a separate 2 × 2 table for each index test, ignoring the 
pairing of test results within individuals in each study. Therefore, the bivariate meta- 
regression described in this chapter is a conservative approach. A Bayesian bivariate 
model extension that accounts for paired data was proposed by Trikalinos et al. [74], 
but data availability and modeling complexities limit its use. Results from the indirect 
and direct comparisons of CT and MRI (Table 16.3) are consistent and show that CT 
is both more sensitive and more specific than MRI. However, the results of the direct 
comparison are less precise than the indirect comparison due to the limited number 
of studies.

When studies report different thresholds, a comparison of SROC curves is more 
appropriate than summary points. In addition, summary points can be estimated for 
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each test at clinically relevant thresholds for which data are available. Carvalho et al. 
compared the diagnostic accuracy of the bipolar spectrum diagnostic scale (BSDS), the 
hypomania checklist (HCL- 32), and the MDQ for detecting bipolar disorder in mental 
health settings using indirect and direct test comparisons [26]. As the studies used var-
ious thresholds for each instrument, an HSROC meta- regression model was used to 
estimate and compare SROC curves.

The indirect comparison of BSDS, HCL- 32, and MDQ included 44 studies. The 
effect of test type on the accuracy, threshold, and shape parameters of the model was 
assessed [26]. Using a likelihood ratio test to compare models with and without covari-
ate terms for the shape parameter, there was statistical evidence that the shapes of the 
SROC curves differed (P = 0.002). Figure 16.8 (panel a) shows that the SROC curves 
for the three tests cross, implying that one test is not consistently more accurate than 
the other two. Therefore, the RDOR cannot be used to quantify relative accuracy. This 
is also evident in Table 16.4, which shows the sensitivities estimated from the curves 
at the median, lower, and upper quartiles of the observed specificities in the included 
studies. The direct comparison of the MDQ and HCL- 32 included only eight studies 
(panel b). Three studies directly compared the BSDS and MDQ, but no study directly 
compared the HCL- 32 and BSDS in a mental health setting.

16.11  SOFTWARE OPTIONS AND MODEL FITTING ISSUES

Several user- written macros and packages (e.g. MetaDAS, metandi, midas, bamdit) 
are available for fitting the models [73]. Further information and tutorials are avail-
able on the Cochrane Screening and Diagnostic Tests Methods Group website at 
https://methods.cochrane.org/sdt.

The GLMM implementation of the bivariate model reduces to two univariate 
random- effects logistic regression models for sensitivity and specificity when the 

TABLE 16.3 Summary estimates from direct and indirect comparisons of 
 computed tomography (CT) and magnetic resonance imaging (MRI) for coronary 
artery disease.

Number 
of studies

Number 
of cases

Number of 
patients

Sensitivity 
(95% CI)

Specificity 
(95% CI)

P valuea

Indirectcomparison

CT 89 4120 7526 0.97(0.96,0.98) 0.87(0.84,0.90) <0.0001

MRI 19 523 978 0.88(0.84,0.91) 0.70(0.59,0.79)

Directcomparison

CT 5 159 334 0.94(0.89,0.97) 0.86(0.72,0.93) 0.02

MRI 5 142 307 0.86(0.79,0.91) 0.74(0.56,0.87)

a Statistical significance of the difference in test performance was assessed using a likelihood ratio test 
comparing models with and without covariate terms for test type.
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correlation parameter is dropped from the model (i.e. assumed to be zero). This simpli-
fication is sometimes necessary and appropriate when there are few studies or sparse 
data, which cause problems for the computationally intensive iterative process used to 
produce the estimates of the model parameters, leading to convergence issues or unreli-
able estimates [75]. Our experience suggests that the HSROC model can be successfully 
fitted with fewer studies and more extreme data more often than the bivariate model. An 
overview of approaches and pragmatic guidance for dealing with estimation problems 
and atypical data, such as when only 2 × 1 tables are available because false positives are 
impossible or only test positives are verified, are described in Takwoingi et al. [73].

16.12  INTERPRETATION AND REPORTING

Many researchers, health care professionals, and policymakers are unfamiliar 
with test accuracy statistics and systematic reviews of diagnostic accuracy [76, 77], 
let  alone patients and the general public. Therefore, communicating review find-
ings to a range of audiences is challenging. Reporting test accuracy using natural 
frequencies and visual aids may facilitate improved understanding and better 
estimation of the post- test probability of disease [76]. In their guidance on writing 
plain- language summaries, Whiting et al. [78] provided examples for presenting test 
accuracy results narratively and graphically, and gave equations for transforming 
results into natural frequencies using sensitivity, specificity, and prevalence. The cal-
culations are illustrated in Box 16.3 using a prevalence or pre- test probability of 25% 
and summary estimates from the indirect comparison of CT and MRI presented in 
Table 16.3. Box 16.3 also gives a lay interpretation based on the natural frequencies. 
The calculations may be done manually, using a spreadsheet or online calculators 
that compute post- test probabilities. Confidence intervals can also be transformed 
into natural frequencies to communicate uncertainty. The numeric findings should 

TABLE 16.4 Comparison of the accuracy of bipolar spectrum diagnostic scale 
(BSDS), hypomania checklist (HCL- 32), and mood disorder questionnaire (MDQ) 
for detection of any type of bipolar disorder in mental health center settings.

Fixed value of specificity Test Estimated sensitivity (95% CI)

0.85 MDQ 0.58(0.50to0.66)

BSDS 0.71(0.62to0.79)

HCL-32 0.74(0.68to0.80)

0.77 MDQ 0.70(0.64to0.77)

BSDS 0.78(0.69to0.85)

HCL-32 0.78(0.73to0.82)

0.61 MDQ 0.83(0.76to0.89)

BSDS 0.86(0.74to0.93)

HCL-32 0.82(0.78to0.85)

Source: Adapted from Carvalho et al. [26].
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be discussed in the context of the quality of the evidence, and the consequences for 
FPs (e.g. overdiagnosis and overtreatment) and FNs (missed cases) should be consid-
ered. Further guidance is available in the Cochrane Handbook for Systematic Reviews 
of Diagnostic Test Accuracy [79].

A summary of findings (SoF) table that summarizes the main elements of a 
review’s findings and provides information on the quantity, quality, and applicability 
of evidence as well as the accuracy of index test(s) also assists with accessibility [79]. 
An example of an SoF table can be found as a supplementary table in the PRISMA- DTA 
explanation and elaboration document [80]. PRISMA- DTA is an extension of PRISMA 
(Preferred Reporting Items for Systematic review and Meta- Analysis) statement  

Box 16.3 Calculation of Natural Frequencies and Interpretation of 
the Results of a Diagnostic Test Accuracy Meta- Analysis

Calculation
Based on summary sensitivity of 0.97 for computed tomography (CT) and 0.88 for 
magnetic resonance imaging (MRI), and summary specificity of 0.87 for CT and 
0.70 for MRI.

CAD present CAD absent Total

CT positive TP = sensitivity ×  
(TP + FN) = 0.97 × 250 = 243

FP = 750–653 = 97

CTnegative FN = 250–243 = 7 TN = specificity ×  
(TN + FP) = 0.87 × 750 = 653

Total 250 750 1000

CAD present CAD absent Total

MRIpositive TP = sensitivity ×  
(TP + FN) = 0.88 × 250 = 220

FP = 750–525 = 225

MRInegative FN = 250–220 = 30 TN = specificity ×  
(TN + FP) = 0.70 × 750 = 525

Total 250 750 1000

Interpretation
CT is more sensitive and more specific than MRI for detecting clinically significant 
coronary artery disease (CAD). Applying the summary estimates obtained from the 
103 studies included in the comparison of CT and MRI to a hypothetical cohort of 1000 
patients, if 250 (25%) of those presenting with suspected CAD have the disease, CT 
will miss 7 cases and MRI will miss 30 cases (false negatives). The number of people 
wrongly diagnosed with CAD (false positives) would be 97 with CT and 225 with MRI.
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(see Chapter  7) developed to improve the reporting quality of DTA systematic 
reviews  [81]. The PRISMA- DTA checklist can facilitate complete and transparent 
reporting of reviews, and we encourage its use to make DTA reviews more useful.

16.13  DISCUSSION

While a health care practitioner desires valid summary estimates of the sensitivity and 
specificity of a diagnostic test, the presence of gross between- study heterogeneity can 
prohibit such estimates. Meta- analysis may not be appropriate because of clinical het-
erogeneity arising from differences in definition of the target condition, study popula-
tions, clinical settings, index test, reference standard, and other factors. We examined 
the Cochrane Library and found that of the 135 DTA reviews published up to July 31, 
2020, 32 (24%) did not include a meta- analysis. Summarizing results of such reviews 
is challenging, especially if there are many studies and a variety of factors to consider. 
For example, Hanchard et al. included 33 studies in their Cochrane DTA review [82]. 
The studies assessed different index tests and used different reference standards and 
categories of the target conditions. In total, there were 170 target condition and index 
test combinations. No combination was assessed by more than two studies, and meta- 
analysis was considered inappropriate. The authors summarized the study- specific 
estimates of sensitivity and specificity on several forest plots, grouped according to 
target condition.

The review authors of the examples illustrated in this chapter considered meta- 
analysis appropriate despite the heterogeneity observed on forest and SROC plots. For 
example, to minimize clinical heterogeneity, Carvalho et al. did not lump all studies 
together but performed separate meta- analyses for different clinical settings to avoid 
a potential threshold effect that may occur due to a change in the spectrum of dis-
ease and alternative diagnoses on sensitivity and specificity  [26]. They also investi-
gated different subtypes of the target condition and the effect of potential sources of 
heterogeneity. Investigations of heterogeneity are often limited in practice due to the 
small number of included studies and/or poor or inconsistent reporting of the factors 
of interest. Although there have been improvements in the reporting quality of DTA 
studies since the introduction of the STARD statement [83], further improvements are 
needed to ensure information needed for assessing eligibility, quality assessment, and 
meta- analysis is available in published papers.

Publication bias and other reporting biases have been researched extensively for 
systematic reviews of RCTs of health interventions (see Chapter 5), but there is less 
understanding about mechanisms for such biases with respect to DTA studies. The 
limited evidence available suggests that failure to publish and selective reporting are 
prevalent in test accuracy studies [84]. Furthermore, time to publication was signifi-
cantly shorter for studies reporting higher estimates of diagnostic accuracy compared 
to those reporting lower estimates (time- lag bias) [85]. Combined with failure to reg-
ister many diagnostic accuracy studies in trial registries and the challenge of searching 
for DTA studies, estimates obtained from meta- analyses may thus be at risk of bias, 
i.e. included studies may systematically deviate from studies that are difficult to find, 
published later, or remain unpublished.
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Standard funnel plots and statistical tests for detecting funnel plot asymmetry (see 
Chapter 5) should not be used in DTA reviews. Deeks et al. developed the effective 
sample size funnel plot and associated regression test of asymmetry for meta- analyses 
of diagnostic accuracy [86]. The statistical test assesses the association between the 
natural log of the DOR and the effective sample size (a function of the number of dis-
eased and nondiseased individuals). However, when DORs are heterogeneous, this 
test also has low power, like all tests for funnel plot asymmetry [86].

The evaluation of the diagnostic accuracy of a test is one component of assessing 
whether it is of clinical value and does not capture the impact of tests on patients [87]. 
Therapeutic interventions can be recommended for use in health care only if they are 
shown on average to be of benefit to patients: the same criterion applies for the use of 
a diagnostic test, and even the most accurate of tests can be clinically useless and do 
more harm than good. Studies of diagnostic accuracy cannot prove that a diagnostic 
investigation is effective, but can discern whether the performance of a test is satisfac-
tory for it to have the potential to be effective.

A reviewer should consider whether undertaking a systematic review of studies of 
diagnostic accuracy is likely to provide the most useful evidence of the value of a diag-
nostic test. Studies of patient outcomes, or the impact of using a test on therapeutic 
and diagnostic decisions, may provide more convincing evidence of the incremental 
benefit of using a new diagnostic test. However, such studies are not available for 
many tests, especially for new technologies and components of the clinical exami-
nation. Consequently, systematic reviews of diagnostic accuracy are often the main 
source of evidence for decision- making about the use of a test. Practical issues (such as 
the absence of good independent reference standards for some diseases) occasionally 
mean that reliable studies of diagnostic accuracy cannot be undertaken, and studies 
of test reliability, diagnostic yield, management decisions, and patient outcomes will 
provide the only evidence of the value of a diagnostic test.

While the basic methodology for undertaking rigorous systematic reviews 
of studies of diagnostic accuracy exists and more advanced methods continue to 
evolve, the greatest barrier to their practical application is the absence of appropri-
ately designed, conducted, and reported primary studies [28]. In some fields, useful 
estimates of diagnostic accuracy can be obtained and many systematic reviews have 
informed national and international guidelines on diagnosis, yet in other fields the 
role of systematic reviews is limited to highlighting deficiencies in the primary studies.
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Prognosis research aims to examine and predict future outcomes (such as death, dis-
ease progression, or medical complications) in individuals with a particular health 
condition or startpoint (such as receiving a certain diagnosis or undergoing surgery). The 
PROGRESS framework defines four types of prognosis research objectives: (i) to summa-
rize overall prognosis (e.g. overall risk or rate) of health outcomes for groups defined by a 
particular health condition [1]; (ii) to identify prognostic factors associated with changes 
in health outcomes [2]; (iii) to develop, validate, and examine the impact of prognostic 
models for individualized prediction of such outcomes [3]; and (iv) to identify predictors 
of an individual’s response to treatment [4]. Each topic area requires specific methods 
and tools for conducting a systematic review and meta- analysis. Here, we focus on prog-
nostic factors, i.e. variables that are associated with the risk of a subsequent health out-
come in individuals with a particular health condition. Different values or categories of a 
prognostic factor are associated with a better or worse prognosis, i.e. of future health out-
comes. For example, in many cancers, tumor grade at the time of histological diagnosis 
is a prognostic factor for recurrence and survival (Figure 17.1). Many routinely collected 
patient characteristics are prognostic, such as sex, age, body mass index (BMI), smoking 
status, blood pressure, comorbidities, and symptoms. However, in recent years the most 
examined prognostic factors have been biomarkers, which include a diverse range of 
blood, urine, imaging, electrophysiological, physiological, and genetic factors. In clinical 
practice, prognosis is rarely made on the basis of a single patient characteristic, marker, 
or imaging test result. Rather, the information from a particular prognostic factor is  
typically used and judged in combination with other prognostic factors, making prog-
nostication in clinical practice generally a multivariable problem (see also Chapter 18).
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Prognostic factors have many potential uses, including aiding in treatment 
decisions, improving outcome prediction, and enhancing the design and analysis of 
clinical trials  [2]. This motivates research to identify prognostic factors (sometimes 
also called “predictor finding studies” [6]), with thousands of such studies published 
each year [7]. Prognostic factors are ideally studied using prospective cohort studies. 
These should involve a well- defined cohort of individuals with the health condition of 
interest, for which potential prognostic factors are measured at a relevant startpoint, 
with subsequent follow- up information recorded for relevant outcomes [2]. Prognostic 
factor studies may also use existing data from routine care databases, biobanks, or 
registries, which have been collected for a different purpose, but allow investigation 
of prognostic associations [8]. Furthermore, randomized trial data are often used to 
investigate prognostic factors, as these are essentially cohort studies with detailed 
baseline and follow- up information for individuals, albeit with potentially narrower 
inclusion criteria.

Unfortunately, prognostic factor studies often have variable quality and inconsis-
tent findings [2]. This motivates the need for systematic reviews and meta- analyses 
that summarize the evidence about the prognostic value of particular factors  [9–
11]. In this chapter, we provide a guide to conducting such reviews, building on 
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FIGURE 17.1  Tumor grade as a prognostic factor in breast cancer [2]. Kaplan–Meier curves 
for disease- free survival for three groups of breast cancer patients defined by tumor grade status 
(grade 1, 2 or 3). Curves are derived using 246 breast cancer patients treated with tamoxifen who 
had 94 recurrences or deaths over a possible seven years of follow- up [5]. The distinct curves, the 
statistically significant log- rank result, and the unadjusted hazard ratio estimates suggest that 
tumor grade is a prognostic factor, as it identifies three groups of patients with a different average 
prognosis.
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our previous work [9, 12]. Our aim is to help researchers understand the key prin-
ciples, methods, and challenges of conducting reviews of prognostic factor studies, 
to produce robust evidence- based summaries about prognostic factors. Many of the 
issues discussed are also relevant to reviews of epidemiological studies of etiolog-
ical or risk factor studies (as discussed in Chapter 19), and to reviews of prediction 
models (Chapter 18). There is a strong interest in factors that predict response to 
treatment (the fourth type of study in the PROGRESS framework) [4]. These factors 
are often referred to as predictive markers (or predictive factors) and are not the focus 
here, as they relate to an interaction between the factor and a particular treatment 
effect. Instead, we focus on the prognostic ability of a factor over and above that of 
treatment, although many of the issues discussed will also be relevant to reviews of 
studies of predictive markers.

17.1  DEFINING THE REVIEW QUESTION

The first step is to define the review question. Some reviews may be broad. For example, 
Riley et al. aimed to identify any prognostic factor for overall and disease- free survival 
in children with neuroblastoma or Ewing’s sarcoma [13]. Other reviews may have a 
narrower focus. For example, Hemingway et al. summarized the evidence for whether 
C- reactive protein (CRP) is a prognostic factor for fatal and nonfatal events among 
patients with stable coronary disease [14]; this CRP review will be used as a running 
illustrative example throughout this chapter.

CHARMS (CHecklist for critical Appraisal and data extraction for systematic 
Reviews of prediction Modeling Studies) provides guidance for formulating a review 
question and a checklist for extracting data and critically appraising the eligible pri-
mary studies [15]. Though developed for reviews of prediction model studies [16], it 
has since been modified to define and frame the question for reviews of prognostic 
factor studies (CHARMS- PF) [12], and to inform data extraction (see Section 17.3). It 
proposes a modification (called PICOTS) of the traditional PICO system (Population, 
Intervention, Comparison, and Outcome) used in systematic reviews of therapeutic 
intervention studies (see Chapter 2), by additionally considering Timing and Setting 
(Box 17.1). In the context of prognostic factor reviews, the P of Population and O of 
Outcome remain largely the same as in the original PICO system, whereas the I refers 
to the Index prognostic factor(s).

The C in prognostic factor reviews needs careful thought. It is usually not defined 
by reference values of the factor itself, especially as most prognostic factors are contin-
uous, such as age, BMI, blood pressure, and leucocyte count (and so do not have a ref-
erence group as such). Rather, C usually refers to other Comparator prognostic factors. 
For example, a typical prognostic factor review aims to investigate the prognostic value 
of a particular index factor adjusted for other (i.e. comparator) prognostic factors, and 
sometimes the review may aim to compare the prognostic value of a certain index 
factor with one or more other (i.e. comparator) prognostic factors. Only when the 
index factor is categorical, and its unadjusted prognostic effect is of interest, might 
C refer to the reference category of the index factor itself. For example, if the index 
factor is a comorbidity (present or absent) and is studied in isolation, then the I might 
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Box 17.1 Six Items to Help Define the Question for Systematic 
Reviews of Prognostic Factor Studies, Abbreviated as PICOTS, and 
Applied to a Review of the Added Prognostic Value of 
C- Reactive Protein

• Population: define the target population in which the prognostic factor(s) 
under review are to be used.

CRP review: patients with stable coronary disease, defined as clinically diagnosed 
angina pectoris or angiographic disease, or a history of previous acute coronary 
syndrome at least two weeks prior to prognostic factor (CRP) measurement.

• Index factor: define the prognostic factor(s) under review.

CRP review: CRP was the single biomarker reviewed for its prognostic value.
• Comparators: if applicable, define the other comparator prognostic factors. For 

example, a typical prognostic factor review aims to investigate the prognostic 
value of a particular index factor adjusted for other (i.e. comparator) prognostic 
factors, and sometimes the review may aim to compare the prognostic value of a 
certain index factor with one or more other (i.e. comparator) prognostic factors

CRP review: the focus was on the added prognostic value of CRP; i.e. its prognostic 
effect after adjusting for other prognostic factors. In particular, adjustment for the 
following conventional prognostic factors was of interest: age, sex, smoking status, 
obesity, diabetes, and one or more lipid variables (from total cholesterol, LDL cho-
lesterol, HDL cholesterol, triglycerides), and inflammatory markers (fibrinogen, 
IL- 6, white cell count).

• Outcome: define the outcome(s) for which the prognostic ability of the 
factor(s) under review is of interest.

CRP review: outcome events were defined as coronary (coronary death, sudden car-
diac death, acute nonfatal myocardial infarction, primary percutaneous coronary 
intervention, unplanned emergency admissions with unstable angina), cardiovas-
cular (where coronary events were reported in combination with heart failure, 
stroke, or peripheral arterial disease), and all- cause mortality.

• Timing: define at what timepoints the prognostic factors are to be used and 
over what time period the outcome(s) are predicted.

CRP review: there was no restriction on the timepoints and time period. The CRP 
measurement had to be done at least two weeks after diagnosis and all follow- up 
information on the outcomes (all time periods) was extracted from the studies.

• Setting: define the intended role or setting of the prognostic factor(s) under review.

CRP review: CRP measurement was studied in both primary and secondary care to pro-
vide prognostic information about patients diagnosed with coronary heart disease, and 
thus may be useful for health care professionals treating and managing such patients.

Source: Adapted from Hemingway H et al., 2010 [14].
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be considered as one category (e.g. comorbidity present) and the C taken as the other 
reference category (e.g. comorbidity absent).

The T denotes Timing and refers to two concepts of time: (i) at what timepoint 
the prognostic factors under review are to be measured or assessed (i.e. the time-
point at which prognosis information is required); and (ii) over what time period the 
outcome(s) are predicted by these factors. The S refers to Setting, which is the clinical 
setting or context for using the index prognostic factor(s); this is important, as the 
prognostic value of a factor may change across health care settings.

An important issue, and related to the I and C discussion, is whether unadjusted 
(crude) or adjusted prognostic factor effects (or both) will be summarized in a review. 
As mentioned, prognosis in health care is rarely based on a single factor, but on mul-
tiple prognostic factors. Hence, the prognostic ability of a single factor used in isola-
tion is rarely of interest for prognostic factor reviews. Rather, the adjusted prognostic 
factor effect is needed to better reveal whether a factor contributes prognostic value 
after adjusting for the other prognostic factors that are routinely used in practice. 
In particular, usually for the clinical setting of interest there will be “established” or 
“conventional” prognostic factors that are routinely measured. Therefore, for index 
prognostic factors under review, it is important to understand whether they contribute 
additional prognostic information to these factors. The crude (unadjusted) prognostic 
relevance of a factor may completely disappear after adjustment and it may therefore 
be rather uninformative [3]. In addition, unadjusted prognostic effects may be highly 
dependent on population characteristics and therefore prone to substantial between- 
study heterogeneity.

Note that the driver to focus on adjusted effects is different from that within systematic 
reviews of etiological studies. In the latter, the focus is on estimating the causal effect of 
a certain risk factor, and adjustment for other risk factors is crucial as they may be con-
founders, so if left unadjusted would mask the true causal effect of the factor of interest. 
That is, adjustment is essential to help remove bias due to confounding factors. However, 
in situations where causality is not of interest, the notion of confounding is not relevant. 
In prognostic factor studies the typical aim is “simply” to identify whether certain factors 
are associated with (i.e. prognostic for) particular outcomes, and not whether they are 
causal for the occurrence of those outcomes. Nevertheless, adjusted results are still the 
clinically relevant results of interest, as the magnitude of a factor’s prognostic effect usu-
ally depends on whether adjustment is made for other factors that are prognostic. Now 
the adjustment is not about removing bias, but rather about quantifying the added prog-
nostic value of a factor. Therefore, whether a prognostic factor review should focus on 
estimating the adjusted (rather than the unadjusted) prognostic effect of a factor is more 
a matter of clinical relevance than removing risks of bias.

17.1.1 Application to the C- Reactive Protein Review

CRP is widely studied for its prognostic value in patients with coronary disease, but 
there is continued uncertainty as to whether it is useful. US and European clinical 
practice guidelines recommend measurement, but clinical practice varies widely. This 
motivated the systematic review by Hemingway et  al.  [14], for which the PICOTS 
system is shown in Box 17.1.
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17.2  SEARCHING AND SELECTING ELIGIBLE STUDIES

The second step is to identify eligible primary studies, i.e. studies that address the 
defined review question as articulated using the PICOTS framework. It is more diffi-
cult to identify prognostic factor studies than randomized clinical trials (see Chapter 3). 
Prognosis studies do not tend to be indexed (“tagged”) in bibliographic databases, and 
there is much variation in design (e.g. cohort studies, randomized trials, routine care 
registry data, and case–control study data can all be used), methods of statistical anal-
ysis, and the adjustment of other prognostic factors or covariates. Heterogeneity is 
thus the rule rather than the exception in prognostic factor research. It is therefore 
essential that the definition of inclusion criteria of studies for a systematic review is 
based on the PICOTS structure (Box 17.1), as it determines the search and study selec-
tion strategy.

Typically broad search and selection filters are required, combining terms 
related to prognosis research (such as “prognostic,” “predict,” “predictor,” “factor,” 
“independent”) with clinical domain-  or disease- specific terms and the names of 
prognostic factors [17]. Such a broad search comes at the expense of retrieving many 
irrelevant records. Geersing et al. [18] validated various search strategies for prognosis 
studies [17, 19, 20] and suggested a generic filter for identifying studies of prognostic 
factors, as shown in Box 17.2. When tested in a review of prognostic factors in acute 
stroke, this generic filter had a number needed to read (NNR) to identify one relevant 
study of 569, emphasizing the difficulty in targeting prognostic factor articles [18]. The 
NNR is reduced if specific factors or populations are added to the filter. Even then, care 
is needed to ensure inclusivity, as multiple terms may be used. For example, biomarker 
MYCN is also referred to as n- myc or nmyc [13].

Box 17.2 Generic Search String for Identifying Prognostic Model 
Studies, Which can Serve as a Good Starting Point for Identifying 
Prognostic Factor Studies

(Validat$ OR Predict$.ti. OR Rule$)
OR (Predict$ AND [Outcome$ OR Risk$ OR Model$])

OR ((History OR Variable$ OR Criteria OR Scor$ OR Characteristic$ OR  Finding$ 
OR Factor$) AND (Predict$ OR Model$ OR Decision$ OR Identif$ OR Prognos$))

OR (Decision$ AND [Model$ OR Clinical$ OR Logistic Models/])

OR (Prognostic AND [History OR Variable$ OR Criteria OR Scor$ OR 
 Characteristic$ OR Finding$ OR Factor$ OR Model$])

OR (Stratification OR “ROC Curve”[Mesh] OR Discrimination OR  Discriminate

OR “c- statistic” OR “c statistic” OR “Area under the curve” OR AUC OR 
 Calibration OR Indices OR Algorithm OR Multivariable)

Source: As proposed by Geersing et al. [18].
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Once the search is complete, potentially relevant studies must be screened for eli-
gibility. The study selection should first be based on screening of titles and abstracts, 
followed by full- text screening, both ideally done by two researchers independently. 
Any discrepancies should be resolved through discussion, and potentially with a third 
reviewer. To check if any relevant articles have been missed, it is helpful to share the 
list of identified studies with researchers in the field, to examine the reference lists of 
identified articles, and to perform a citation search.

17.2.1 Application to the C- Reactive Protein Review

Hemingway et  al. included any prospective observational study that reported the 
risk of subsequent events among patients with stable coronary disease in relation to 
measured CRP values [14]. Eligible studies had to include patients with stable coro-
nary disease, defined as clinically diagnosed angina pectoris or angiographic disease, 
or a history of previous acute coronary syndrome at least two weeks prior to CRP 
measurement. They searched MEDLINE between 1966 and November 25, 2009 and 
EMBASE between 1980 and December 17, 2009, using a search string containing terms 
for coronary disease, prognostic studies, and CRP. The search identified 1566 articles, 
of which 83 studies fulfilled the inclusion criteria, for a NNR of 19.

17.3  DATA EXTRACTION

Data extraction provides the necessary data from each study, which enables reviewers to 
examine their applicability and risk of bias. It also provides the information required for 
subsequent qualitative and quantitative (meta- analysis) synthesis of the evidence. The 
CHARMS checklist provides explicit guidance about which data should be extracted 
from primary studies of prediction models (see Chapter 18) [15]. Riley et al. modified 
this for prognostic factor studies, and refer to it as CHARMS- PF (Box 17.3) [12].

Box 17.3 The CHARMS- PF Checklist of Key Items to be Extracted 
from Primary Studies of Prognostic Factors, Modified from the 
Original CHARMS Checklist

Domain Key items

Source of data –  Source of data (e.g. cohort, case–control, randomized trial 
participants, or registry data)

Participants –  Participant eligibility and recruitment method (e.g. consecutive 
participants, location, number of centers, setting, inclusion and 
exclusion criteria)

– Participants description
– Details of treatments received, if relevant
– Study dates
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Domain Key items

Outcome(s) to be 
predicted

– Definition and method for measurement of outcome(s)
–  Was the same outcome definition (and method for 

measurement) used in all participants?
– Type of outcome(s) (e.g. single or combined endpoints)
–  Was the outcome(s) assessed without knowledge of the 

candidate prognostic factors (i.e. blinded)?
–  Were candidate prognostic factors part of the outcome (e.g. 

when using a panel or consensus outcome measurement)?
– Time of outcome(s) occurrence or summary of duration of follow- up

Prognostic 
factors (including 
candidate and 
established 
 prognostic factors)

–  Number and type of prognostic factors (e.g. obtained from 
demographics, patient history, physical examination, additional 
testing, disease characteristics)

– Definition and method for measurement of prognostic factors
–  Timing of prognostic factor measurement (e.g. at patient 

presentation, at diagnosis, at treatment initiation, end of surgery)
–  Were prognostic factors assessed blinded for outcome, and for 

each other (if relevant)?
–  Handling of prognostic factors in the modeling (e.g. continuous, 

linear, nonlinear transformations or categorized)

Sample size – Was a sample size calculation conducted and, if so, how?
– Number of participants and number of outcomes/events
–  Number of outcomes/events in relation to the number of 

candidate prognostic factors (events per variable)

Missing data –  Number of participants with any missing value (in the prognostic 
factors and outcomes)

–  Number of participants with missing data for each prognostic 
factor of interest

–  Handling of missing data (e.g. complete- case analysis, 
imputation, or other methods)

Analysis –  Modeling method (e.g. linear, logistic, Cox, parametric survival, 
competing risks regression)

– Modeling assumptions satisfied
–  Method for selection of prognostic factors for inclusion in 

multivariable modeling (e.g. all candidate prognostic factors 
considered, pre- selection of established prognostic factors, retain 
only those significant from univariable analysis)

–  Method for selection/exclusion of prognostic factors (including 
those of interest and those used as adjustment factors) during 
multivariable modeling (e.g. backward or forward selection, or full 
model approach including all factors regardless) and criteria used 
for any selection/exclusion (e.g. P value, Akaike information criterion)

–  Method of handling each continuous prognostic factor 
(e.g. dichotomization, categorization, linear, nonlinear), including 
values of any cut points used and their justification. For nonlinear 
trends, the method of identifying nonlinear relationships (e.g. 
splines, fractional polynomials)

(Continued)
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Domain Key items

Results –  Unadjusted and adjusted prognostic effect estimates (e.g. risk 
ratios, odds ratios, hazard ratios, mean differences) for each 
prognostic factor of interest, and the corresponding 95% 
confidence interval (or variance or standard error). Details of any 
nonlinear relationships

–  For each extracted adjusted prognostic effect estimate of 
interest, the set of adjustment factors used

Interpretation and 
discussion

– Interpretation of presented results
–  Comparison with other studies, discussion of generalizability, 

strengths, and limitations

Source: Adapted from Moons KG et al., 2014 [15].

Reviewers should extract key information from each selected study, such as the 
dates, setting, study design, definitions of startpoints, outcomes, follow- up length, and 
prognostic factors, where one should appreciate the likely large heterogeneity across 
studies in many aspects. The extracted information allows for summary tables of study 
characteristics. In addition, information that is more specific is needed for risk of 
bias and applicability assessment, such as methods of measurement of the prognostic 
factors and outcomes, the handling of missing data, and whether estimated associa-
tions of the prognostic factors under review were adjusted for other prognostic factors.

To enable meta- analysis of prognostic factor studies, the key elements to extract are 
estimates, and corresponding standard errors or confidence intervals, of the prognostic 
effect for each factor of interest; for example, the estimated risk ratio or odds ratio (for 
binary outcomes), the hazard ratio (for time- to- event outcomes), or mean difference (for 
continuous outcomes). As most prognostic factor studies consider time- to- event out-
comes (including censored observations and different follow- up lengths for patients), 
hazard ratios are often the most suitable effect measure. Unfortunately, many prognostic 
factor studies do not adequately report estimated effect measures or their precision. Par-
mar et al. [21] and Tierney et al. [22] describe how to obtain unadjusted hazard ratio 
estimates (and their variances) when they are not reported directly. For example, one can 
use the number of outcomes (events) and an available P value (e.g. from a log- rank test 
or Cox regression) to indirectly estimate the unadjusted hazard ratio between two groups 
defined by a particular factor (e.g. “positive” versus “negative” levels). Perneger et al. [23] 
describe how to derive unadjusted hazard ratios from survival proportions. Even with 
such indirect estimation methods, not all results may be obtainable. For example, in a 
systematic review of 575 studies investigating prognostic factors in neuroblastoma [24], 
the methods of Parmar et al. were used to obtain 204 hazard ratio estimates and their 
confidence intervals, but this represented only 35.5% of the potential evidence.

Although indirect estimation methods help retrieve unadjusted prognostic 
effect estimates, they have limited value for obtaining adjusted effect estimates, 
which are the more clinically useful and thus preferred interest for meta- analysis. 
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Furthermore, even when multiple studies do provide the adjusted prognostic effect 
of a particular factor, then the set of adjustment factors will usually differ across 
studies. This complicates the interpretation of subsequent meta- analysis results. It 
may help the reviewer to pre- define a minimal set of established prognostic factors 
that is typically applied in the clinical context of interest (e.g. age and stage of dis-
ease in cancer patients), and include those studies that are least adjusted for this 
minimal set of other prognostic factors.

If the outcome is defined differently across studies, approaches to convert effect 
measures on different outcome scales might be useful [25]. Furthermore, the direction 
of effect will need standardizing if one study compares the risk or rate in a factor’s 
“high” versus “normal” group, whereas another study compares the risk or rate in the 
factor’s “normal” versus “high” group. A major issue is dealing with different cut point 
values for a particular continuous factor (i.e. the threshold value, above which defines 
“high” and below which defines “normal” [26]), and potentially converting prognostic 
effects of “high” versus “normal” to prognostic effects relating to a one- unit increase in 
the factor, based on an assumed distribution of the prognostic factor values. A concern 
is that the distribution of a prognostic factor may be unknown (or even vary across 
studies). Finally, it is also possible to derive standardized effect estimates by standard-
izing the corresponding regression coefficients [27].

17.3.1 Application to the C- Reactive Protein Review

Hemingway et al. [14] extracted background information such as year of study start, 
number of included patients, mean age, baseline coronary morbidity (e.g. proportion 
with stable angina), average levels of biomarker at baseline, method of CRP 
measurement, follow- up duration, and number and type of events. Basic information 
was often missing. For example, nearly a fifth of studies did not report the method of 
measurement, and only a quarter gave the number of patients included in the analyses 
and reasons for dropout. Prognostic effect estimates for CRP were extracted in terms 
of either the reported risk ratio, odds ratio, or hazard ratio, and their 95% confidence 
intervals. These effect estimates were then converted to a standardized scale com-
paring the highest third with the lowest third of the (log- transformed) CRP distribu-
tion. Where available, separate prognostic effect estimates were extracted for different 
degrees of adjustment for other prognostic factors.

17.4  EVALUATING APPLICABILITY AND QUALITY 
OF PRIMARY STUDIES

Once eligible studies have been identified and data extracted, an important next step 
is to assess the applicability and risk of bias (quality) of each study for the review. As 
for earlier steps, ideally this is done by two reviewers, independently, with any discrep-
ancies resolved. Applicability refers to the extent to which a study matches the review 
question in terms of the population, startpoint, prognostic factors, and outcomes (end-
points) of interest. Just because a study is eligible for inclusion does not mean it is free 
from applicability concerns. A study may be applicable in some aspects (e.g. correct 
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condition at startpoint, with prognostic factors of interest evaluated) but not others 
(e.g. incorrect population or setting, inappropriate outcome definition, different fol-
low- up time, inappropriate choice of cut points, adjustment for an incomplete set of 
conventional prognostic factors used in the clinical context of interest for review, etc.).

Risk of bias refers to the extent to which flaws in the study design or analysis 
methods may lead to bias in estimates of the prognostic factor effects. Unfortunately, 
based on growing empirical evidence, many primary studies will be at high risk of 
bias [6, 24, 28–36]. For example, a common concern is the use of data- driven cut points 
to categorize continuous prognostic factors; this should lead to a high risk of bias, as 
the “optimal” cut point identified is unlikely to be replicated in new studies and leads 
to inflated prognostic effect estimates [37]. For prognostic factor studies, Hayden et al. 
developed the QUIPS checklist for examining risk of bias across six domains [38]: study 
participation, study attrition, prognostic factor measurement, outcome measurement, 
adjustment for other prognostic factors, and statistical analysis and reporting. Addi-
tional guidance may be found from general tools examining the quality of observa-
tional studies [39, 40], and the REMARK guideline for reporting of primary prognostic 
factor studies [41, 42].

17.4.1 Application to the C- Reactive Protein Review

Hemingway et  al.  [14] infer the quality of included studies by the quality of their 
reporting on 17 items derived from the REMARK guidelines [42]. The median number 
of study quality items reported was 7 out of a possible 17, and standards did not change 
between 1997 and 2009. Only two studies referred to a study protocol, with none refer-
ring to a statistical analysis plan. Hemingway et al. note that this “makes it difficult 
to know what the specific research objectives were at the start of cohort recruitment, 
at the time of CRP measurement, or at the onset of the statistical analysis” [14]. Only 
two studies reported the time elapsed between first lifetime presentation with coro-
nary disease and assessment of CRP, raising applicability concerns. Studies reported 
10 different ways of comparing CRP values, including continuous measures (per stan-
dard deviation [SD], tertile, quartile, unit [mg/L] on original or log 10 scale), equal- 
size groups (top versus bottom with group size 50%, 33%, or 25% for 2, 3, and 4 groups, 
respectively), unequal- size groups (top versus bottom; 2 or 3 groups defined by cut 
points), as well as measures on both log- transformed and untransformed CRP scales. 
The rationale for the choice of scale was stated in only a third of studies.

17.5  META- ANALYSIS

Meta- analysis of prognostic factor studies aims to summarize the (possibly adjusted) 
prognostic effect of each factor of interest. Aside from missing estimates, challenges 
for the meta- analyst include: (i) having different types of prognostic measures that are 
not comparable [23]; (ii) estimates without the standard errors that are required for 
meta- analysis (see Chapter 9); (iii) estimates relating to different timepoints; (iv) dif-
ferent methods of measurement for prognostic factors and outcomes; (v) different sets 
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of adjustment factors; and (vi) different approaches to handling continuous prognostic 
factors, including the choice of cut point values.

Many of these issues lead to substantial heterogeneity, such that – if meta- analysis 
is performed – summary results are difficult to interpret. For this reason, it may be 
sensible not to undertake a meta- analysis, and indeed many authors reach this 
conclusion [2]. For example, Malats et al. conclude: “After 10 years of research, evi-
dence is not sufficient to conclude whether changes in P53 act as markers of outcome 
in patients with bladder cancer. . .. That a decade of research on P53 and bladder can-
cer has not placed us in a better position to draw conclusions relevant to the clinical 
management of patients is frustrating” [43].

The quality of conduct and reporting of prognosis studies is gradually improving 
since the introduction of the REMARK and TRIPOD guidelines, and meta- analyses 
are thus becoming more often a sensible and achievable option [7, 41, 42, 44]. Meta- 
analyses will be most interpretable, and thus useful, when separate analyses are 
undertaken for groups of “similar” prognostic effect measures. In particular, we sug-
gest separate meta- analyses for:

• Hazard ratios, odds ratios, and risk ratios.
• Unadjusted and adjusted associations.
• Prognostic factor effects at distinct cut points (or groups of similar cut points).
• Prognostic factor effects corresponding to a linear trend (association).
• Prognostic factor effects corresponding to nonlinear trends.
• Each method of measurement (for factors and outcomes).

Furthermore, ideally a meta- analysis of adjusted results should ensure that all 
included estimates are adjusted for the same set of other prognostic factors. This is 
unlikely, and a compromise could be to ensure that all estimates have been adjusted 
for a pre- defined minimum set of established prognostic factors.

Even when adhering to this guidance, unexplained heterogeneity is likely to remain. 
Therefore, if meta- analysis is performed, a random- effects approach is generally preferred 
to allow for unexplained heterogeneity across studies (see Box 17.4 and Chapter 9) [45]. 
This provides a summary estimate of the average prognostic effect of the factor, and 
the variability in effect across studies. Also potentially useful are dose–response meta- 
analysis methods to estimate the trend within studies, with each category compared 
to the reference category (see Chapter 14). These methods model the estimated prog-
nostic effect in each category as a function of “exposure” level (e.g. midpoint or median 
prognostic factor value in the category), while accounting for within- study correlation 
and between- study heterogeneity  [46–50]. To apply these methods, some additional 
knowledge of the factor’s underlying distribution is usually needed to help define the 
“exposure” level, as the chosen value can influence the results (see Chapter 14) [48].

Advanced multivariate meta- analysis methods are available to jointly handle mul-
tiple cut points [51], multiple methods of measurement [51], or different adjustment 
factors in prognostic factor studies [52]. An introduction to multivariate meta- analysis 
is provided elsewhere  [53]. Sometimes, rather than prognostic effect estimates, 
 primary studies might report the change in the concordance index (also known as the 
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C  statistic, area under the ROC curve) or change in Royston’s D statistic when adding 
a particular factor [54, 55]. Pennells et al. discuss potential ways to synthesize such 
measures of change in discrimination performance [56].

17.5.1 Application to the C- Reactive Protein Review

Hemingway et al. [14] apply a random- effects meta- analysis to combine 53 adjusted 
prognostic effect estimates for CRP from studies that adjusted for at least one of six 
conventional risk factors (age, sex, smoking, diabetes, obesity, and lipids). The sum-
mary meta- analysis result was a risk ratio of 1.97 (95% CI: 1.78 to 2.17), which gives 
the average prognostic effect of CRP (for those in the top versus bottom third of 
CRP distribution), and suggests larger CRP values are associated with higher risk. 
Although there was substantial between- study heterogeneity, nearly all estimates 
were in the same direction (i.e. risk ratio >1). When restricting meta- analysis to 
just the 13 studies that adjusted for at least all six conventional prognostic factors, 
the summary risk ratio decreased to 1.65 (95% CI: 1.39 to 1.96) and the between- 
study heterogeneity was reduced. Using the 13 study- specific estimates provided 
by Hemingway et  al., we repeated this meta- analysis using the Hartung–Knapp 
approach (Figure 17.2), obtaining the same summary result but a wider confidence 
interval (1.34 to 2.04) [60].

Box 17.4 Explanation of a Random- Effects Meta- Analysis 
of Prognostic Factor Effect Estimates

The true prognostic effect of a factor is likely to vary from study to study, and thus 
assuming a common (fixed) prognostic effect is not sensible. If Yi and var(Yi) denote 
the prognostic effect estimate – e.g. ln(hazard ratio), ln(odds ratio), ln(risk ratio), or 
mean difference – and its variance in study i, then a general random- effects meta- 
analysis model can be specified as:

Yi ~ N(μ, var(Yi) + τ2),

Most researchers use either restricted maximum likelihood or the approach 
of DerSimonian and Laird to estimate this model [57], but other options are avail-
able, including a Bayesian approach [58]. Of key interest is the summary (average) 
estimate, , which reveals the average prognostic effect of the factor. The standard 
deviation of the prognostic effect across studies is denoted by τ, and non- zero val-
ues suggest there is between- study heterogeneity. Confidence intervals for μ should 
ideally account for uncertainty in estimated variances (in particular τ)  [59], and 
we have found the approach of Hartung–Knapp to be robust for this purpose in 
most settings [60, 61]. When synthesizing prognostic effects on the log scale, the 
summary results and confidence intervals require back- transformation (using the 
exponential function) to the original scale.
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17.6  QUANTIFYING AND EXAMINING HETEROGENEITY

When meta- analysis is still performed in the face of heterogeneity, it is important 
to quantify and report the magnitude of heterogeneity itself, for example via the 
estimate of τ2 (the between- study variance) [62], or an approximate prediction interval 
indicating the potential true prognostic effect of a factor in a new population (see 
Chapter 10) [45, 63]. Subgroup analyses and meta- regression can be used to examine 
or explore the causes of heterogeneity. A subgroup analysis performs a separate meta- 
analysis for categories defined by a particular characteristic, such as those with low 
risk of bias, those with a follow- up <1 year or 1 year, or those set in countries within 
Europe. A preferable approach is meta- regression (see Chapter 10), which extends the 
meta- analysis equation shown in Box 17.4 by including study- level covariates [64], and 
allows a formal comparison of how meta- analysis results differ across groups defined 
by covariates (e.g. low risk of bias studies versus studies at higher risk of bias). Unfor-
tunately, subgroup analyses and meta- regression are often problematic. There will 
often be few studies per subgroup and low power to detect genuine causes of hetero-
geneity. Furthermore, study- level confounding will be rife, such that it is difficult to 
disentangle the associations for one covariate from another. For example, studies with 
a low risk of bias may also have a different length of follow- up, or a particular cut point 
level, compared with studies at higher risk of bias.
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FIGURE 17.2  Forest plot showing the study- specific estimates and meta- analysis summary 
result of the adjusted prognostic effect (risk ratio, RR) of C- reactive protein taken from the review 
of Hemingway et al. [14]; all 13 studies were adjusted for age, sex, smoking, diabetes, obesity, and 
lipids, plus up to 14 other variables. Meta- analysis results shown are based on a random- effects 
meta- analysis model with DerSimonian and Laird estimation of the between- study variances. The 
summary result is identical to Hemingway et al. [14], but the confidence interval is wider as, here, 
we used the Hartung–Knapp approach to account for uncertainty in the estimate of between- study 
variance. Adapted from Hartung J et al. [60].
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17.6.1 Application to the C- Reactive Protein Review

Hemingway et  al. report that meta- regression identified four study- level covariates 
that explained some between- study heterogeneity in the prognostic effect of CRP: def-
inition of comparison group, number of adjustment variables, (log) number of events, 
and proportion of patients with stable coronary disease [14]. Studies originally report-
ing unequal CRP groups had stronger effects than those reporting CRP on a contin-
uous scale. For each additional adjustment factor the summary RR decreased by 3%. 
The summary RR was smaller among studies with more than the median number of 
outcome events, and smaller among studies confined to stable coronary disease. There 
was no evidence that the CRP effect differed according to study quality [14].

17.7  EXAMINING SMALL- STUDY EFFECTS

The term “small- study effects” refers to a systematic difference in prognostic effect 
estimates between small and large studies [65]. A particular concern is when small 
studies show larger prognostic effects than larger studies. This may be due to chance, 
but a major threat is publication bias and selective reporting (see Chapter 5), which are 
endemic in prognosis research [26, 62]. Smaller studies with statistically significant 
prognostic factor effects are more likely to be published (or reported in sufficient 
detail), and thus included in meta- analysis, than similar studies with nonsignificant 
results. As previously described, the implementation of variable selection procedures 
into the analysis (either for the prognostic factor of interest or the inclusion of adjust-
ment factors) could be a cause of small- study effects. For example, it will typically lead 
to the smaller studies including fewer adjustment factors, and thus estimating larger 
effect estimates for the factors of interest. A related concern is that smaller prognostic 
factor studies are generally at higher risk of bias than larger studies, as they tend to be 
more exploratory in nature (e.g. investigating hundreds of potential factors and using 
arbitrary cut points for continuous factors) and based on a convenient sample, rather 
than a protocol- driven, prospective study [2].

The evidence for small- study effects is usually examined in a funnel plot, which 
shows the study estimates (x- axis) against their precision (y- axis). This is recom-
mended if there are 10 or more studies [65]. The plot should show a symmetric shape, 
with results from larger studies at the top of the inverted funnel, and smaller studies 
spanning out in both directions equally. Asymmetry will arise if there are small- 
study effects, with a greater proportion of smaller studies in one particular direction. 
Statistical tests for asymmetry in risk, odds, and hazard ratios can be used, such as 
Peters’ and Debray’s tests (see Chapter  5)  [66, 67]. Contour- enhanced funnel plots 
show the statistical significance of individual studies: “missing” studies will fall within 
regions of nonsignificance if publication bias was the cause of small- study effects.

Although publication bias is a threat for unadjusted results, it is arguably a larger 
concern for adjusted results; the adjusted prognostic effect of a factor is more likely 
to be reported if it is statistically significant. If some studies do report both adjusted 
and unadjusted (or partially adjusted) results of a particular factor, multivariate meta- 
analysis can be used to “borrow strength” from their correlation, to allow studies 
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providing only unadjusted (or partially) adjusted results to contribute (via the cor-
relation) toward the meta- analysis result for the fully adjusted effect [53]. This may 
reduce the impact of small- study effects. Note that the presence of small- study effects 
does not prove that publication bias exists. In particular, when there is between- study 
heterogeneity, the true prognostic effect of factor effects may genuinely differ between 
smaller and larger studies.

17.7.1 Application to the C- Reactive Protein Review

Figure 17.3 shows a funnel plot of the study estimates within the CRP meta- analysis 
shown in Figure 17.2. There is clear asymmetry, raising a concern of publication bias. 
When removing the four smallest studies (i.e. those with the largest standard errors), 
the summary meta- analysis result moves closer to 1 (summary RR = 1.51, 95% CI: 1.30 
to 1.74), between- study heterogeneity becomes zero, and there is no longer any clear 
evidence of funnel plot asymmetry.

17.8  REPORTING AND INTERPRETATION OF RESULTS

As with all research studies, clear and complete reporting is essential for reviews of 
prognostic factor studies. Most of the reporting guidelines of PRISMA and MOOSE 
will be relevant [68, 69], but should be complemented by REMARK, which was aimed 
at primary prognostic factor studies.
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Interpretation and translation of summary meta- analysis results form an impor-
tant final step. The guidance in the previous steps is the essential input for this. 
Reviewers should discuss whether and how the prognostic factors identified may 
be useful in practice (i.e. translation of results to clinical practice), and what further 
research is necessary.

Further, for interpreting the certainty of the results of a review of randomized 
studies, Grades of Recommendation, Assessment, Development, and Evaluation 
(GRADE) was developed (see Chapter 22). This approach assesses the certainty of evi-
dence for obtained summary results by addressing five domains using the information 
obtained by the tools and methods addressed in the above steps: risk of bias, incon-
sistency, imprecision, indirectness, and publication bias. Guidance is emerging for 
adapting GRADE to prognosis reviews [70, 71], including suggestions for rating the 
certainty of evidence for unadjusted prognostic factor effects in scenarios where cli-
nicians use a single prognostic factor to inform their prognostication and subsequent 
shared decision- making [72]. As mentioned, such scenarios are uncommon, as most 
are informed by multiple prognostic factors.

17.8.1 Application to the C- Reactive Protein Review

In their discussion, Hemingway et al. downgrade the meta- analysis findings, due to a 
strong concern about the quality and reliability of the underlying evidence [14]. The 
absence of pre- specified protocols, poor and potentially biased reporting, and strong 
potential for publication bias prevented them from making firm conclusions about 
whether CRP adds prognostic value over and above existing prognostic factors. They 
state that the concerns “explicitly challenge the statement for healthcare professionals 
made by the Centers for Disease Control that measuring CRP is both ‘useful’ and 
‘independent’ as a marker of prognosis” [73].

17.9  META- ANALYSIS USING INDIVIDUAL PARTICIPANT DATA

To address some of the methodological difficulties when using aggregate data from 
study publications, an alternative is to conduct a meta- analysis of individual partici-
pant data (IPD) (see Chapter 12) [11, 74–76]. In this approach, the raw individual- level 
data of each study are combined to estimate and summarize the (adjusted) factor–
outcome associations of interest. Availability of IPD offers many advantages, such as 
having better- defined inclusion criteria, checking modeling assumptions, analyzing 
variables on their continuous scale with the possibility of assessing nonlinear relation-
ships, and obtaining results adjusted (consistently) for other variables [74].

As described by Abo- Zaid et  al.  [77], IPD meta- analyses of prognosis studies 
are becoming increasingly common in the medical literature. The work of Trivella 
et  al.  [78] is notable in this context. They performed an IPD meta- analysis of 13 
studies in non- small cell lung cancer, to examine the prognostic value of microves-
sel density. By obtaining IPD from published and unpublished studies, with con-
sistent adjustment factors in each study, the authors show that microvessel density 
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is not an additional prognostic factor for death, a conclusion different from that of 
previous single studies and meta- analyses based on published aggregate data with 
adjustment for fewer factors, which were also likely biased by the use of optimal 
cut points.

Researchers taking the IPD approach face many challenges [77], such as greater 
costs and time required to obtain and clean IPD, unavailable IPD for some studies, dif-
ferent sets of available prognostic (adjustment) factors in each study, and variability in 
study methods of measurement. For example, for the Trivella et al. review, “checking, 
validation and standardization of all datasets took nearly two years” and “for all but 
three centres some data corrections were necessary,” making it altogether “a long, 
expensive, and rather laborious process” [79]. Furthermore, obtaining IPD does not 
necessarily make the quality of the original studies any better: there still needs to be 
improvement in primary studies and harmonization across new research in terms of 
design, methods, and data collection. Ideally, a prospective approach to IPD meta- 
analysis of prognostic factor studies is required [80]. More detailed discussion about 
IPD meta- analysis projects for prognosis and prediction research is provided by Riley 
et al. [8, 74]

17.10  CONCLUSIONS

We have described the key steps and methods for conducting a systematic review and 
meta- analysis of prognostic factor studies, building on our earlier work [12]. Current 
reviews are often limited by the quality and heterogeneity of primary studies, which in 
itself is an important finding [81]. We expect the number of prognostic factor reviews 
to grow rapidly in the coming years, especially with Cochrane (via the Cochrane 
Prognosis Methods Group: http://www.methods.cochrane.org/prognosis) currently 
embarking upon them (see Chapter 21). Lastly, we recommend that protocols for prog-
nostic factor reviews are published, ideally at the same time as the review is registered, 
for example within PROSPERO (http://www.crd.york.ac.uk/PROSPERO) or the 
Cochrane database.
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Prediction model studies have proliferated across the medical literature, and policy-
makers are increasingly recommending their use in clinical practice guidelines  [1]. 
The clinical value of prediction models is closely linked to that discussed for prognostic 
factors in the previous chapter, but with the focus now more on absolute, rather than 
relative, risk estimates. Prediction models combine an individual’s observed values of 
multiple predictors to estimate that individual’s probability, which can be a diagnostic 
or a prognostic probability, depending on whether the model makes predictions for 
present or future outcomes.

Diagnostic prediction models combine values of multiple predictors (often called 
index tests or diagnostic determinants) to calculate the probability that an individual 
with particular symptoms or signs suspected of having a certain target disorder indeed 
has that condition or disease at this moment. For example, diagnostic models have been 
developed to determine the risk of a deep vein thrombosis in patients with a swollen, red, 
or painful leg [2], or to detect the presence of an ankle fracture in emergency patients 
with recent ankle trauma  [3]. Diagnostic prediction models are often used to decide 
whether additional, usually more invasive or costly, tests are needed.

Prognostic prediction models combine values of multiple predictors (often called 
prognostic factors) to calculate the probability that an individual will develop a particular 
outcome in the future. Prognostic models are commonly used to predict the future course 
of an individual’s diagnosed condition, such as predicting the risk of developing hearing 
deficits in children diagnosed with bacterial meningitis [4]. They can also predict the 
outcome for an individual undergoing an intervention (e.g. predicting mortality after 
cardiac surgery [5]), the development of a certain health outcome for apparently healthy 
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individuals in the general population (e.g. predicting the 10- year risk of developing 
cardiovascular disease [6]), and the response of patients treated with a certain drug (e.g. 
predicting treatment response in breast cancer patients treated with tamoxifen [7]).

Primary studies of prediction models can be broadly categorized as model development, 
model validation, or a combination of the two [8–13], as explained in Box 18.1. Clearly, 
each prediction model can be developed only once, but validated more than once. Predic-
tion models are being developed in increasing numbers, with many models developed to 
predict the same (or very similar) outcomes for the same target population. For example, 

Box 18.1 Types of Prediction Model Studies

• Prediction model development studies without external validation aim to 
develop a prognostic or diagnostic prediction model using a dataset at hand, called 
the development set. Such studies commonly aim to identify important predictors 
for the outcome under study, assign mutually adjusted weights per predictor in a 
multivariable analysis, develop a final prediction model, and quantify the predic-
tive performance (e.g. discrimination, calibration, and classification) of that model 
in the development set. As model overfitting can occur, particularly in small data-
sets, development studies ideally include internal validation using a data resam-
pling technique such as bootstrapping, jack- knife, or cross- validation to quantify 
any optimism in the predictive performance of the developed model.

• Prediction model development studies with external validation in inde-
pendent data have the same aim as the previous type. However, once the model 
has been developed, its predictive performance is quantified using participant 
data external to the development dataset. Validation can be done using participant 
data collected by the same investigators, commonly using the same predictor and 
outcome definitions and measurements, but from a later time period (temporal 
or narrow validation), or using data collected by other investigators in another 
hospital or country (geographic or broad validation).

• External model validation studies with or without model updating aim to 
assess and compare the predictive performance of an existing prediction model 
using participant data that were not used to develop the prediction model, and pos-
sibly to adjust or update the model using the results if the model performs poorly.

Prediction model studies that aim to quantify the impact of using a prediction 
model (on clinical decision- making, patient outcomes, or cost- effectiveness of 
care, for example) relative to not using the model can also be included in a system-
atic review of prognostic and diagnostic prediction models. However, these types 
of prediction model studies use very different data extraction and critical appraisal 
techniques, as they have different aims, designs, and reporting issues to studies 
that develop or validate prediction models. In this chapter we focus on reviews of 
studies that aim to develop, validate, or update a prediction model.
Source: Adapted from Moons et al. [21].
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there are over 360 models for predicting the risk of cardiovascular events in the general 
population  [14], over 100 models for diagnosing COVID- 19  [15], predicting outcomes 
after brain trauma [16], predicting the course of patients with prostate cancer [17], and 
more than 40 models for predicting prevalent and incident type 2 diabetes [18]. For many 
models, validation studies are rare, while for a few models, multiple validations have 
examined their performance in different countries, populations, and settings [19, 20].

Alongside the accumulating profusion of development and validation studies of 
prediction models, clinical guidelines now increasingly recommend the use of these 
models. Clinical guidelines should be based on a thorough synthesis of all available 
evidence. We therefore need systematic reviews of prediction model studies, to iden-
tify, appraise, and synthesize the relevant evidence. Cochrane has recognized the need 
for good- quality evidence synthesis in the area of prognostic modeling. In 2008 it 
launched the Prognosis Methods Group to produce guidance on systematic reviews 
of prognosis studies [19, 20], and initiated exemplar reviews with a long- term view to 
including them within the Cochrane Library.

In this chapter, we examine the types of systematic reviews that can be conducted 
on prediction model studies and discuss the challenges faced in identifying, appraising, 
and qualitatively and quantitatively synthesizing these studies. We follow these steps, 
aligned with the processes described in Chapter 2 of this book:

1. Definition of a well- formulated review question.
2. Extensive search for studies.
3. Data extraction, critical appraisal, and risk of bias assessment.
4. Qualitative or quantitative synthesis of data (meta- analysis).
5. Interpretation and reporting.

18.1  FRAMING THE REVIEW QUESTION

Box 18.2 summarizes various systematic review questions and thus types of reviews 
of prediction models. The choice of review question type depends on the evidence 
available on the primary prediction model studies in the clinical context of interest. 
A well- defined review question delineates the types of prediction model studies (e.g. 
development or validation studies, see Box 18.1) to be retrieved and helps to focus the 
search (see also Chapter 3).

Many clinical areas have large numbers of prediction models, often for the same 
target population or outcome. A review can, for example, aim to summarize all existing 
models developed to predict a particular outcome in a particular target population (e.g. 
all models to predict five- year survival after diagnosis of breast cancer), or to simply 
review all existing models (regardless of the outcome or specific target population) in a 
clinical domain (e.g. in obstetrics). In both situations, we would proceed to retrieve all 
the model development studies and any corresponding validation studies.

Many prediction model studies evaluate (validate) the performance of a specific 
prediction model in another population or setting than that in which it was devel-
oped. Examples include the external validation of the EuroSCORE model  [20], the 
ABCD2 model [31], the Framingham risk model [32], and the Wells model for diagnosing 
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pulmonary embolism  [33]. A review can therefore aim to quantitatively summarize 
(meta- analyze) the performance, or the heterogeneity in performance, of this single 
specific prediction model across all tested populations or settings. We would then need 
to review all validation studies of that specific model, and its original development 
study. Finally, a review may examine the methods and reporting of prediction models, 
or the added value of one or more predictors to an existing model (Box 18.2).

The CHARMS (CHecklist for critical Appraisal and data extraction for systematic 
Reviews of prediction Modelling Studies) guidance was developed to help reviewers 
define a clear review question or aim, and provides a checklist for extracting data 
and to assist critical appraisal of the included studies [21]. CHARMS includes a mod-
ification (called PICOTS) of the traditional PICO system (Population, Intervention, 
Comparison, and Outcome) used in systematic reviews of therapeutic intervention 
studies, by replacing “Intervention” with “Index models” and additionally consid-
ering Timing (the timepoint and time period of the prediction) and Setting. Table 18.1 

Box 18.2 Examples of Types of Systematic Reviews  
of Prediction Model Studies

1. Reviews of all models in a particular clinical field or target population
• Prediction models in the traumatic brain injury setting [16].
• Prediction models in obstetrics [22].

2. Reviews of all models for specific outcomes in a specific target population
• Models for predicting the risk of kidney failure, cardiovascular events, and 

death in patients with chronic kidney disease [23].
• Models to predict the risk of developing asthma in preschool children with 

asthma- like symptoms [24].
3. Reviews of the performance of one or more specific prediction models 

(external validation studies)
• Performance of the EuroSCORE II model for predicting the risk of all- cause 

mortality following cardiac surgery [25].
• Performance of the ABCD2  model for predicting the 7-  and 90- day risk of 

stroke in individuals after transient ischemic stroke [26].
4. Reviews of methods and reporting of prediction models

• Quality of reporting and methods used to validate prediction models [27].
• Quality of reporting of diagnostic and prognostic prediction models published 

in high- impact general medical journals [28].
5. Reviews of the added value of a specific predictor to a specific model

• Value of adding C- reactive protein to the Framingham Risk Score [29].
• Value of adding circulating and genetic markers to type 2 diabetes risk 

 prediction models [30].
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TABLE 18.1 The PICOTS system, as presented in the CHARMS guidance and 
checklist [21], describes key items for framing the review aim, search strategy, and 
study inclusion and exclusion criteria.

Item Comment and examples

Population Define the target population in which the prediction models under review 
will be used. Examples:
• Women with diagnosed breast cancer (prognostic model review)
• Women with palpable node breast, suspected of breast cancer 

(diagnostic model review)
• Healthy adult men in the general population (prognostic model 

review)

Index models Define the prediction models under review. Examples:
• All models in women with diagnosed breast cancer
• A certain prognostic model (e.g. the Framingham risk model) to predict 

the 10- year risk of a cardiovascular event in adult men in the general 
population

Comparator If applicable, one may aim to compare the predictive ability of two or 
more models for the target population under review. Example:
• Comparison of the predictive ability of the Framingham risk model 

(index model) with that of the SCORE or QRISK model (comparator) to 
predict the 10- year risk of a cardiovascular event in adult men in the 
general population

Outcome Define the outcome of interest to be predicted by the models under 
review. Examples:
• Specific future event (prognostic models), such as fatal or nonfatal 

coronary heart disease
• Specific target disease presence (diagnostic models), such as 

presence of breast cancer

Timing Define at what moment or timepoint the prediction models under review 
are to be used in the targeted population, and over what time period 
the outcomes are predicted (the latter in case of prognostic models). 
Examples:
• Preoperative prediction of postoperative nausea and vomiting 

occurring within 48 hours after surgery
• Prediction in the first trimester of pregnancy of the risk of developing 

pre- eclampsia in the third trimester
• Prediction of the presence of deep venous thrombosis after patient 

history, physical examination, and D- dimer testing

Setting Define the intended role or setting of the prediction models under review. 
Examples:
• Diagnostic models to diagnose deep venous thrombosis in primary 

setting in order to decide on hospital referral
• Prognostic models to predict the 10- year risk of cardiovascular 

disease to be used in secondary care to determine whether  
to administer lifestyle advice only, or combined with medical  
therapy
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describes these six key issues to help frame the prediction model review question. A 
focused review question enables researchers to define the inclusion and exclusion cri-
teria – and thus the applicability – of the primary studies included in the review and 
to develop a tailored search strategy. Applicability refers to the extent to which the pri-
mary study matches the review question and thus is applicable for the intended use of 
the reviewed prediction models in the target population.

The reviewer needs to define the target population and thus scope of the review, 
which directly indicates whether the aim is to review prognostic or diagnostic models 
and which index and comparator model or models are reviewed (Table  18.1, items 
“P,” “I,” and “C”). The latter immediately indicates which types of prediction model 
studies given in Box 18.1, development, validation, or both, are needed. For example, 
if we aim to assess the predictive performance of a specific prediction model com-
pared to another prediction model developed for the same target population, we need 
to review only the external validation studies of these two models, and also the two 
corresponding development studies (see type 3, Box 18.2). Defining the outcomes to 
be predicted and their timing (Table  18.1, items “O” and “T”) indicates the poten-
tial usefulness and applicability of the models and thus the review results. Models 
most relevant for patients predict patient- relevant outcomes such as death, pain, dis-
ease recurrence, or enhanced quality of life, rather than process outcomes (e.g. drug 
dose reduction) or intermediate pathophysiological outcomes (e.g. tumor response). 
Long- term outcomes are often more relevant for patients. We also need to clarify when 
the model will be used (e.g. at diagnosis, during general practitioner consultation), to 
help define which models are relevant for the review (Table 18.1, item “S”). Models 
that incorporate predictors collected after this predefined timepoint should not be 
included. For example, if we aim to review prognostic models to preoperatively pre-
dict the risk of developing postoperative pain within 48 hours after hip surgery, studies 
including intraoperative characteristics are not useful [21]. Defining the setting of the 
prediction models under review is important, as the predictive ability of models often 
changes across settings (Table 18.1, item “S”).

Systematic reviews of prediction model studies, like all systematic reviews, need a 
study protocol (Chapter 2). Protocols allow external parties to judge the review results 
according to how the review was planned [34]. Protocols of systematic reviews can 
be registered in registries such as the international Prospective Register of Systematic 
Reviews (PROSPERO; www.crd.york.ac.uk/prospero) [35].

18.2  IDENTIFYING RELEVANT PUBLICATIONS

It is challenging to identify prediction model studies via a literature search, as many dif-
ferent terms are used interchangeably to describe prediction models, such as prognostic 
models, prediction models, risk scores, prediction rules, and algorithms. Furthermore, 
many prediction model studies have uninformative titles, and abstracts often fail to 
indicate that the study involves the development or validation of a prediction model. 
Despite these difficulties, search strategies for identifying diagnostic and prognostic 
prediction model studies have been developed  [36–38], validated, and refined  [39]. 
Box 18.3 describes the recommended search filters for finding prediction model studies.
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A search strategy should always be defined using the review aim and scope (see 
Box 18.2 and Table 18.1, and Chapter 3). The generic search strategy in Box 18.3 is 
applicable for the more common types of reviews of prediction models, which includes 
reviews of types 1 and 4, and to some extent type 2, as described in Box 18.2. We can 
also use the search strategy in Box 18.3 for reviews of types 3 and 5, if we add key-
words addressing the specific name or acronym of the targeted prediction model or 
marker, the clinical field or domain, or the targeted population or outcome (as defined 
in Table 18.1). We can find studies relating to a specific, well- known prediction model 
with good sensitivity by using a simple query that searches only for the name of the 
model (e.g. Framingham Risk Score, EuroSCORE, or ABCD2) in the title or abstract. 
If the model’s performance in a particular population or subgroup is of interest, then 
specific terms relating to that population can be added to the search string. Additional 
studies can be found by identifying citations to the original article describing the 
development of the prediction model [39].

18.3  DATA EXTRACTION

The next step is to extract the key information from each included study. Data extrac-
tion provides the necessary data to enable reviewers to examine the risk of bias in 
each study. It also provides the information required for subsequent qualitative and 
quantitative (meta- analysis) synthesis of the data obtained. Reviewers should extract 
key information from each study, such as the dates, setting, study design, definitions of 
startpoints, outcomes, follow- up length, and prognostic factors. This allows a summary 
table of study characteristics to be produced. In addition, more specific information is 

Box 18.3 Effective MEDLINE Search Strategies for Identifying 
Clinical Prediction Model Studies

Ingui filter [36] (Validat$ OR Predict$.ti. OR Rule$) OR (Predict$ AND [Outcome$ 
OR Risk$ OR Model$]) OR ((History OR Variable$ OR Criteria OR 
Scor$ OR Characteristic$ OR Finding$ OR Factor$) AND (Predict$ 
OR Model$ OR Decision$ OR Identif$ OR  Prognos$)) OR (Decision$ 
AND [Model$ OR Clinical$ OR Logistic Models/]) OR (Prognostic AND 
[History OR  Variable$ OR Criteria OR Scor$ OR Characteristic$ OR 
Finding$ OR Factor$ OR Model$])

Haynes broad 
filter [37]

(Predict*[tiab] OR Predictive value of tests[mh] OR Scor*[tiab] OR 
Observ*[tiab] OR Observer variation[mh])

Geersing [39] Combine the Ingui or Haynes filter using the Boolean “OR” operator 
with (“Stratification” OR “ROC Curve”[Mesh] OR “Discrimination” OR 
“Discriminate” OR “c-statistic” OR “c statistic” OR “Area under the 
curve” OR “AUC” OR “Calibration” OR “Indices” OR “Algorithm” OR 
“Multivariable”)

See Chapter 3 for further resources.
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needed for risk of bias assessment, such as methods of measurement of the outcomes, 
predictors, and handling of missing data.

A particular problem with all prediction model research is incomplete reporting 
and methodological shortcomings [18, 27, 28, 40, 41]. The Transparent Reporting of 
a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) 
statement describes the details of model development and validation that authors of 
prediction model studies should report [42, 43]. Despite this important initiative, it is 
unlikely that future reports of published prediction models will always report the key 
details that researchers need to synthesize models in a systematic review, let alone to 
include them in a meta- analysis. A key finding from a systematic review of prediction 
models can therefore be that many of the primary studies available are methodologi-
cally weak and do not report key details about their prediction models [15, 18].

The CHARMS guidance includes a checklist to help reviewers define the key 
items that need to be extracted from each primary study, given their specific review 
question [21]. These key items are grouped in 11 domains, given in Box 18.4. Some key 
items or even whole domains may not be applicable, depending on the review aim or 
question. For example, if a review aims to synthesize the evidence on the predictive 
performance of a specific model or the value of adding a specific marker to an existing 
model, the items in the domain “model development” will not be relevant.

Box 18.4 Items to Consider Extracting from Primary Studies in a 
Systematic Review of Prediction Models (The CHARMS Checklist)

Domain Key items

Source of data

Participants

–  Source of data (e.g. cohort, case–control, randomized trial 
 participants, or registry data)

–  Participant eligibility and recruitment method (e.g.  consecutive 
participants, location, number of centers, setting, inclusion and 
exclusion criteria)

– Participant description
– Details of treatments received, if relevant
– Study dates

Outcome(s) to 
be predicted

– Definition and method for measurement of outcome
–  Was the same outcome definition (and method for measurement) 

used in all patients?
– Type of outcome (e.g. single or combined endpoints)
–  Was the outcome assessed without knowledge of the candidate 

predictors (i.e. blinded)?
–  Were candidate predictors part of the outcome (e.g. in panel or con-

sensus diagnosis)?
– Time of outcome occurrence or summary of duration of follow- up
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Domain Key items

Candidate 
predictors
(or index tests)

–  Number and type of predictors (e.g. demographics, patient history, 
physical examination, additional testing, disease  characteristics)

– Definition and method for measurement of candidate predictors
–  Timing of predictor measurement (e.g. at patient presentation, at 

diagnosis, at treatment initiation)
–  Were predictors assessed blinded for outcome, and for each other (if 

relevant)?
–  Handling of predictors in the modeling (e.g. continuous, linear, non-

linear transformations or categorized)

Sample size – Number of participants and number of outcomes/events
–  Number of outcomes/events in relation to the number of  candidate 

predictors (events per variable)

Missing data –  Number of participants with any missing value (include  predictors 
and outcomes)

– Number of participants with missing data for each predictor
–  Handling of missing data (e.g. complete- case analysis,  imputation, 

or other methods)

Model 
development

–  Modeling method (e.g. logistic, survival, neural network, or machine 
learning techniques)

– Modeling assumptions satisfied
–  Method for selection of predictors for inclusion in multivariable mod-

eling (e.g. all candidate predictors, pre- selection based on unad-
justed association with the outcome)

–  Method for selection of predictors during multivariable modeling (e.g. 
full model approach, backward or forward selection) and criteria used 
(e.g. P value, Akaike information criterion)

–  Shrinkage of predictor weights or regression coefficients (e.g. no 
shrinkage, uniform shrinkage, penalized estimation)

Model 
performance

–  Calibration (calibration plot, calibration slope, Hosmer– Lemeshow 
test) and discrimination (c statistic, D statistic, log- rank) measures with 
confidence intervals

–  Classification measures (e.g. sensitivity, specificity, predictive 
values, net reclassification improvement) and whether a priori cut 
points were used

Model
evaluation

–  Method used for testing model performance: development dataset 
only (random split of data, resampling methods, e.g. bootstrap or 
cross- validation, none) or separate external  validation (e.g. temporal, 
geographic, different setting, different investigators)

–  In case of poor validation, whether model was adjusted or updated 
(e.g. intercept recalibrated, predictor effects adjusted, or new predic-
tors added)

(Continued)
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Domain Key items

Results –  Final and other multivariable models (e.g. basic, extended, simplified) 
presented, including predictor weights or regression coefficients, 
intercept, baseline survival, model performance measures (with 
standard errors or confidence intervals)

–  Any alternative presentation of the final prediction models, e.g. sum 
score, nomogram, score chart, predictions for specific risk subgroups 
with performance

–  Comparison of the distribution of predictors (including missing data) 
for development and validation datasets

Interpretation 
and discussion

–  Interpretation of presented models (confirmatory, i.e. model useful 
for practice versus exploratory, i.e. more research needed)

–  Comparison with other studies, discussion of generalizability, 
strengths, and limitations.

Source : Taken from Moons et al. [21].

Box 18.5 Performance Measures

The most important considerations regarding a model’s performance are calibration 
and discrimination. Calibration reflects the agreement between the model’s out-
come predictions and the observed outcomes. Informally, a model is said to be well 
calibrated if, for every group of, say, 100  individuals, each with a mean predicted 
risk of x%, close to x people have (diagnostic model) or develop (prognostic model) 
the outcome. Calibration should be reported graphically with predicted outcome 
probabilities (on the x- axis) plotted against observed outcome frequencies (on the 
y- axis) – see Figure 18.1 for an example. The plot is commonly done by tenths of the 
predicted risk, with 95% confidence intervals (95% CI). It should be augmented with 
a smoothed (Loess) line over the entire predicted probability range, with shaded 95% 
confidence bands  [45–47] (black line and shaded area in Figure 18.1). It displays 

The CHARMS guidance also suggests which numeric information should be 
extracted (e.g. the domain “Results”) to facilitate a quantitative meta- analysis, 
including meta- regression. It is widely recommended that studies evaluating a pre-
diction model should assess calibration and discrimination [42, 44]. Calibration and 
discrimination are fundamental characteristics of a model that capture its predictive 
ability on a particular dataset with a particular case mix. Calibration is the agreement 
between predictions from the model and observed outcomes. Discrimination is the 
prediction model’s ability to differentiate between those who do and do not experience 
the outcome event. Box 18.5 summarizes the most common methods to evaluate cali-
bration and discrimination, depending on whether binary, survival, or other outcomes 
are predicted.
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the direction and magnitude of model miscalibration across the probability range, 
which can be combined with estimates of the calibration slope and intercept [47]. 
A histogram may be added at the bottom of the plots, which shows the distribution 
of outcomes (1 = outcome occurred; 0 = outcome did not occur). A well- calibrated 
model shows predictions lying on or around the 45° line of the calibration plot (red 
line). Perfect calibration results in a slope of 1 and an intercept of 0. If calibration 
is poor, a prediction model will not be useful; however, good calibration does not 
guarantee that the model is unbiased or that prediction for an individual patient will 
be accurate [48].

Discrimination refers to the ability of a prediction model to differentiate 
between those who do or do not experience the outcome event. A model has 
perfect discrimination if the predicted risks for all individuals who have (diag-
nostic) or develop (prognosis) the outcome are higher than those for all individu-
als who do not experience the outcome. Discrimination is commonly estimated 
using the concordance statistic (c statistic) [49]. The c statistic is identical to the 
area under the receiver operating characteristic curve for models with binary 
endpoints. It can be generalized for time- to- event (survival) models accounting 
for censoring [50]. Extensions to the c statistic for models with more than two out-
come categories [51], competing risks [52], and clustered data [53, 54] have been 
proposed for survival models.

Overall performance measures such as explained variation (R2) [55–61] and 
the Brier score [62, 63] are sometimes reported alongside the traditional measures of 
discrimination and calibration, although they are less intuitive and informative.

Source: Adapted from Moons et al. [43].
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Poor and inconsistent reporting of discrimination and calibration measures com-
plicates meta- analysis of validation studies. However, it is still often possible to extract 
two common statistical measures: the concordance statistic (c statistic, also called 
c-index) and the overall observed–expected (O : E) ratio.

The c statistic measures a prediction model’s discrimination. It ranges from 0.5, 
indicating no discriminative ability, to 1, indicating perfect discrimination. Concor-
dance is most familiar from logistic regression models, where it is also known as the 
area under the receiver operating characteristics curve (AUC). C statistics are the most 
commonly reported estimates of prediction model performance and can if necessary 
be estimated from other reported quantities [64, 65]. Table 18.2 presents commonly 
used methods for estimating c statistics and their standard errors, and for implement-
ing the logit transformations that are needed before a meta- analysis can be conducted. 
Care must be taken when extracting the performance of survival models from publi-
cations. For example, different adaptations of the c statistic have been proposed for 
use with time- to- event outcomes. Although Harrell’s c statistic is the most commonly 
used, many other options are available [68]. For instance, the D statistic gives the log 
hazard ratio of a model’s predicted risks dichotomized at the median value; it can 
be estimated from Harrell’s c statistic when missing [69]. We recommend extracting 
all reported performance estimates and summarizing them through meta- analysis if 
 possible (see below).

The overall O  :  E ratio provides a rough indication of overall model calibration 
across the entire range of predicted risks. It is directly related to the calibration- in- the- 
large statistic for logistic regression models  [70]. Table 18.3 presents formulae using 
commonly reported quantities to calculate the overall O  :  E ratio and its standard 

TABLE 18.2 Formulas for estimating the logit c  statistic and its variance from other 
information in a primary study.a

What is reported? Estimate for Var(logit(c)) Reference

C statistic and its 
confidence interval

[logit(cub) – logit(clb)] / (2 × q) [66]

C statistic and its variance 
or standard error

Var SEc

c c

c
c c1 12

2
[67]

C statistic, the total sample 
size, and the total number 
of observed events

1
2

1 1 2
2

1 1

1

N c c N c c

c c O N O

/ / [67]

a With logit(c) = ln(c) – ln(1- c), where ln is the natural log. The lower and upper bounds of the 
confidence interval of the c statistic are given by clb and cub, respectively. The value for q is given by 
the 100(1 − α) percentile of the Normal distribution, and corresponds to 1.96 for a 95% confidence 
interval. O represents the total number of observed events and N the total sample size. The linear 
predictor is the linear combination of the model predictors in the validation study weighted by the 
regression coefficients of the model in the development study.
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error [72]. The O : E ratio is sometimes also available for subgroups, for example those 
defined by tenths of predicted risk or for particular groups of interest (e.g. ethnic groups 
or regions); however, it is unlikely that every study will report the same subgroups. 
When summarizing the calibration performance of survival models, we recommend 
extracting O : E ratios (or their components) for all reported timepoints in each study, 

TABLE 18.3 Formulas for estimating the ln(O : E) ratio from other information in a 
primary study.a

 What is 
reported

Estimate for ln(O : E) Estimate for Var(ln(O : E)) Reference

O : E with 
confidence 
interval

ln(O : E) [logit(O:Eub) – logit(O : Elb)] / 
(2 × 1.96)

[66]

ln

ln

O : E

p0 862 0 743 2 404

2

. . .+

[71]

O and E ln(O) – ln(E) 1
O

N, Po, and Pe ln(PO) – ln(PE) NP P

NP

o o

o

1
2

PO, PE, and 
Var(PO)

ln(PO) – ln(PE) 1 Var
0
2 0P

P [67]

O and E across 
different risk 
strata

ln(∑iOi) −  ln (∑iEi) ∑
iVar(ln(O : E)i) [67]

N, Po, and 
Pe across 
different risk 
strata (b)

ln ln
i

O i
i

E iP N P N
i i

∑
iVar(ln(O : E)i) [67]

Mean subject 
characteristics 
in the 
validation 
sample

Calculate PE by incorporating 
the mean values of the 
subject characteristics in the 
prediction model. Combine PE 
and PO to obtain O : E

See Var(ln(O : E)) when O 
and E are known

a O : Elb and O : Eub are the lower and upper bounds of the 95% confidence interval of the overall O : E 
ratio, p is the P value of the overall O : E ratio, O is the total number of observed events, E is the total 
number of expected (predicted) events, PO is the observed event probability, PE is the expected event 
probability, N is the total sample size, and α is the calibration in the large.
b These numbers can sometimes also be extracted from a calibration plot. For instance, the horizontal 
axis of this plot usually depicts PE across the entire range of predicted risk. Conversely, the vertical axis 
of a calibration plot depicts PO across the entire range of predicted risk. Image editing tools can thus 
be used to extract values for PO and PE across different risk strata. Note that N is usually reported in 
published articles.
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as O : E values are likely to differ across time. If some events are not observed due to 
censoring, the survival probability at a particular timepoint could be estimated from 
Kaplan–Meier analyses (and 1 minus this Kaplan–Meier estimate used to calculate the 
O : E ratio).

Meta- analysis requires a standard error for each extracted estimate of model 
performance. If standard errors cannot be retrieved from original articles, they should 
be calculated using the reported upper and lower limits of the confidence interval or 
the reported exact P value. The standard error of common performance measures can 
also sometimes be approximated from the sample size and numbers of observed and 
expected events, as described in Tables 18.2 and 18.3.

The discrimination and calibration of a prediction model are highly likely to vary 
between validation studies due to differences between the studied populations [73, 74]. 
In other words, heterogeneity in a model’s predictive performance is to be expected. 
For instance, there may be differences in the overall predicted outcome frequency, 
otherwise known as differences in baseline risk or overall prognosis. Information 
about the case mix, or the distribution of individual characteristics, must therefore 
be extracted from each validation study. Examples include the mean and standard 
deviation of the key subject characteristics and of the linear predictor. Heterogeneity 
in reported performance can also appear when the predictor effects differ between 
studies (e.g. due to different methods of measuring the predictors) or when different 
definitions or derivations of the c statistic have been used.

18.4  ASSESSING METHODOLOGICAL QUALITY

Critical appraisal and assessing the risk of bias of primary studies are important 
aspects in any systematic review. Risk of bias in the context of prediction model 
studies refers to the extent to which flaws in design, conduct, and analysis may lead 
to biased, usually optimistic, estimates of predictive performance measures such as 
model calibration and discrimination. Many systematic reviews have shown that 
models are poorly developed in terms of their design, data quality, statistical methods, 
and reporting [18, 28, 40, 41, 75]. Unfortunately, these problems are even more marked 
for external validation studies that evaluate the performance of an existing model in 
other data (Box 18.1), which is unquestionably the most important aspect of a predic-
tion model [27, 76].

Quality assessment of primary prediction model studies is a developing field. 
PROBAST is a tool designed specifically to assess and grade the risk of bias of pri-
mary studies on the development, validation, and extension or updating of prediction 
models, either diagnostic or prognostic, regardless of the type of outcomes, predic-
tors, medical domain, and statistical methods used (see Box 18.6) [77, 78]. PROBAST 
includes four domains to cover key aspects of prediction model studies: participant 
selection, predictors, outcomes, and analysis (see Box 18.5). The risk of bias component 
of each domain comprises four sections: information used to support the judgment, 20 
signaling questions (2–9 per domain), judgment of risk of bias, and rationale regarding 
the judgment. Signaling questions are rated as yes (Y), probably yes (PY), probably 
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Box 18.6 PROBAST Risk of Bias Tool

Domain 1: Participant Selection

1.1 Were appropriate data sources used, e.g. cohort, randomized controlled 
trial, or nested case–control study data?

1.2 Were all inclusions and exclusions of participants appropriate?

Domain 2: Predictors

2.1 Were predictors defined and assessed in a similar way for all participants?
2.2 Were predictor assessments made without knowledge of outcome data?
2.3 Are all predictors available at the time the model is intended to be used?

Domain 3: Outcome

3.1 Was the outcome determined appropriately?
3.2 Was a pre- specified or standard outcome definition used?
3.3 Were predictors excluded from the outcome definition?
3.4 Was the outcome defined and determined in a similar way for all 

participants?
3.5 Was the outcome determined without knowledge of predictor information?
3.6 Was the time interval between predictor assessment and outcome determi-

nation appropriate?

Domain 4: Analysis

4.1 Was there a reasonable number of participants with the outcome?
4.2 Were continuous and categorical predictors handled appropriately?
4.3 Were all enrolled participants included in the analysis?
4.4 Were participants with missing data handled appropriately?
4.5 Was selection of predictors based on univariable analysis avoided?
4.6 Were important complexities in the data (e.g. competing risks, multiple 

events per individual) accounted for appropriately?
4.7 Were relevant model performance measures evaluated, e.g. calibration and 

discrimination?
4.8 Were model overfitting and optimism in model performance accounted for?
4.9 Do predictors and their assigned weights in the final model correspond to 

the results from multivariable analysis?

Source: Taken from Wolff et al. [77].



362 Systematic Reviews in Health Research 

no (PN), no (N), or no information (NI). Risk of bias is judged as “low,” “high,” or 
“unclear.” All signaling questions are phrased so that “yes” indicates absence of bias. 
Any signaling question rated as “no” or “probably no” flags the potential for bias; and 
judgment will be required to determine whether the domain should be rated as “high”, 
“low,” or “unclear” risk of bias. A “no” rating does not automatically result in a “high” 
risk of bias rating.

18.5  META- ANALYSIS OF CLINICAL PREDICTION MODEL STUDIES

Once all relevant studies have been identified and the corresponding results have 
been extracted, the retrieved estimates of model discrimination and calibration 
can be summarized into a weighted average (see also Chapter  9). As validation 
studies are highly prone to heterogeneity, we recommend using random- effects 
meta- analysis to summarize estimates of model discrimination and calibration, 
to account for unexplained between- study heterogeneity. Furthermore, previous 
studies have demonstrated that performance measures such as the c statistic and 
O : E ratio should be transformed so that they are approximately normally distrib-
uted within and across the studies in a meta- analysis. We recommend using the 
logit transformation for the c statistic and the (natural) log transformation (ln) for 
O : E  ratios. No transformations are needed for meta- analysis of “calibration in the 
large” or for calibration slopes.

For study i, let Yi be the estimate of model performance of interest (e.g. logit c, log 
O : E), and let Si

2  be its sample variance, which is assumed to be known. Then the 
meta- analysis can be written as

Y N Si i i~ , 2

i N~ , 2

assuming that that the Yi are normally distributed about the ith study’s true valida-
tion performance, μi, and the μi are also normally distributed with an average μ and a 
between- study standard deviation of τ. Estimation of this model (e.g. using restricted 
maximum likelihood, REML) produces an estimate of the average performance ( ˆ ) and 
the between- study variance in performance ( 2ˆ ) [79]. Confidence intervals for μ should 
also be produced, ideally accounting for the uncertainty in 2ˆ , for example using the 
Hartung–Knapp Sidik–Jonkman approach [80].

We need to be able to assess the performance (calibration and discrimination) of a 
particular prediction model in every tested setting to summarize its consistency across 
studies [81, 82]. However, carrying out a meta- analysis to produce a single measure 
of average performance ( ˆ ) is usually not helpful, as model performance is likely to 
vary according to differences in case mix and other study- level factors [73, 74]. A key 
focus of a meta- analysis should thus be to quantify the potential range of a predic-
tion model’s performance across different populations of interest, which vary due to a 
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different case mix or setting (see also Chapter 10). For this goal, it is helpful to calculate 
an approximate 100(1 − α)% prediction interval for the performance of the model in a 
new population [81–83], defined as

2 2
, 2

ˆ ˆ ˆ ,Nt

where tα, N − 2 is the 100(1 − α/2)% percentile of the t- distribution for N − 2 degrees of 
freedom, N is the number of studies, ˆ  is the standard error of ˆ , and ˆ  is the 
estimated between- study standard deviation. This equation is most accurate when I2 
is large (see Chapter 9) and the study sizes are similar  [84]. When a meta- analysis 
involves a transformation, such as when summarizing the c statistic, the prediction 
interval should be derived on the transformed scale and then back- transformed. For 
instance, when meta- analyzing the logit c statistic, the 100(1 − α)% prediction interval 
of the summary c statistic is given by 2 2

, 2
ˆ ˆ ˆexpit Nt .

If a meta- analysis reveals heterogeneity in model performance, the sources of this 
heterogeneity should ideally be investigated to suggest the circumstances under which 
model performance is adequate and those under which improvement is needed.

Sources of heterogeneity can be explored by performing a meta- regression 
analysis, using as the dependent variable the transformed estimate of the model 
performance measure. Study- level or summarized patient- level characteristics (e.g. 
mean age) are then used as explanatory or independent variables. Possible modifiers 
of model performance include differences in case mix or disease severity across the 
primary validation studies, differences in study characteristics (e.g. design, setting, 
follow- up time, and outcome definitions), differences in the statistical analysis, and 
characteristics related to selective reporting and publication (e.g. risk of bias and 
study size) [73].

Unfortunately, including aggregate patient information in a meta- regression (e.g. 
mean age) is problematic, as the process is susceptible to study- level confounding and 
aggregation bias (ecological fallacies) [85]. Systematic reviews often include only a few 
studies, so that robust conclusions cannot be drawn from a meta- regression. Limiting 
the number of covariates and pre- specifying these in the study protocol will help guard 
against false- positive conclusions [86]. Chapter 10 discusses in more detail when and 
how to investigate sources of heterogeneity.

18.6  CASE STUDY: META- ANALYSIS OF EUROSCORE II

Guida et al. described a meta- analysis of 22 studies that examined the predictive 
performance of the European system for cardiac operative risk evaluation (EuroS-
CORE II) [25], which we have revised in this case study. Published in 2012, EuroS-
CORE II was developed using logistic regression in a dataset comprising 16 828 
adult patients undergoing major cardiac surgery from 154 hospitals in 43 countries 
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over a 12- week period in 2010. EuroSCORE II was developed to predict in- hospital 
mortality for patients undergoing any type of cardiac surgery.

The authors reviewed validation studies that examined the predictive performance 
of EuroSCORE II in a narrower population, patients undergoing coronary artery 
bypass grafting (CABG). The review included 22 validation studies, including a further 
145 592 patients from 21 external validation articles (one study included two valida-
tions [87]) and a split- sample validation contained within the original development 
article  [5]; 23  validation studies in total. The included studies are summarized in 
Table 18.4. No risk of bias assessment was carried out, as no tool for this was available 
at the time of carrying out the review. The size of the validation studies ranged from 
216 to 50 588 patients containing between 8 and 1071 deaths; 13 studies had fewer than 
the recommended 100 outcome events [108, 109].

The c statistic of EuroSCORE II was reported in all 23  validation studies 
(Table 18.4). Calibration was assessed using a variety of approaches, including the 
Hosmer–Lemeshow test, calibration plots, or comparing the observed mortality 
to the predicted EuroSCORE II (either overall or for groups of patients). As cali-
bration was inconsistently assessed, for the purpose of this meta- analysis calibra-
tion was assessed by calculating the O  : E ratio. While the O  : E ratio itself was 
not  explicitly reported in all studies, it could be calculated from other reported 
information in all validation studies; the log O : E was then used in the meta- analysis. 
Measures of uncertainty were often not reported for either discrimination or calibra-
tion. Standard errors or confidence intervals for the c statistic were reported in 19 
 validation studies; in the remaining 4 validation studies, the standard error of the 
logit c statistic was estimated using the equations described in Table 18.2. Simi-
larly, the standard error of the overall log O : E ratio was approximated using the 
equations provided in Table 18.3. The resulting forest plots are shown in Figures 
18.2 and 18.3.

We performed a random- effects meta- analysis using the models described above 
with REML estimation and Hartung–Knapp–Sidik–Jonkman confidence interval deri-
vation [80]. For the discrimination of EuroSCORE II in the external validation studies, 
we found μ = 1.32 (on the logit scale), which corresponds to a summary c statistic of 
1/(1 + exp.[−1.32]) = 0.79. The average c statistic across the external validation studies 
was thus 0.79, with a 95% confidence interval 0.77 to 0.81 (Figure 18.2). There was sub-
stantial heterogeneity with I2   85% ( ˆ = 0.26). EuroSCORE II showed fairly consis-
tent discrimination across the external validation studies (approximate 95% prediction 
interval: 0.72 to 0.87). To investigate whether case mix differences in the validation 
studies generated heterogeneity, we performed meta- regression analyses examining 
whether heterogeneity was explained by one or more of the following: the spread of 
the EuroSCORE II in each validation study, whether the study was a multicenter study, 
whether the study included patients before 2010 (i.e. before EuroSCORE II was devel-
oped), and the spread of the age of the patients as explanatory variables. The P values 
of the resulting coefficients were all larger than 0.05. We therefore did not find evi-
dence that heterogeneity in the c statistic was explained importantly by these measures 
of case mix variation. However, the result may have been due to low power and adjust-
ing for aggregate- level study characteristics.



TABLE 18.4 Summarized results of the 22 validation studies of the additive EuroSCORE II model included in our meta- analysis.

Study Country Enrolment 
(years)

Number of 
patients

Observed in- 
hospital deaths

Expected in- 
hospital deaths

C  statistic C statistic 
standard 

error

Nashef [5] (development) 43 countries 2010 5553 232 219.34 0.8095 0.014

Biancari [88] Finland 2006–2011 1027 28 46.22 0.867 0.035

Di Dedda [89] Italy 2010–2011 1090 41 33.79 0.81 0.036

Chalmers [90] UK 2006–2010 5576 191 260.96 0.79 0.010

Grant [91] UK 2010–2011 23 740 746 809.53 0.808 0.008

Carneo- Alcazar [92] Spain 2005–2010 3798 215 169.39 0.85 0.010

Kunt [93] Turkey 2004–2012 428 34 7.28 0.72 0.051

Kirmani [94] UK 2001–2010 15 497 547 392.07 0.818 0.007

Howell [95] UK/Netherlands 2006–2011 933 90 105.43 0.67 0.027

Wang (a) [96] China 2008–2011 11 170 226 290.42 0.72 0.015

Borde [97] India 2011–2012 498 8 10.01 0.72 0.076

Qadir [98] Pakistan 2006–2010 2004 76 74.55 0.84 0.017

Spiliopoulos [99] Germany 1999–2005 216 14 8.62 0.77 0.067

Wendt [100] Germany 1999–2012 1066 45 34.11 0.72 0.034

Laurent [101] France 2009–2011 314 18 7.22 0.77 0.061

Wang (b) [102] New Zealand 2010–2012 818 13 13.09 0.642 0.071

Nishida [103] Japan 1993–2013 461 33 34.11 0.7697 0.035

Barili (a) [87] Italy 2006–2012 12 201 210 305.03 0.8 0.015

Barili (b) [87] Italy 2006–2012 1670 125 103.54 0.82 0.020

Paparella [104] Italy 2011–2012 6191 300 272.40 0.83 0.012

Carosella [105] Argentina 2008–2012 250 9 4.10 0.76 0.056

Borracci [106] Argentina 2012–2013 503 21 16.00 0.856 0.033

Osnabrugge [107] US 2003–2012 50 588 1071 1568.23 0.77 0.010



C index

C index

FIGURE 18.2 Forest plot of the extracted c  indices from the 22 validation studies of EuroSCORE 
II included in our meta- analysis.

FIGURE 18.3 Overall calibration of EuroSCORE II, summarized from the 22 validation studies 
included in our meta- analysis.
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We meta- analyzed the overall log O : E ratio in the validation studies and found 
μ = 0.11, which corresponds to a summary total O : E ratio of exp.(0.11) = 1.11, with a 
95% confidence interval of 0.91 to 1.34. EuroSCORE II therefore gives a slight underes-
timation of the risk of in- hospital 30- day mortality on average. There was a substantial 
amount of between- study heterogeneity, I2   97% ( ˆ = 0.44), leading to an approximate 
95% prediction interval of 0.55 to 2.20. This wide prediction interval contains values 
well above and below the value of 1, indicating that in some populations the predicted 
probabilities are systematically too low (O  :  E > > 1) or too high (O  :  E < < 1)  [81]. 
The wide prediction interval illustrates the weakness of focusing solely on average 
performance, as calibration is good on average but is poor in some populations. A 
meta- regression using the same study- level characteristics for the meta- regression of 
the c statistic again found no evidence that this heterogeneity was explained by these 
measures of case mix variation. Figure 18.4 shows the association between the overall 
O : E mean and mean EuroSCORE II (P = 0.22).

We can conclude that although EuroSCORE II discriminates reasonably between 
mortality and survival in patients undergoing cardiac surgery, its overall calibration 
is unreliable. Predicted risks appear too low in low- risk patients, and vice versa. In 
this regard, the performance of EuroSCORE II appears to be similar to that of the 
original EuroSCORE [110] and to suffer from similar deficiencies. It would be helpful 

FIGURE 18.4 Association between mean EuroSCORE II and overall O : E. Circle size is 
proportional to the precision of the O : E estimate (that is, larger circles indicate O : E estimates 
with smaller standard errors, and thus more weight in the meta- regression, dashed line).
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to evaluate possible causes of miscalibration and heterogeneity in model performance. 
Unfortunately, without individual participant data (IPD) of the development and vali-
dation studies, this is often infeasible [73, 81, 82, 111].

18.7  DISCUSSION

Systematic reviews are needed to identify and critically appraise prediction models, 
so that health care professionals and guideline developers can judge the evidence of 
the models’ predictive abilities, applicability, and usefulness. A major limiting factor 
in conducting a meta- analysis of prediction model studies is the poor reporting of 
primary studies. Many reviews have shown that primary studies often fail to report 
key information on the performance of their prediction models [18, 27, 40]. Although 
discrimination, as measured by the c statistic, is frequently reported, model calibra-
tion measures, and certainly calibration slopes, are rarely and inconsistently evaluated 
and reported [27]. Furthermore, for a quantitative meta- analysis to be feasible, mea-
sures of uncertainty are needed that are often missing from primary reports of predic-
tion models. When standard errors of the performance measures are not reported, an 
approximation will typically be required.

As illustrated in the EuroSCORE II case study, focusing on the average performance, 
in this instance calibration as measured by the overall observed–expected (O : E) ratio, 
can be misleading. The calibration meta- analysis of EuroSCORE II indicated reason-
able overall calibration; however, there was substantial between- study heterogeneity, 
indicating that EuroSCORE II is over-  and underpredicting the in- hospital mortality in 
many settings or populations. The source of this heterogeneity could not be identified 
using reported data at the aggregate level.

Meta- analysis based on IPD (see Chapter 12) opens up many new avenues of inves-
tigation in the context of prediction models [82, 111, 112]. When IPD are available, 
investigators can better explore sources of heterogeneity in model performance and 
identify subpopulations where a model works best (or worst) [111]. However, there 
are major challenges in obtaining and using IPD, for example convincing researchers 
to share their data, harmonizing predictor and outcome definitions, and dealing with 
missing data (e.g. completely missing predictors) [113, 114].

Individual prediction model studies are susceptible to many sources of bias 
that could influence and distort the results of a meta- analysis. Evaluation of study 
quality is thus essential, although it is not always done. Risk of bias assessment tools 
for  prediction studies (e.g. PROBAST  [77, 78]) allow authors to critically appraise 
the methodological conduct, and to assess the applicability of each individual study 
with respect to the review question. The results from a risk of bias assessment can 
then be used to decide which studies to include in the meta- analysis, or to perform 
 sensitivity analyses (e.g. omitting studies rated at high risk of bias [115]). A more dif-
ficult problem arises when the prediction model study exhibits selective reporting, as 
noted above. Nonpublication is a concern too (see also Chapter 5). For most prediction 
models, validation studies are scarce. It is plausible that many studies go unpublished 
when there is poor model performance, particularly if conducted by the investigators 
who developed the original model.
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Systematic reviews of observational studies have become increasingly common in 
recent years. A search of PubMed for articles with “meta- analysis” in the title or 
abstract identified 915 publications for the year 2000 and 26 676 for 2020, reflecting 
the massive increase of publications reporting meta- analyses (see also Chapter 1). We 
randomly selected 100 articles published in 2000 or 2020 and examined them further 
(Table 19.1). Whereas in 2000 most meta- analyses were of controlled clinical trials, 
by 2020 observational studies had become the most common study type included 
in meta- analyses. In 2020, about a quarter of publications focused on epidemiolog-
ical studies of etiology, and about 10% each on observational studies of interven-
tions (see Chapter  15), diagnostic or prognostic studies (Chapters  16 and  17), or 
prevalence studies. This chapter focuses on systematic reviews of epidemiological 
studies of etiology and prevalence (see Box 19.1 for an overview of different study 
designs). We discuss the rationale for systematic reviews of epidemiological studies, 
highlight fundamental differences between observational studies and randomized 
controlled trials (RCTs), and address the steps from shaping the research question 
to defining the population, exposure, and outcome, exploring heterogeneity and 
interpreting results.
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Box 19.1 Observational Designs and Approaches for Studying 
Etiology and Prevalence

Cohort study: Cohort studies follow a study population over time. An exposed 
and an unexposed group are compared regarding the risk of the outcome. Dif-
ferent levels of exposure and exposures that vary over time can be studied [1, 2]. 
Instrumental variable methods and self- controlled case series studies are types of 
cohort studies (see below and Chapter 15).

Instrumental variable methods: Instrumental variable (IV) analysis uses an 
external factor that determines the exposure of interest, but is not associated with 
the outcome other than through its effect on the exposure. In other words, the 
instrument is not associated with the factors that may confound the  association 
between exposure and outcome. The instrument can be calendar time, geographic 
area, or treatment preferences [3, 4]. Mendelian randomization studies are exam-
ples of IV analyses using genetic factors as instruments [5] (see also Chapter 20).

TABLE 19.1 Characteristics of 100 articles sampled at random from articles pub-
lished in 2000 or 2020 and included in PubMed.

No. of publications

Year 2000 2020

All publications 914 26 676

Random sample of publications 100 100

Meta- analysis of

Controlledclinicaltrials 45a 43b

Observationalstudies,withfocuson: 24a 55b

Etiology 9 23

Interventioneffectiveness 8 12

Diagnosticaccuracyorprognosis 6 10

Prevalence 1 10

Methodologicalarticle 7 0

Traditionalreview 12 0

Other 14c 9c

Based on a search of PubMed for articles with “meta- analysis” in the title or abstract, excluding 
 publication types letter, comment, and editorial.
a Two meta- analyses included both clinical trials and observational studies.
b Seven meta- analyses included both clinical trials and observational studies.
c Other publications included study protocols, meta- analyses of animal experiments,  agricultural 
or ecological studies or experimental studies in psychology, and systematic reviews without 
meta- analyses.
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Self- controlled designs: In self- controlled case series designs, the occurrence 
of the outcome is compared between time windows during which individuals are 
exposed to a risk factor, and time windows when they are not exposed. In contrast to 
standard cohort designs, the comparison is within individuals. The design is used to 
study transient exposures for which exact timings are available, such as infections, 
vaccinations, drug treatments, climatic exposures, or disease exacerbations [6] (see 
also Chapter 15).

Case–control study: In case–control studies, exposures are compared between 
people with the outcome of interest (cases) and people without (controls) [2]. The 
design is especially efficient for rare outcomes.

Cross- sectional studies: In cross- sectional studies, study participants are assessed 
at one point in time or during a short period to examine the prevalence of exposures, 
risk factors, or disease. The prevalence may be compared between exposure groups 
like in a cohort study, or the odds of exposure is compared between groups with and 
without disease like in a case–control study [2].

Ecological studies: In ecological studies, the association between an exposure and 
an outcome is studied and compared between populations that differ geographically 
or in calendar time. Limitations include the ecological fallacy, when associations 
observed at the aggregate level do not hold at the individual level, and confounding, 
which is often difficult to control.
Source: Adapted from Dekkers et al. [1] and Vandenbroucke et al. [2].

19.1� WHY�DO�WE NEED�SYSTEMATIC�REVIEWS�
OF EPIDEMIOLOGICAL�STUDIES?

The RCT is the principal research design in the evaluation of medical interventions [7]. 
Etiological hypotheses, however, cannot generally be tested in randomized experiments. 
For example, does breathing other people’s tobacco smoke promote the development of 
lung cancer, drinking coffee cause coronary heart disease, or eating a diet rich in unsat-
urated fat increase the risk of breast cancer? Studies of such “menaces of daily life” [8] 
often employ observational designs. In these situations, the risks involved are gener-
ally small. Still, once a large proportion of the population is exposed, the public health 
impact of these associations, if they are causal, can be striking [9].

The prevalence of disease or established determinants of disease at a given point 
in time (point prevalence) or during a specified period (period prevalence) are also of 
great importance for policymaking. Since the 1990s, the Global Burden of Diseases, 
Injuries, and Risk Factors study (GBD) has been integrating data on the prevalence 
of a given disease or risk factor with information on the harm it causes in order to 
estimate the burden of different diseases and risk factors [10, 11].

Systematic reviews of epidemiological studies play an important role in answering 
questions about etiology and prevalence. Epidemiological studies are also essential in 
medical effectiveness research, since the available evidence from clinical trials will 
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rarely answer all the important questions [12]. Often the exposures in observational 
studies will be closely related or even identical to the interventions in RCTs (e.g. using 
vitamin E supplements for a few years), blurring the distinction between the two types 
of studies and raising the issue of combining data across them. These issues are 
discussed later in this chapter and in Chapter 15.

19.2� META-�ANALYSIS�OF EPIDEMIOLOGICAL�STUDIES

It is always appropriate and desirable to review a body of data systematically, irre-
spective of the design and type of studies reviewed. Statistically combining results 
from separate studies in a meta- analysis may, however, be inappropriate (see also 
Chapter 1). Meta- analysis of RCTs is generally based on the assumption that each trial 
provides an unbiased estimate of the effect of an intervention: the variability in results 
between the studies is due mainly to random variation. The overall effect calculated 
from a group of sensibly combined RCTs should provide an unbiased estimate of the 
treatment effect, increasing its precision. Meta- analysis may seem attractive in etio-
logical epidemiology, promising a precise and definite answer when the magnitude of 
the underlying risks is small, or in prevalence studies when the disease or condition 
of interest is rare. However, compared with RCT research, a fundamentally different 
situation arises in the case of epidemiological studies  [13]. Epidemiological studies 
may yield estimates of causal effects that deviate systematically from the truth, beyond 
the play of chance. They may also produce precise but incorrect prevalence estimates. 
This may be due to the effects of bias in prevalence studies or confounding and bias in 
etiological epidemiology. Let us consider the example of smoking as a potential cause 
of suicide, and then examine biases in prevalence studies.

19.2.1 Biasand Confoundingin EtiologicalEpidemiology:Does
Smoking Cause Suicide?

Many cohort studies have shown a positive association between smoking and suicide, 
with a dose–response relationship being evident between the amount smoked and the 
probability of committing suicide [14]. Figure 19.1 illustrates this for four prospective 
studies of middle- aged men, including the large cohort of men screened for the Mul-
tiple Risk Factors Intervention Trial (MRFIT)  [15]. Based on over 390 000 men and 
almost five million years of follow- up, a meta- analysis of these cohorts produces very 
precise and statistically robust estimates of the increase in suicide risk associated with 
smoking, after controlling for potential confounding factors: relative rate for 1–14 cig-
arettes 1.43 (95% confidence interval 1.06–1.93), for 15–24 cigarettes 1.88 (1.53–2.32), 
25 or more cigarettes 2.18 (1.82–2.61).

Based on established criteria, such as Bradford Hill’s classic considerations for assess-
ing causality  [16] or, more recently, the Grading of Recommendations, Assessment, 
Development and Evaluation (GRADE) methodology [17, 18] (see Chapter 22), many 
would consider that the dose–response relationship between smoking and suicide sup-
ports a causal association. However, it is improbable that smoking is causally related to 
suicide [14]. Instead, it may be the social and mental states predisposing to suicide that 



�Systematic�Reviews�of��Epidemiological�Studies�of��Etiology�and Prevalence 381

are also associated with smoking. Factors that influence both the exposure and the dis-
ease under study (confounding factors) may thus have distorted the results. The usual 
approach is to adjust for confounding in the analysis. For example, any study assessing 
the influence of coffee consumption on the risk of myocardial infarction should make 
statistical adjustments for smoking. In many populations smoking is associated with 
drinking more coffee, and smoking is a cause of coronary heart disease [19, 20]. Even 
when confounding factors have been adjusted for in the analysis, as in the cohorts of 
smoking and suicide (Figure 19.1), residual confounding remains a potentially serious 
problem. Residual confounding arises whenever a confounding factor cannot be mea-
sured, or not be measured with sufficient precision, a situation that often occurs in 
epidemiological studies [21, 22]. Confounding is frequently the most important threat 
to the validity of results from cohort studies. Many additional difficulties, particularly 
selection biases, can influence cohort studies and, in addition, can be particular threats 
to the validity of case–control studies [23, 24]. When a disease process influences the 
apparent exposure, this can be especially problematic (“reverse causality”). Depression, 
for example, may make it harder to quit smoking, and since depression increases the 
risk of suicide, this will lead to an association between smoking and suicide.

19.2.2 PlausiblebutSpurious?

Implausible results, such as in the case of smoking and suicide, rarely prevent mis-
leading conclusions: it is easy to produce plausible explanations for the results of 
observational research  [13]. For example, researchers investigating cofactors in 
human immunodeficiency virus (HIV) transmission in a cohort of sex workers found 
a strong association between oral contraceptive use and HIV infection  [25]. The 
authors hypothesized that the risk of transmission was higher due to “effects on the 
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FIGURE 19.1 Adjusted relative rates of suicide among middle- aged male smokers compared to 
nonsmokers. Results from four cohort studies adjusted for age, and income, race, cardiovascular 
disease, diabetes (Multiple Risk Factor Intervention Trial: MRFIT), employment grade (Whitehall 
I), alcohol use, serum cholesterol, systolic blood pressure, and education (North Karelia and 
Kuopio). Meta- analysis by fixed- effects model. CI, confidence interval. Source: Adapted from [14].
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genital mucosa, such as increasing the area of ectopy and the potential for mucosal 
disruption during intercourse.” A cross- sectional study produced contradictory find-
ings, indicating that contraceptives protect against the virus  [26]. This finding was 
also considered plausible, “since progesterone- containing oral contraceptives thicken 
cervical mucus, which might be expected to hamper the entry of HIV.” Confounding 
by sexual behavior or selection bias likely contributed to these discrepant findings. 
A cohort study among women in four African countries found no strong evidence 
for an association  [27]. The women were asked about contraceptive use and sexual 
behaviors and underwent HIV testing at each quarterly visit, allowing better control of 
confounding. Epidemiological studies of etiology produce many seemingly plausible 
associations, and many are eagerly reported in the media. Figure 19.2 shows how car-
toonist Jim Borgman envisages this situation.

19.2.3 Biasin PrevalenceStudies:HowCommonIsAlcohol
Consumption among Students?

Selection and information biases are central to the interpretation of prevalence 
studies. Selection bias will distort findings whenever the study population differs from 
the target population in characteristics related to the prevalence of the condition of 
interest [28]. Such bias is, for example, introduced when the individuals who refuse 
participation differ from those who participate in a study (nonresponse bias). For 
example, an alcohol consumption survey included a random sample of almost 2000 

FIGURE 19.2 “Today’s Random Medical News”: Observational studies produce a large number 
of seemingly plausible associations. Some of these findings will be spurious due to bias and 
confounding, but they are nevertheless eagerly reported in the media. Source: Cartoon by Jim 
Borgman, © Hearst Corporation. Reproduced by permission.
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students at a university in New Zealand; 18% refused to participate [29]. More women 
than men participated, and the prevalence of alcohol consumption was probably 
underestimated because men drank more than women  [29]. Among respondents, 
information bias may have distorted prevalence estimates due to social desirability 
bias [30]. Socially desirable responses may bias estimates due to over- reporting “good” 
or under-   reporting “bad,” undesirable behavior. Such bias is a problem in research 
based on self- reports of behaviors that are socially sanctioned, for example drug con-
sumption or sexual behavior. Recall bias occurs when participants do not remember 
experiences or behaviors accurately [28]. A study of the lifetime prevalence of mental 
disorders in the United States found that older individuals may have had problems 
recalling past episodes: the prevalence of lifetime mental disorders was lower in older 
participants  [31]. Misclassification bias for the measured condition is another issue 
in prevalence studies: the information on the presence or absence of a condition or 
symptom is rarely completely accurate. For example, in the case of COVID- 19, the 
prevalence of asymptomatic SARS- CoV- 2  infection depends on what symptoms 
are included in questionnaires [32]. In March 2020, symptoms such as loss of smell 
(anosmia) or taste (ageusia) were not recognized as typical for COVID- 19 but were 
subsequently acknowledged as COVID- 19 related. Patients with these symptoms may 
have been wrongly classified as asymptomatic in the early studies [32].

19.2.4 TheFallacyof BiggerBeingBetter

In a meta- analysis, the weight given to each study generally reflects the statistical 
power of the study: the larger the study, the greater the weight (see Chapter 9). In 
well- conducted RCTs, when the main problem is lack of precision in effect estimates, 
giving the greatest weight to studies that provide the most information is appropriate. 
However, in a meta- analysis of observational studies, the main problem is not lack of 
precision, but that some studies are more biased or confounded than others. Statistical 
power is not the best indicator of which study is likely to be most valid, and indeed the 
opposite may be the case [13]. Smaller studies can devote more attention to charac-
terizing the exposure or condition of interest and confounding factors than can larger 
studies. Collecting more detailed data on fewer participants can be a better strategy for 
obtaining accurate results than collecting crude data on many [33]. The most informa-
tive studies are those that give the answer nearest to the correct one. This is unlikely 
for large but poorly conducted observational studies, including studies based on data 
collected for other purposes.

19.3� PREPARING�THE SYSTEMATIC�REVIEW

The principles and steps of systematic reviews outlined in Chapter  2 also apply 
to systematic reviews of observational studies of etiology or prevalence. A study 
protocol must be written in advance, which covers the steps and methodological 
approaches. A focused question needs to be formulated, inclusion and exclusion 
criteria defined, and studies located and assessed for eligibility. Then the risk of bias 
in included studies needs to be examined, and the relevant data extracted, analyzed, 
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and reported. The confounder- adjusted estimates will be of greatest interest in 
 etiological studies, but it is useful also to extract the unadjusted estimates [1]. In 
this section we discuss some aspects that are particularly relevant for systematic 
reviews of observational studies, drawing on COSMOS- E (Conducting Systematic 
Reviews and Meta- Analyses of Observational Studies of Etiology) and other guidance 
and literature [1, 13, 34–37].

19.3.1 Shapingthe ResearchQuestion

A systematic review of observational studies requires a clear research question. It may 
initially be broad, but should later be narrowed down for clarity and feasibility. After 
formulating the question, the team should examine what evidence exists and what 
research has been done. This exploratory step clarifies whether the question has been 
addressed in a recent systematic review and whether that question should be refined 
and focused [1].

In line with the PICO framework (Participants, Interventions, Comparators, Out-
comes) used in systematic reviews of RCTs (see Chapter 2), reviews of epidemiolog-
ical studies of etiology should address a PECO (Population, Exposures, Comparators, 
Outcomes) framework [38]. The study population should reflect the target population 
to which the results should be applicable. Exposures, comparators (or comparisons), 
and outcomes should be clearly defined. Differences between studies in definition and 
measurement of exposures, such as socioeconomic position, diet, exercise, or environ-
mental chemicals, and their comparability across studies need careful attention [1]. 
Similarly, many outcomes can be defined, classified, or measured differently, such as 
diseases (breast cancer, thrombosis, diabetes mellitus) or health- related states (quality 
of life, levels of risk factors).

A PC (Population, Condition) framework is appropriate for prevalence studies, 
carefully defining the (target) population and the condition of interest. The definition 
of the population should clearly distinguish between general population and health 
care settings. It should consider the setting in some detail, for example the level of 
health care (primary care, hospital etc.), the specific population (for example, an immi-
grant community), the geographic context (for example, urban or rural), or a season or 
calendar period (for example, a wave of SARS- Cov- 2 infections) [34].

19.3.2 TheProtocol

Plans for every systematic review should be described clearly and transparently in a 
protocol. For systematic reviews of observational studies, the protocol should always 
include a list of biases that could distort results, and for systematic reviews of etiolog-
ical questions should include a list of potential confounders [1]. While reviewers should 
take care not to change the protocol based on study results, writing a protocol for a 
systematic review of observational studies will often be iterative, informed by scoping 
the literature and piloting procedures. Registering the protocol in the International 
Prospective Register of Systematic Reviews (PROSPERO)  [39] or publishing it in 
advance in a journal or on a preprint server increases transparency.
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19.3.3 Searchingfor RelevantStudies

Considerable progress has been made in identifying RCTs for systematic reviews 
(see Chapter 3). Procedures for identifying other types of studies are less well devel-
oped, but some general principles apply to any systematic review. Searches should 
be developed based on (i) the concepts in the review question (PECO or PC); (ii) 
the search terms that will capture the concepts; and (iii) the relevant bibliographic 
databases and other sources to be searched. Using all PECO concepts in a review of 
etiology risks missing relevant records: Population and Exposure should generally 
be covered, whereas Comparators and Outcomes may be left out to increase the 
sensitivity of the search. A concept to capture the study design may be added. The 
Information Specialists’ Sub- Group (ISSG) Search Filter Resource collates search 
filters grouped by study design. Similarly, SuRe Info provides information on iden-
tifying different types of studies for systematic reviews [40]. Text mining tools are 
increasingly used to build search strategies [41]. Reviewers should seek advice from 
experienced librarians or information specialists to develop and implement the 
search strategy in different bibliographic databases. Chapter 3 provides details on 
and links to relevant resources.

19.3.4 AssessingQuality,Riskof Bias,and StudySensitivity

The assessment of methodological aspects of studies is crucial in systematic reviews 
of observational studies. The term study quality is often used in this context, but it is 
important to distinguish between quality and risk of bias (see also Chapter 4). The 
quality will be high if the authors have performed the best possible study. How-
ever, a high- quality study may still be at high risk of bias. The above- mentioned 
study  [27] of contraceptive use and HIV infection among African women had to 
rely on self-   reported information on sexual behavior, potentially introducing (social 
desirability) bias [30].

How should the risk of bias in observational studies be assessed? The authors 
of a 2007 review of over 80 different tools concluded that there is no “single 
obvious candidate tool for assessing the quality of observational epidemiological 
studies” [42]. This is not surprising considering the many study designs, contexts, 
and research questions in observational research. As discussed in Chapter 15, the 
ROBINS- I (Risk Of Bias In Nonrandomized Studies of Interventions) tool was 
designed to assess the risk of bias in nonrandomized studies of interventions [43]. 
A similar instrument for longitudinal studies of exposures, ROBINS- E (Risk Of 
Bias In Nonrandomized Studies of Exposure), is under development  [44]. The 
ROBINS tools illustrate that a one-   size-   fits-   all approach is misguided. Instead, a 
set of criteria should be developed for each observational study design, guided 
by the general principles outlined in Box 19.2. Assessments of prevalence studies 
should focus on the degree of representativity of the sample, which may have been 
affected by nonresponse or other selection bias. Depending on the context, assess-
ments should also consider information biases such as social desirability or mis-
classification bias.



386 Systematic Reviews in Health Research 

Box 19.2 Seven Principles for Risk of Bias Assessment of 
Observational Studies

1. The relevant types of bias should be identified, separately for each 
review question and for different study designs, including potential 
confounding, selection bias, and information bias.

2. The risk of bias should be assessed qualitatively, for example as “low 
risk,” “moderate risk,” or “high risk.” Quantitative assessments by assigning 
points should be avoided.

3. Signaling questions may be helpful to support judgments about the 
risk of bias. For example, addressing the question “Did the authors control 
for all the important confounders?” will help assess potential confound-
ing. Signaling questions have been compiled for nonrandomized studies of 
interventions [43].

4. Separate assessments may have to be made for different outcomes. 
For example, bias in the ascertainment of death from all causes is less 
likely than for subjective outcomes, such as quality of life or pain, or an 
outcome that relies on clinical judgment, such as pneumonia.

5. Assessments should be documented by copying and archiving the text 
from the article on which an assessment is based. Such documentation 
increases transparency, facilitates discussion in case of disagreement, and 
allows replication of assessments.

6. Summary scores should be avoided. Typically, each scale item is 
weighted equally (0 or 1 point), but the importance of a bias will depend 
on the context [45]. The situation is made worse if the scale includes items 
that are not consistently related to bias, as in the case of the Newcastle–
Ottawa Scale [46].

7. Thinking about a hypothetical, unbiased trial may be helpful. As 
a thought experiment, design a hypothetical RCT that would answer the 
review question posed in the systematic review [43]. Such a trial will often 
be unfeasible and unethical, but the thought experiment may help to 
sharpen the review question and clarify the potential biases in the obser-
vational studies.

 Source: Adapted from Dekkers et al. [1].

The concept of study sensitivity [47] refers to the ability of studies to detect a true effect 
and is closer to study quality than the risk of bias. If the study is negative, does this really 
mean that there is no association between exposure and outcome? For example, were there 
sufficient numbers of exposed persons, and were the levels of exposure and length 
of follow- up adequate to detect an effect? Study sensitivity is particularly relevant in 
occupational and environmental epidemiology and of concern in pharmaco- epidemiology, 
for example in the context of adverse effects of drugs (Chapter 15). Reviewers should assess 
both the risk of bias and study sensitivity in reviews of observational studies.
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19.3.5 Analysisand Interpretation

Some have argued that meta- analysis of observational studies should be abandoned 
altogether [48]. We disagree, but think that the statistical combination of studies in a 
meta- analysis should be a less prominent component of systematic reviews of obser-
vational studies, including reviews of etiology or prevalence. Instead, the thorough 
consideration of heterogeneity between study results will provide more insights than 
the mechanistic calculation of an overall measure of effect, which may often be biased.

19.3.5.1� Exploring�Sources�of Heterogeneity

Chapter 10 discusses the sources of clinical and methodological diversity that may 
lead to statistical heterogeneity and how to examine such heterogeneity in subgroup 
and meta- regression analyses. Here we illustrate the importance of methodological 
heterogeneity in meta- analyses of observational studies, using a few examples from 
the literature  [13]. Consider etiological investigation of the effect of diet on breast 
cancer. The hypothesis arising from ecological analyses [49] that a higher intake of 
saturated fat could increase the risk of breast cancer generated much observational 
research, often with contradictory results. A meta- analysis [50] showed an association 
among case–control but not among cohort studies (Figure  19.3). This discrepancy 
was also shown in two separate meta- analyses of cohort and case–control studies [53, 
54]. It seems likely that biases in the recall of dietary items and the selection of study 
participants produced a spurious association in case–control studies [54].

A meta- analysis of case–control studies of intermittent sunlight exposure and 
melanoma also showed evidence that differential recall of past exposures introduced 
bias  [51] (Figure 19.3). Only a small effect was evident when combining studies in 
which some blinding to the study hypothesis was achieved. Conversely, in studies 
without blinding, the effect was considerably greater.

In occupational epidemiology, the quest to demonstrate a dose–response relation-
ship can lead to very different groups of employees being compared. In a meta-   analysis 
examining formaldehyde exposure and cancer, funeral directors and embalmers 
(higher exposure) were compared with anatomists and pathologists (intermediate 
exposure) and industrial workers (lower exposure)  [52]. As shown in Figure  19.3, 
there is a striking deficit of lung cancer deaths among anatomists and pathologists, 
most likely due to a lower prevalence of smoking among this group. In this situation, 
few would argue that formaldehyde protects against lung cancer, but such selection 
bias may be less obvious in other instances.

The examples so far related to epidemiological studies of etiology and used sub-
group analyses. The final example relates to studies of the prevalence of genital chla-
mydia infection in high- income countries, using meta- regression  [55]. The authors 
examined whether estimated chlamydia prevalence differed according to the response 
rate in each population- based survey. There was evidence that chlamydia prevalence 
was lower in surveys with higher response rates in both women and men (Figure 19.4). 
The authors concluded that surveys of genital chlamydia prevalence are at risk of over-
estimating the prevalence of infection due to low response rates [55].
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In these examples, sources of methodological heterogeneity were explored at the 
level of study characteristics in sensitivity analyses (see Chapter 2) to test the stability 
of findings across different study designs, exposure assessments, and selection of study 
participants. Subgroup analysis and meta- regression based on averages of participant 
characteristics (such as the average age of all the participants) are also widely used. For 
example, the severity of COVID- 19 was associated with the prevalence of right 
ventricular dysfunction in meta- regression [56]. Other meta- regression analyses found 
an exponential relationship between study- level average age and SARS- CoV- 2 infection 
fatality [57], or an increase with average age of the length of median incubation [58]. 
As discussed in detail in Chapter 10, subgroup and meta- regression analyses based on 
study characteristics or participant characteristics aggregated at the level of the study 
may be affected by confounding or bias (for example, aggregation bias) and should be 
interpreted with caution. Analyzing individual participant data (IPD) from each study 
provides a stronger basis for exploring how effects vary according to participant 
characteristics such as age and disease severity (see Chapter 12).

19.3.5.2� Statistical�Considerations

The general principles of meta- analysis and the commonly used statistical methods 
are discussed in Chapter 9 and are applicable to observational studies of etiology, with 
the provisos that between- study heterogeneity will often be pronounced and that the 
focus should be on exploring sources of heterogeneity. Similarly, the subgroup analyses 
and meta- regression approaches to explore sources of heterogeneity discussed in 
Chapter 10 are central in meta- analyses of etiological studies. A widespread issue in 
etiological studies is that results are presented as dose–response relationships or as 
associations for each of several ordered exposure categories in relation to a reference 
category. Methods for analyzing these data are discussed in Chapter 14.

Specific statistical issues arise in the context of prevalence studies [34, 59]. Due to 
the constrained range of proportions between 0 and 1, their mathematical properties 
are poor, and prevalence estimates from different studies need to be transformed, 
using, for example, the logit, arcsine, or double arcsine transformation. The propor-
tions and confidence limits are then back- transformed to facilitate presentation and 
interpretation. There are advantages and disadvantages to different transformations, 
for example in the context of small sample sizes  [59, 60]. Schwarzer and Rücker 
discuss these transformations in detail and provide relevant guidance  [59]. Models 
that use the binomial distribution for the likelihood of the observed events have better 
properties than other models and are preferred to fit random- effects meta- analysis and 
meta- regression analysis of proportions extracted from prevalence studies [61]. One 
of these models is the binomial- normal model, which is available in many statistical 
software packages, including Stata and R (see Chapters 25 and 26).

19.4� TRIANGULATION�OF EVIDENCE

Triangulation of different types of evidence is increasingly used in biomedical and 
other research [62, 63]. Triangulation embraces the variety of evidence thesis (VET) 
that inferential strength depends not only on the quantity of available evidence, but 
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also on its variety: the greater the variety, the stronger the resulting support [64]. An 
essential condition is that the systematic errors and biases are unrelated across different 
study types [63, 65, 66]. For example, the effect of inhibiting HMGCoA reductase on 
the risk of coronary heart disease can be estimated from RCTs of statins or through 
Mendelian randomization using genetic variants related to HMGCoA activity. Both 
the results of RCTs (see Chapter 4) and Mendelian randomization studies could be 
biased [67, 68]. However, the potential biases in one study design would not influence 
estimates of the other approach: the biases are unrelated to each other.

When biases are unrelated, it may be possible to obtain two or more estimates 
using different estimation strategies from the same single study sample; these have 
been referred to as “evidence factors,” which can be meta- analyzed to increase 
statistical power [69]. An example is a study based on the UK Biobank of the effect 
of years of education on health and health behavior [70]. Two different instrumental 
variables were used. The first was based on a natural experiment, the 1972 schooling 
reform in the UK, which raised the minimum school leaving age, and the second used 
Mendelian randomization. The two estimates could legitimately be meta- analyzed in 
these circumstances. The development of triangulation approaches is currently most 
advanced within epidemiology [62, 71, 72], but developing the methods for appropri-
ately combining such data is still in its infancy.

19.5� CONCLUSION

The suggestion that formal meta- analysis of epidemiological studies of etiology or prev-
alence can be misleading and that insufficient attention is often given to heterogeneity 
does not mean that a return to the previous practice of highly subjective reviews is called 
for. Many of the principles of systematic reviews remain: a study protocol should be writ-
ten in advance, complete literature searches should be carried out, and studies should 
be selected in a reproducible and objective fashion. The best practices and recommen-
dations regarding the conduct of systematic reviews and meta- analyses of observational 
studies are less well defined than for RCTs, and there is substantial variability in 
practices [35–37]. Clearly, IPD will often be required to allow differences and similarities 
of the results found in different settings to be examined thoroughly, hypotheses to be 
formulated, and the need for future studies, including RCTs, to be defined.
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C H A P T E R  20
Meta-Analysisin Genetic
AssociationStudies
Gibran Hemani

There have been two major medical incentives for identifying genetic associations 
with complex traits and diseases. First, identification of genomic locations (loci) that 
influence a trait can provide information about the biological processes, or their dis-
ruptions, that lead to disease. Such knowledge can aid in the development of new 
drugs. Second, genetic variants can be used as predictors of disease. Complex traits 
are substantially heritable (typical range is 20–80%) [1–3], meaning that the total set 
of genetic variants that underlie the trait can explain that much of the trait varia-
tion or disease liability. As more genetic factors for a trait are identified, the accuracy 
of the genetic predictor improves. Genetic associations have value in other areas; for 
example, they can be used as instrumental variables in epidemiological studies to infer 
the causal relationships between different traits (see also Chapter 19).

Prior to genetic association studies, the predominant method for identifying ge-
netic loci involved in phenotypes was linkage analysis [4]. Linkage studies are designed 
around genotyping markers in samples of related individuals. If a genetic locus is 
involved in the trait, then individuals within a family who share the same alleles at 
that marker will be more phenotypically similar. While linkage analysis is an elegant 
statistical formulation of the problem in comparison to population- based association 
studies, its statistical power is low [5].

The new millennium emerged from a decade of putative findings from linkage 
analysis that failed to be replicated [6]. In this chapter, we chart the transition from 
linkage to association- based study designs and then describe how meta- analysis has 
been central to the key successes that have emerged from the genome- wide association 
study (GWAS) era. Most importantly, meta- analysis has been crucial because of the 
combination of two factors: (i) complex traits and diseases are typically influenced 
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by thousands of genetic variants, each of which has extremely small effects; and (ii) 
legal obstacles often prevent the sharing of individual- level genetic data from multiple 
studies. To enable the sample sizes of GWAS to grow to sufficient magnitudes that 
allow the detection of small genetic effects, results from many separate studies are 
meta- analyzed, generating overall results with sample sizes that now routinely exceed 
100 000 individuals, and for some traits the sample sizes are numbered in the millions.

The practical implementation of meta- analysis for GWAS has been discussed else-
where [7, 8]. GWAS meta- analyses are typically undertaken either within large con-
sortia of primary researchers or based on online databases of aggregated data from 
multiple studies [9]. Of note is that such approaches are in contrast to the types of 
systematic reviews discussed in much of the rest of this book: GWAS meta- analyses 
are not usually based on systematic searches of the literature, and formal assessments 
of study quality or risk of bias are seldom undertaken.

20.1 STUDYDESIGNSFOR DETECTINGGENETICASSOCIATIONS

20.1.1 NaturalGeneticVariation

There are approximately 70 de novo mutations per newborn child, and these arise 
at random throughout the genome  [10]. Over many generations, a new allele can 
replace the original allele within the population, or it can go extinct. The fate of an 
allele is determined by the effective population size, its response to natural selection, 
and chance. Statistical genetics is interested in those genomic positions that are poly-
morphic, where the new allele is present in the population alongside the original 
allele. By convention, we label the allele that is most frequent in the population as the 
major allele, and the other allele as the minor allele. Differences that involve a single 
base- pair change are known as a single- nucleotide polymorphism (SNP).

There are approximately 15  million known SNPs across the human genome, 
for which the least common allele is present in at least 1% of the chromosomes in 
the population [11]. An SNP with minor allele frequency (MAF) >1% is known as a 
common variant, whereas those with MAF <1% are known as rare variants. The major 
focus of GWAS has been on common variants, for three reasons. First, they can be 
assayed more reliably using SNP chip technology than rare variants [12]; second, they 
have greater statistical power for detecting associations [13]; and third, the common- 
disease common- variant hypothesis postulates that common SNPs contribute the 
majority of the genetic influence to common diseases [14].

20.1.2 Testingfor GeneticAssociationBetweena Trait 
and aCausalVariant

Genetic association studies are conducted using samples of “unrelated” individuals. 
The most widely used model to relate SNPs to traits is also the simplest, assuming that 
the alleles influence the phenotype in an additive manner. Supposing that a SNP has 
two alleles, A and G, with G being the minor allele. Because humans have two copies 
of each chromosome, there are three possible genotypes: AA, AG, and GG. An additive 
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genetic model assumes that if the G allele influences the phenotype by some amount 
β, then individuals who are homozygous for the G allele (i.e. having two copies of the 
G allele) will have a mean value of 2β; and individuals who are heterozygous (i.e. only 
having one copy of the G allele) will have a mean value of β.

To conduct such a genetic association test, we re- code the genetic variant into 
“additive” (also known as “dosage”) format. Here, instead of labeling individuals as 
AA, AG, or GG, we label them by counting how many G alleles the individual has. 
Those who are homozygous for the A allele will therefore have a numeric value of 0 G 
alleles, heterozygotes will have 1 G allele, and homozygotes for the G allele will have a 
value of 2. This numeric vector is regressed against the trait value, and the regression 
coefficient provides an estimate of β.

Age and sex are typically included as covariates to reduce residual variation and 
increase power. Covariates are also included to reduce the risk of confounding due to 
population structure. Here the concern is that subsets of individuals in a sample from 
distinct geographic regions can have different disease prevalence due to nongenetic 
factors. At the same time, they will have systematically different patterns of genetic 
polymorphisms due to ancestry. This confounding, known as population stratification, 
will lead to spurious genetic associations. To minimize the effects of confounding due 
to population stratification, we use the SNP data to estimate the geographic ancestry of 
each individual and include those estimates of ancestry as covariates [15].

20.1.3 LinkageDisequilibriumAidsDetectionof CausalVariants

If genotyping technology fails to include the causal variant – the SNP that actually has 
the biological influence on the trait – then genetic association studies can still find an 
association [16]. The additive effect of an SNP can be estimated using a marker that 
is close to the causal variant. Genetic inheritance operates such that an individual 
receives one copy of a chromosome from their mother, and one from their father. How-
ever, due to the recombination during meiosis, neither of these copies is identical to a 
chromosome of a parent. Rather, the maternally inherited chromosome is a mixture 
of chromosome segments from the maternal grandparents. The same applies to the 
paternally inherited chromosome.

During meiosis, there are on average 100 recombination events across the genome. 
As a consequence, the chance that a particular causal variant on a chromosome is co- 
inherited with a genetic marker diminishes as the genetic marker gets further from the 
causal variant. This process of inheritance within families, when repeated over many gen-
erations in a randomly mating population, leads to a distinct correlation pattern between 
SNPs. A genetic marker on a different chromosome to the causal variant is completely 
uninformative about that causal variant; it is in linkage equilibrium, often denoted by 
rLD

2 0 . The closer together two SNPs are located on the same chromosome, the higher 
the chance that there is nonrandom association of the alleles at these loci. Complete 
nonrandomness, where each allele at one locus is only co- inherited with one allele at 
another locus, is known as complete linkage disequilibrium (LD), denoted rLD

2 1 .
If a marker is informative about a causal variant, then it depends on being in LD 

with the causal variant. In fact, the power to detect an association reduces linearly 
with decreasing LD [17].
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20.1.4 TheFailureof CandidateGeneStudies

Early genetic association analyses took the form of candidate gene studies [18]. Here, 
a few genotypes are assayed in a sample at a gene region with some a priori biological 
candidacy for involvement in the trait. This approach had two advantages over search-
ing for loci across the whole genome in a hypothesis- free manner: (i) for a given finan-
cial cost, more samples could be genotyped at a few loci; and (ii) a high multiple- testing 
penalty could be avoided. And yet, though many associations were reported in the lit-
erature, like with linkage analysis independent replication was seldom achieved [19].

Many systematic reviews and meta- analyses were performed of these candidate 
gene studies  [20], encouraged in part by the Human Genome Epidemiology Net-
work [21]. However, the replication rate of candidate gene studies was poor. This was 
typically attributed to population stratification, as well as publication bias  [22, 23]. 
These problems aside, with the benefit of hindsight, it is clear that the experimental 
design of candidate gene studies was not conducive to identifying genetic variants that 
influence complex traits. Genes earmarked for being biologically related to a trait are 
often based on gene knockout studies in model organisms. Even if this evidence trans-
lated to human traits, for genetic associations to identify such effects there must be (i) 
a genetic variant within the gene that has a sufficiently large effect size to be detect-
able; and (ii) a genetic marker used by the study that is in LD with the causal var-
iant. Importantly, the vast majority of genetic variants are neutral with respect to their 
influences on gene function. It was soon realized that using a hypothesis- free search 
for genetic associations across the genome could mitigate these issues. Also of impor-
tance is that a GWAS is typically split into a discovery phase and a replication phase, 
the former performing a hypothesis- free scan of every available SNP, and the latter 
following up candidate loci for replication in an independent sample.

20.1.5 TheDesignof Genome-WideAssociationStudies

Genotyping technology has become more cost- effective (the SNP density to price ratio), 
driven by competition between different companies offering similar products [24, 25]. 
The increasing number of SNPs assayed across the genome increases the chance of 
including a marker in high LD with the causal variant, or even the causal variant itself. 
Today, modern SNP chips use nano- arrays to assay genotypes at typically no lower 
than half a million positions in the genome.

Population sequencing studies identify up to 15 million common variants in human 
populations. Still, after accounting for LD between these variants, there are only around 
a million independent regions in the genome [26]. Therefore, 0.05/1 000 000 = 5 × 10−8 
is a conservative statistical threshold for correcting a GWAS for multiple testing. The 
gold standard for declaring a genetic association in a GWAS is to identify an SNP with 
P < 5 × 10−8 and then to replicate it in an independent sample [27].

Genotyping half a million markers in a European sample will capture up to 80% 
of the genetic variation due to common SNPs  [28]. Studies can use more dense SNP 
chips or obtain sequence data to improve on this, but it can be prohibitively expensive. 
A widely used alternative approach is to impute missing common genetic variants. 
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This is achieved through a probabilistic process of matching partial chromosomal seg-
ments from the genotyped data (target data) with complete chromosomal segments in 
a sequenced dataset (reference data) (see Figure 20.1). While genetic imputation can 
boost the number of high- quality common SNPs in a dataset to around 10 million with 
MAF > 0.01 [29], it is important to note that there is uncertainty in the imputed SNPs. 
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FIGURE 20.1  Schematic of how imputation aids in meta- analysis of genome- wide association 
studies. (a) Three studies are depicted where each row represents an individual in the study, 
and horizontal blocks represent a section of a chromosome. Circles represent positions on the 
chromosome that are genotyped in that study. (b) Performing meta- analysis across these studies 
is problematic because many of the single- nucleotide polymorphisms (SNPs) are not present in 
more than one study. The graph depicts the associations for each of the SNPs available. The y- axis 
is the –log10(P value) of the genetic association with the trait. The number of samples available 
for each SNP are labeled. The dotted horizontal line represents the significance threshold. (c, 
d) Imputation requires an external reference panel for which there is whole- sequence data, for 
example the 1000 Genomes Project. The haplotypes (colored blocks) in study data (a) are matched 
to haplotypes in the reference sample, and this provides information about the genetic background 
for each genotyped SNP. Inference of the nongenotyped variants can then be made. (e) If all studies 
have imputed their genotyped data to the same reference panel, then they will have the same set of 
imputed genotypes across the genome. Meta- analysis can now include each study for every variant, 
which improves power by increasing sample size and by potentially including the causal variant 
or SNPs closer to the causal variant. The sample sizes used here are illustrative; most studies will 
comprise at least several hundred individuals.
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They are therefore typically reported as genotype probabilities rather than the discrete 
genotype calls that are obtained from SNP chips or sequencing. Association tests using 
imputed data are modified so that the contribution of an individual’s data to the effect 
estimate is weighted by the level of certainty of the genotype imputation at that SNP [30].

The improved genome coverage achieved by genetic imputation increases power 
by increasing the likelihood that a causal variant is tagged by an SNP included in the 
study, or that the causal variant itself is included. However, the most crucial contri-
bution that imputation has made to the success of GWAS is a practical one: through 
enabling meta- analysis. Different studies will invariably use different SNP chips 
to assay genotypes, and each SNP chip typically assays a unique set of SNPs. As a 
consequence, if one were to attempt to combine information from across studies, then 
only a fraction of the SNPs would benefit from a boost in sample size. If instead each 
cohort imputes to the same reference panel, then each will have (inferred) measures of 
millions of markers in common across the genome (Figure 20.1).

20.2 THEROLEOFMETA-ANALYSISINGENOME-WIDE
ASSOCIATIONSTUDIES

Sample sizes for GWAS have grown at a tremendous rate over the last decade, driven 
mainly by combining studies through meta- analysis [31]. Thousands of SNPs are now 
known to robustly associate with hundreds of complex traits (Figure 20.2). It is easy to 
understate the enormity of this success [32, 33]. In the following sections, we discuss 
the role of meta- analysis in the context of the missing heritability problem, the use 
of meta- analysis to overcome the winner’s curse, and the most important sources of 
between- study heterogeneity.

20.2.1 TheMissingHeritability

While GWAS identified robust genetic associations for complex traits, it quickly became 
apparent that the proportion of the phenotypic variance that could be explained by rep-
licated genetic associations was much lower than the amount that was predicted to exist 
from heritability studies. This gap became known as the “missing heritability” [34] and 
several theories emerged to explain the phenomenon [35]. A study on psychiatric disor-
ders made an important contribution by constructing genetic predictors using SNPs with 
P values that did not reach genome- wide significance [36]. As the significance threshold 
for including SNPs for prediction was relaxed, more SNPs were included in the model, and 
prediction accuracy in an independent dataset improved. This suggested that complex 
traits associate with a large number of independent causal variants across the genome, 
and therefore most genetic effects are small. Identifying more associations thus requires 
improved statistical power, which chiefly depends on increasing sample size.

There are three routes to increasing sample size. First, gather more samples in 
your cohort, record necessary phenotype information, and obtain genotype data. This 
comes at some expense, and certain cohorts will not be able to expand sample sizes due 
to their study designs. Second, combine data from across different cohorts. This is done 
occasionally, one prominent example being the Psychiatric Genetics Consortium [36]. 
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However, the sharing of sensitive genetic and phenotypic data between researchers 
and across national borders comes with ethical and legal challenges that can take years 
to overcome [37]. The third route, which dominated GWAS in the past decade, is meta- 
analysis. GWAS is performed in each cohort separately, and the data shared among 
analysts are nondisclosive summary results, which typically include the effect size, 
standard error, and information about each SNP.

For example, in 2010, a GWAS meta- analysis on height was performed using over 
130 000 samples from 46 independent study cohorts. This analysis yielded 180 independent 
loci, which together explained 3% of the phenotypic variation [38]. Yet heritability esti-
mates signaled that 70% of the variation in height was due to genetic effects [6]. There 
was thus a huge gap between the known loci that influenced height as detected by GWAS 
and the number of loci remaining to be uncovered. By 2014, more than 250 000 sam-
ples from 79 studies had been analyzed through meta- analysis, increasing the yield to 
697  independent loci, and explaining 10% of the heritability (Figure 20.3)  [39]. These 
observations are in line with the so- called infinitesimal model of genetic architecture [40], 
which stipulates that there are many variants with small effects. A more detailed example 
of the GWAS meta- analysis process is presented in Box 20.1.

20.2.2 Replication,and theUseof Meta-Analysisto Overcome
the Winner’sCurse

If the objective of a GWAS is to identify areas of the genome that are relevant to a dis-
ease, then the size of the association is not important: we are only interested in the 
yes/no answer as to whether or not that locus is associated with the disease of interest. 
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Box 20.1 An Example of Genome- Wide Association Study Meta- 
Analysis used for Coronary Artery Disease

In 2011, the CARDIoGRAM (Coronary ARtery DIsease Genome- wide Replication 
And Meta- analysis) consortium performed a GWAS meta- analysis that identified 
23 loci associated with coronary artery disease (CAD) [41]. Here we describe how 
meta- analysis was used in this study.

Discovery Analysis
The analysis comprised 14 studies in the discovery phase, including 22 233 cases (indi-
viduals with CAD) and 64 762 controls. Each study imputed their genotypes using a 
set of independent individuals in the HapMap2 study [42], resulting in 2.3 million 
genotypes in common across all studies. GWAS was performed within each study, 
and summary statistics were shared for meta- analysis. For each available SNP, the 
inverse variance- weighted (IVW) method was used to obtain a combined effect size, 
and Cochran’s Q was also calculated to examine heterogeneity across studies.

For SNPs that had P values for Q < 0.01, an outlier test was performed for each 
study. If the outlier test gave P < 0.01/14 for any study, then it was excluded for that 
SNP, and the IVW estimate was recalculated. If heterogeneity remained even after 
outliers were removed, then the DerSimonian–Laird random- effects model was 
used to meta- analyze that SNP.

We note here that the outlier removal procedure based on contribution to het-
erogeneity is not generally recommended, as it could lead to artificially lower stand-
ard errors, raising the Type I error rate [43].

Replication Analysis
From the discovery stage, 30 SNPs were taken forward to the replication stage. These 
SNPs were selected because either they had P < 5e–8 for the association, or they had 
been previously implicated in CAD. The replication dataset comprised 56 682 sam-
ples, approximately half of which were cases, from 26 independent cohorts. Sum-
mary statistics for the 30 SNPs were shared for meta- analysis, following the same 
procedure as in the discovery sample.

Combined Analysis
Finally, the results from the discovery and replication samples for the 30 SNPs were 
combined in a concluding meta- analysis. Those with a combined P < 5e–8 and with 
a replication P < 0.05/30 were deemed significant.

In 2015, another GWAS meta- analysis for CAD was performed by the CARDIo-
GRAMplusC4D (CARDIoGRAM plus The Coronary Artery Disease (C4D) Genet-
ics) consortium [44]. In this study, the entire analysis was performed using only a 
discovery sample of 185 000 cases and controls, with all cohorts imputed to the 1000 
Genomes Project. This approach yielded 10 new loci.
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However, if one aims to create a predictor of disease, or to use the SNP as an instru-
mental variable (see Chapter  19), it is crucial to obtain an unbiased effect size of 
the genetic association [45]. The GWAS design introduces a problem here. Due to the 
random variation around the estimates, some of the effects will be overestimated and 
others underestimated. By applying the significance threshold, we will tend to detect 
small effects that happened to be overestimated, thus introducing bias. Of note, such 
associations are not false positives: these SNPs have an impact on the trait. How-
ever, the use of a threshold to determine which SNPs we report will lead to overestima-
tion of the effect sizes of some SNPs [46, 47], a problem akin to publication bias [48]. We 
can view this specific type of bias as an example of the “winner’s curse” [49].

Approaches have been developed to correct biased estimates from discovery 
GWAS results  [46, 50], but although the bias is reduced, none of the methods 
provides truly unbiased results [51]. Replication in a well- powered, independent 
sample is required to determine whether the association is robust. If no threshold 
is imposed in the replication study, it will provide an unbiased effect size estimate. 
A drawback of only using estimates of effect sizes from the replication sample is 
that the information from the discovery phase is discarded, thus reducing power. 
Some studies meta- analyze the discovery and replication datasets to obtain an 
overall effect size estimate (see Box  20.1). Although the meta- analysis includes 
the replication data, it does not protect the effect size estimate from bias due to 
the winner’s curse. An alternative method is to weigh the contributions from the 
discovery and replication stages using information on the rankings of the effect 
sizes [52]. The advantage of this approach (known as the uniform minimum vari-
ance unbiased estimator, UMVUE) is that the statistical power is maximized while 
reducing bias.

20.2.3 Sourcesof Heterogeneity

The statistical methods used to perform meta- analysis in GWAS are not very differ-
ent from standard meta- analysis methods described in Chapter 9. The only difference 
is that each SNP in the study is meta- analyzed separately, which means that several 
million meta- analyses are performed per study. Like in standard meta- analysis, steps 
must be taken to minimize heterogeneity. There are three main sources of heteroge-
neity in GWAS meta- analysis, outlined in the following.

The 2011 study has a set of replication effect sizes for each SNP, which are 
unbiased. Still, the authors did not capitalize on obtaining the least variance estimates 
by employing UMVUE (see the discussion of the winner’s curse in the main text). 
The 2015 study demonstrates the pressure to detect novel causal variants – opting 
against using a replication sample to maximize discovery power. In the 2015 study, 
the effect size estimates will be biased upward due to the effect of the winner’s curse.
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20.2.3.1 AncestralDifferences

Studies with different population ancestries can introduce heterogeneity through both 
technical and biological processes. Technical effects can arise simply when a particular 
SNP is not polymorphic (has only one variant) in the population of one or several 
of the studies, in which case a full meta- analysis at that locus would be impossible. 
Another challenge is that LD patterns differ between studies [53]. If the causal var-
iant is not present in all studies, then the level of LD between the markers and the 
causal variant should be consistent between studies. This is not guaranteed for differ-
ent ancestral populations because haplotype structures have had independent histor-
ical trajectories.

Of more biological interest is that different effect sizes can exist between different 
studies simply because of ethnic differences, or because the SNP only manifests an 
effect in certain environments. The cross-population technical and biological differ-
ences can be addressed by modeling a study’s expected contribution to heterogeneity 
based on its ancestral distance from the other studies in the analysis [54]. In an anal-
ysis of type 2 diabetes, it was shown that only 1 of 19 variants exhibited substantial 
heterogeneity after accounting for ancestry, suggesting that the effect size estimates 
were consistent between ethnicities at the remaining 18 loci [54].

20.2.3.2 Genotyping

From a biological perspective, genotypes are discrete measures. But genotype calls 
from array- based technologies are produced by probabilistic algorithms, and SNP calls 
from imputation can have considerable uncertainty around them. Genotyping error 
due either to failures in SNP chip assays or to imputation will lead to regression dilu-
tion bias, where effect size estimates are biased toward the null. The genotyping error 
rates from one study to the next are likely to differ, which can lead to issues in GWAS. 
If genotyping error rates between studies are not associated with the outcome (i.e. 
there is random measurement error in the exposure) then, at the meta- analysis stage, 
power may be reduced due to the increase in between- study heterogeneity [55].

A more problematic situation arises when batch effects differentially affect cases 
and controls, for example when cases and controls were genotyped on different plat-
forms. In this situation, differential measurement error may introduce high Type I 
error rates. Combining studies in meta- analysis may exacerbate this problem by both 
increasing heterogeneity and producing high false discovery rates, similar to meta-
analyses of observational studies, which may produce precise but spurious results due 
to confounding and bias [56].

There are some key variables to keep consistent between studies to minimize het-
erogeneity due to imputation: the sequenced reference panel that is being used, the 
software used for phasing the genotypes, software used for imputing, and filtering 
thresholds used for retaining SNPs  [57]. Converting genotype probabilities to hard 
genotype calls is one way in which heterogeneity can be introduced, because it could 
introduce differential call accuracy by ignoring the uncertainty of the imputation.

A crucial technical consideration is ensuring that each study reports effects in 
reference to the same allele. DNA can be read in either a “forward” or a “reverse” 
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direction, which can lead to two studies accidentally referring to the same allele dif-
ferently, or to different alleles as being the same. Strand alignment procedures are 
necessary to avoid this problem [58].

20.2.3.3 TraitDefinitions

The factors that lead to differential trait measures between epidemiological studies 
also influence GWAS. Many diseases and other complex traits require expert diag-
nosis, which may have different standards in different studies. Even if standardized 
scales or diagnostic tools are used, these often differ across studies to measure the 
same phenotype. Quality or calibration of measuring equipment could vary between 
studies or over time within a study. Batch effects are a pervasive problem with molec-
ular traits such as gene expression or DNA methylation levels, and this is a particular 
problem with high- throughput phenotyping, which has been the focus of much recent 
attention. Some complex traits are well defined across studies, but if different studies 
adjust for different covariates, then their interpretation can be altered and heteroge-
neity introduced. For example, having a high body mass index is a cause of type 2 
diabetes, and if analyzing type 2 diabetes, then adjusting for body mass index in some 
studies and not in others would introduce heterogeneity.

20.2.4 Random-EffectsorFixed-EffectsModels?

Given the potential sources of heterogeneity, the use of a random- effects model seems 
like the natural default choice for meta- analysis (see Chapter 9). However, in practice 
it is far more common to use inverse variance- weighted fixed- effects meta- analysis, 
particularly in the discovery phase. The pressure to yield as many significant associa-
tions as possible, coupled with the perception that the fixed- effects model has greater 
statistical efficiency, is an argument against the random- effects approach, even though 
it is theoretically more justifiable. Often replication datasets will themselves com-
bine studies, and it is more common to see the use of random- effects meta- analysis 
to obtain a replicated effect size estimate, using the DerSimonian and Laird  [59] 
implementation.

20.2.5 NovelApproachesfor UsingMeta-Analysiswith Genome-
WideAssociationStudySummaryData

20.2.5.1 DetectingStudyOutliers

One advantage gained from GWAS meta- analysis is that many tests are performed, 
and therefore patterns can be unearthed to detect studies that are systematically intro-
ducing heterogeneity. A study examining the reliability of GWAS meta- analyses [60] 
explored how heterogeneity statistics could be used to identify such problematic 
studies. The authors proposed calculating the standardized predicted random effects 
(SPRE) for each study and for each of a set of independent variants, and then calcu-
lating the mean of the SPREs across the variants to obtain a statistic (the “M value”) 
that is expected to be normally distributed with mean 0. Excluding studies that make 
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a substantial contribution toward heterogeneity for a single test could be considered 
cherry- picking, with a danger of increasing Type I error rates. However, if a study sys-
tematically increases heterogeneity across many tests, then it is more likely that there 
is a problem with the study, and its exclusion would be justified to increase power.

20.2.5.2 IdentifyingSingle-NucleotidePolymorphismsthatInfluence
MultipleTraits

Meta- analytical methods have been extended within the GWAS context to identify 
SNPs that influence two or more traits. Multitrait analysis of GWAS (MTAG) gen-
eralizes inverse variance- weighted meta- analysis to achieve this  [61]. The idea is 
that if GWAS effects from two different traits are correlated, then effect estimates 
for each trait can be improved by incorporating information into one trait from the 
other traits. MTAG is performed by estimating the genetic correlation between a pair 
of traits and then evaluating the deviation from that genetic correlation due to each 
specific SNP.

20.3 FUTUREPROSPECTS

Meta- analysis in GWAS has brought tremendous success in identifying genetic factors 
for thousands of complex traits. Summary data from GWAS are now being stored in 
centralized repositories (e.g. MR- Base  [9]), and making them easily accessible will 
fuel further developments that are likely to borrow methodology and ideas from 
meta- analysis.

One obvious area, discussed in detail elsewhere [62], is two- sample (or summary) 
Mendelian randomization [63], which is used to infer the causal relationships between 
traits. To this end, MR- Base, as a software and data repository, has integrated meta- 
analytic methods with GWAS summary data to automate causal inference for millions 
of pairwise trait combinations.

Though common genetic variation has been explored, there is also much interest 
in finding genetic associations between traits and rare variants – those that have allele 
frequencies below 1% [12]. These variants are much harder to impute [29]. Therefore, 
studies will depend on specific types of arrays that include rare variants, such as exome 
SNP chips that genotype them directly [64], or sequencing studies that capture both 
rare and common variations [65]. Another issue is that rare variants necessarily have 
a lower power to detect associations. Sufficiently large sample sizes of sequence data 
to routinely detect rare variants may become available soon, but until then, several 
methods exist that collapse rare variants in a region to improve power  [66]. Aggre-
gating the influences of multiple rare variants in a genomic region attempts to over-
come the issue of low power, and meta- analysis of these aggregate scores is now also 
possible [67].

Finally, one potential future prospect for meta- analysis is that it will no longer 
be used! Several years of GWAS meta- analysis have demonstrated the requirement 
for very large sample sizes to obtain sufficient power in GWAS. Perhaps as a direct 
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result, national and private efforts are now emerging that seek to genotype indi-
viduals on a much larger scale. The UK Biobank project and the China Kadoorie 
project, for example, have genotyped over half a million individuals each. The stan-
dard GWAS model still has a role for some traits, e.g. to ascertain cases for diseases 
that have low prevalence. But the major human resource required to conduct meta- 
analyses is largely sidestepped by these massive cohort studies. We may then see 
meta- analyses being performed on already published GWAS summary datasets from 
a few very large studies.
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Health care professionals, researchers, policymakers, and people using health ser-
vices are frequently overwhelmed with unmanageable amounts of information. As 
discussed in Chapter  1, systematic reviews are essential, although not sufficient, 
to make informed decisions about health and health care. They can prevent undue 
delays in the introduction of effective treatments and the continued use of ineffec-
tive or even harmful interventions. The Cochrane logo (see Figure 21.1) shows an 
example of a treatment in perinatal medicine whose effectiveness was not appre-
ciated for many years because no systematic review had been performed. The logo 
has been used by The Cochrane Collaboration since its founding in 1993. Now refer-
ring to itself simply as “Cochrane,” the organization has the ambitious aim to pre-
pare, maintain, and promote the accessibility of systematic reviews across all areas 
of health care.

Cochrane is intrinsically linked to the development of the science of evidence syn-
thesis, and much of the progress described in this book was to some extent influenced, 
if not driven, by the organization and its members. In this chapter we describe the 
historical developments that led to this unique enterprise, which has been compared 
to the Human Genome Project in its potential implications for modern health care [1]. 
We describe Cochrane’s remit and structure, its current output, and its need to gen-
erate impact, and we discuss some of the existing challenges.

A description of Cochrane has always been a description of an organization in 
transition, because starting from scratch and developing into a formidable organiza-
tion have required adaptation to accommodate ongoing growth, the continuous mod-
ernization of methods, and changing conditions and reader expectations.
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21.1  BACKGROUND AND HISTORY

In 1972, the British epidemiologist Archie Cochrane drew attention to the great 
collective ignorance about the effects of health care in his influential book Effective-
ness and Efficiency: Random Reflections on Health Services  [2]. Cochrane recognized 
that people who want to make informed decisions about health care do not have ready 
access to reliable reviews of the available evidence [3]. His book, and the discussion 
stimulated by it, inspired what in retrospect can be seen as a pilot project for The 
Cochrane Collaboration [4]. Beginning in 1974, all controlled trials in perinatal med-
icine were systematically identified and assembled in a trials register. By 1985, the 
register contained more than 3500 reports of controlled trials, leading to the prep-
aration of around 600 systematic reviews in the late 1980s. In 1987, the year before 
his death, Cochrane referred to a collection of systematic reviews of randomized con-
trolled trials (RCTs) of care during pregnancy and childbirth, based on this work, as 
“a real milestone in the history of randomized trials and in the evaluation of care.” 
He suggested that other specialties should follow this example [5]. In the same year, 
the scientific quality of the narrative reviews published in major medical journals was 
shown to leave much to be desired [6]. Subsequently, the need for systematically pre-
pared reviews became increasingly recognized.

In response to Cochrane’s call for systematic, up- to- date reviews of all relevant RCTs 
of health care, the Research and Development Programme, which was set up to support 
the British National Health Service (NHS), provided funding to establish a “Cochrane 
Centre” led by Iain Chalmers, to “facilitate the preparation of systematic reviews of 
randomized trials of health care.” This center was opened in Oxford in October 1992 [7, 8]. 
Facilitated by a meeting organized by the New York Academy of Sciences six months 

FIGURE 21.1  The Cochrane logo illustrates a systematic review of seven randomized controlled trials 
(RCTs) of a short, inexpensive course of a corticosteroid given to women about to give birth too early, 
comparing the intervention with placebo. A schematic representation of the forest plot (see Chapter 2) is 
shown. The first of these RCTs was reported in 1972, the last in 1980. The logo summarizes the evidence 
that would have been revealed had the available RCTs been reviewed systematically: it indicates strongly 
that corticosteroids reduce the risk of babies dying from the complications of immaturity. Because 
no systematic review of these trials was published until 1989, most obstetricians had not realized 
that the treatment was so effective, reducing the odds of the babies of these women dying from the 
complications of immaturity by 30–50%. As a result, tens of thousands of premature babies probably 
suffered and died unnecessarily, and needed more expensive treatment than was necessary. By 1991, 
seven more trials had been reported, and the picture had become still stronger.
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later [9], the idea spread around the world and led to the formal launch of The Cochrane 
Collaboration at the first Cochrane Colloquium, which was held in Oxford in October 
1993. By the end of 1994, six more Cochrane Centres had been founded in Europe, North 
America, and Australia. Ten groups were established to prepare reviews within different 
areas of health care, and groups were formed to address methodological issues. Cochrane 
was registered as a charity in May 1995. A steep increase in activities followed. New 
groups were established, attendance at the annual colloquia increased, and the number of 
Cochrane contributors grew rapidly. At the end of the twentieth century, more than 4000 
health professionals, scientists, and consumers were participating in Cochrane, a remark-
able number for an organization that had been founded formally only a few years earlier.

As described earlier, the Collaboration’s mission was to help people make well- 
informed decisions about health care by preparing, maintaining, and promoting the 
accessibility of systematic reviews of the effects of health care interventions. Cochrane’s 
work and organization in its efforts to achieve these aims were guided by 10 princi-
ples (see Box 21.1). These principles and a transparent structure were crucial in the 

Box 21.1 Principles of the Cochrane Collaboration
 1 Collaboration by fostering global co- operation, teamwork and open 

and transparent communication and decision- making

 2 Building on the 
enthusiasm of individuals

by involving, supporting and training people of 
different skills and backgrounds

 3 Avoiding duplication of 
effort

by good management, co- ordination and effective 
internal communications to maximize economy of effort

 4 Minimizing bias through a variety of approaches such as scientific 
rigor, ensuring broad participation and avoiding 
conflicts of interest

 5 Keeping up- to- date by a commitment to ensure that Cochrane 
Reviews are maintained through identification and 
incorporation of new evidence

 6 Striving for relevance by promoting the assessment of health questions 
using outcomes that matter to people making 
choices in health and health care

 7 Promoting access by wide dissemination of our outputs, taking 
advantage of strategic alliances and by promoting 
appropriate access models and delivery solutions to 
meet the needs of users worldwide

 8 Ensuring quality by applying advances in methodology, developing 
systems for quality improvement and being open and 
responsive to criticism

 9 Continuity by ensuring that responsibility for reviews, editorial 
processes and key functions is maintained and renewed

10 Enabling wide 
participation

in our work by reducing barriers to contributing and 
by encouraging diversity

Source: https://www.cochrane.org/about- us

https://www.cochrane.org/about-us
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light of the enormous diversity in disciplinary and cultural backgrounds of the people 
who were working together in Cochrane. The organization consisted of five types of 
“entities,” described below (Review Groups, Geographic Groups/Centres, Methods 
Groups, Fields, and Consumer Network), in addition to the Steering Group. Entities 
had to register with Cochrane, and each entity acted as an independent unit and was 
responsible for its own management and for securing its own funding. Some sources 
of reading material about the history of Cochrane are listed in Box 21.2.

21.2 COCHRANE GROUPS

Cochrane’s main work has for many years been overseen by around 50 Cochrane 
Review Groups. These manage the central task of preparing and maintaining Cochrane 
reviews. Each Review Group has an editorial base that includes a Co- ordinating Editor, 
a Managing Editor, and in most cases an Information Specialist and other support 
staff. The editorial base is responsible for maintaining a register of all relevant studies 
within the scope of the Review Group, coordinating and supporting the preparation 
and updating of reviews, and managing the Group’s editorial processes. Cochrane 
Review Groups are further organized into eight networks, covering mental health and 
neuroscience; cancer; circulation and breathing; abdomen and endocrine; musculo-
skeletal, oral, skin, and sensory; acute and emergency care; children and families; and 
public health and health systems.

As of 2020 there were Cochrane Geographic Groups or Centres in more than 
50 countries that act as regional representatives of Cochrane. They promote and 
support the use of Cochrane evidence in health policy and practice, and many of 
them are responsible for providing guidance, training, and support for the entities 

Box 21.2 Key Publications About Cochrane

The following articles provide useful descriptions of Cochrane and its development:
Chalmers, I. (1993). The Cochrane Collaboration: preparing, maintaining, and dis-
seminating systematic reviews of the effects of health care. Ann. N.Y. Acad. Sci. 
703: 156–165.
Bero, L., and Rennie, D. (1995). The Cochrane Collaboration: preparing, main-
taining and disseminating systematic reviews of the effects of health care. JAMA 
274: 1935–1938.
Chalmers, I., Sackett, D., and Silagy, C. (1997). The Cochrane Collaboration. 
In: Non- random Reflections on Health Services Research (eds. A. Maynard and  
I. Ch almers), 231–249. London: BMJ Publishing Group.
Bosch, F.X., and Molas, R. (eds.) (2003). Archie Cochrane: Back to the Front. Barce-
lona: published privately.
Cassels, A. (2015). The Cochrane Collaboration: Medicine’s Best Kept Secret. Victo-
ria, BC: Agio Publishing House.
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and individual contributors within the particular geographic area. The Centres are 
also responsible for providing information about the work of Cochrane and its prod-
ucts, and for promoting access to the Cochrane Library. Geographic Groups and Cen-
tres are heterogeneous, depending on their size, the funding situation, and especially 
their language and environment of the health research and health care system. As 
with all Cochrane entities, they have to identify their own funding sources. For the 
majority, funding is project based and therefore for a limited time. Groups in some 
countries are more fortunate than others. For example, Cochrane UK has received 
considerable support from the UK National Institute for Health Research (which has 
also funded more than 20 other groups). In 2017, Cochrane Germany secured funding 
for 10 years through a foundation financed by the Ministry of Health. The Centres 
can be involved in all activities where systematic reviews are providing synthesized 
knowledge as evidence input for evidence- based health care, decision- making, guide-
line development, health technology assessment (HTA) activities, and others.

Methods Groups advise Cochrane on the methods it uses to prepare, maintain, 
and promote the accessibility of systematic reviews. They promote and support rele-
vant empirical methodological research and help to prepare and maintain systematic 
reviews of relevant methodological research. Methods Groups address almost 20 meth-
odological areas, covering aspects of review methodology (e.g. information retrieval, 
bias assessment, statistical methods, use of the GRADE system, and using individual 
participant data) and different review types (e.g. screening and diagnostic tests, prog-
nosis, and qualitative research). The outputs of methodological research are presented 
and discussed at the annual Cochrane Colloquia.

Fields are groups of people with a broad interest that cuts across a number of 
Review Groups. The focus can be on the setting of care (e.g. primary care), the type 
of consumer (e.g. children), the type of intervention (e.g. rehabilitation), or a broad 
category of condition (e.g. aging). They help to ensure that priorities and perspectives 
in their sphere of interest are reflected in the work of Review Groups, and liaise with 
relevant organizations within their area to promote knowledge translation and the use 
of evidence by decision- makers.

Engagement, input, and feedback from consumers are considered essential to 
fulfill Cochrane’s aims. The Consumer Network was established to reflect consumer 
interests within Cochrane. It aims to provide information for consumers, and to 
encourage and support the involvement of consumers throughout Cochrane’s activ-
ities. A significant result is the extension of Cochrane Reviews to include Plain Lan-
guage Summaries, which complement the information provided in the abstract with a 
summary for patients and lay people.

Cochrane’s membership historically consisted of all registered entities. Each entity, 
in turn, determined who among its own contributor base was eligible to vote for candi-
dates to represent that type of entity on the Cochrane Steering Group. The Steering Group 
transitioned to the Governing Board in 2016 with 13 elected or appointed members, and 
this traditionally meets twice a year. The membership structure also transitioned to 
individual membership, and a majority of Governing Board members are elected as 
a result of individual voting. The Board has overall responsibility for overseeing the 
development and implementation of policy affecting Cochrane, and legal responsibility 
as the Board of Directors for The Cochrane Collaboration as a registered charity.
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More information about the organization and its governance is available on 
the Cochrane website (http://cochrane.org) and the Cochrane Community website 
contained within it.

21.3 COCHRANE’S PRODUCT

Cochrane’s efforts are focused on producing and maintaining up- to- date systematic 
reviews, which are available, together with other databases, in the Cochrane Library. 
The Cochrane Library (ISSN 1465–1858) is published online, currently by John 
Wiley & Sons.

For many years, the Cochrane Library included a collection of six databases con-
taining different types of high- quality, independent evidence to inform health care 
decision- making, and a seventh database that provided information about Cochrane 
Groups. The databases could be searched simultaneously with the search engine 
provided. Since the databases previously produced by the Centre for Reviews and 
Dissemination – Database of Abstracts of Reviews of Effects (DARE) and the NHS 
Economic Evaluation Database (NHS EED) – and the Cochrane Methodology Register 
are not being updated, these are no longer available within the Cochrane Library. The 
Cochrane Library now includes the following:

• The Cochrane Database of Systematic Reviews (CDSR) is a rapidly growing col-
lection of regularly updated, systematic reviews of the effects of health care, 
maintained by Cochrane. This is Cochrane’s primary product.

• The Cochrane Central Register of Controlled Trials (CENTRAL) is a bibliography 
of controlled trials, downloaded from databases like Medline and Embase or 
identified as part of an international effort to handsearch the world’s journals 
and create an unbiased source of data for systematic reviews.

• Cochrane Clinical Answers provide short, structured summaries of Cochrane 
Reviews that are aimed to be accessible to health professionals and to guide 
clinical decision- making.

• A federated search facility is available to enable readers to access high- quality 
non- Cochrane Reviews. Currently this function is available for the Epistemoni-
kos platform, a large multilingual database of systematic reviews relevant for 
health decision- making [10].

21.4  COCHRANE IN THE TWENTY- FIRST CENTURY

Cochrane’s growth is driven by the improved acceptance of systematic reviews in many 
countries around the globe, and their role as fundamental input in clinical guidelines, 
HTA reports, and patient information. However, the continuing international expan-
sion has led to new challenges, by introducing greater diversity among the fast- growing 
number of contributors with respect to differences in cultural and social background, 
available resources, and language. The transformation of a group of enthusiastic 
individuals into an efficient international organization is at the heart of this process. 
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Between 2000 and 2021, the number of involved persons grew from around 4000 to 
more than 100 000. Inevitably, Cochrane Review Groups that have limited resources 
and are the recipients of public funding have to make decisions that prioritize the 
needs of readers and decision- makers, and that also represent the most effective use 
of resources. This means that the traditional approach of passive acceptance of review 
title requests from volunteer review teams has increasingly been replaced by active pri-
oritization of research questions on the basis of end- user needs, and the development 
of funded and experienced teams.

Probably the biggest challenge has come from the ever- increasing number of 
RCTs being conducted, leading to a high demand for updating existing reviews to keep 
the reputation of the Cochrane Library as a database of up- to- date reviews. A sub-
stantial increase in the global funding of Cochrane would have been needed to meet 
the increase in growth, but could not be achieved. This again leads to an imperative 
for Cochrane Review Groups to make decisions on whether to update a review on 
the basis of the needs of users, and to investigate methods that will make systematic 
review processes more efficient.

In addition, demands from users have increased. The world of evidence synthesis 
has become increasingly large and competitive [11], and this has led to a situation where 
fewer than 20% of new systematic reviews are produced by Cochrane [12]. However, 
research has consistently shown that in terms of achieving high standards of quality 
and reporting, Cochrane Reviews are outperforming non- Cochrane reviews  [12]. 
The criticism that Cochrane Reviews are inappropriately restricted to RCTs and that 
other study types should be considered has posed another challenge. In contrast to 
common perceptions, inclusion of nonrandomized studies of interventions has long 
been encouraged where appropriate. In 2008, Cochrane published its first systematic 
review of diagnostic test accuracy, and it is actively developing systems for reviewing 
other types of evidence, including studies of prognosis and qualitative research.

All of these factors initiated a comprehensive review of Cochrane and an intense 
discussion in all Cochrane entities with their members. This consultation has led to 
a gradual move from the “grass- roots” movement based on the work of volunteers 
toward professionalization.

21.5  COCHRANE IN TRANSITION: CHALLENGES 
AND OPPORTUNITIES

Cochrane retains an important place in the evidence synthesis eco- system. It com-
prises a large and disparate international community that includes many of the most 
prominent researchers and thinkers. Its Strategy to 2020 focused on four major areas 
of work, including the quality- efficient production of reviews, increasing their impact 
in the world, advocacy for evidence- informed health care, and the need to build a 
strong, diverse, and sustainable organization. Building on this, there are a number of 
important challenges that Cochrane will need to address:

• Whether and how the changes toward a more professional approach, and an 
expanded Central Executive Team (CET), will impact on the availability and 
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motivation of researchers, authors, and other contributors to invest their 
personal resources in Cochrane. Academic researchers are increasingly expected 
to be able to demonstrate the benefits of their work in Cochrane to their host 
institutions, and are under increased pressure to generate income and research 
impact to ensure academic progression. Cochrane has to be better able to meet 
the needs of host institutions and their researchers to continue to attract and 
retain the most talented individuals.

• Cochrane processes are sometimes slow and bureaucratic, in some part due to 
increasing methodological complexity and the reliance on the work of volun-
teers. Changes are needed to accelerate the review process, including the exploi-
tation of technology innovations, and Cochrane is investing heavily in this area.

• The ubiquitous expansion of interest in “Big Data” is another challenge. Prom-
ises from “Big Data” are sometimes unrealistic, epitomized by statements like 
“The end of theory” or “The era of causation is being replaced by correla-
tion” [13]. Similarly, support for the use of observational “real- world evidence” 
in evaluations of health care interventions, embodied by the 21st Century Cures 
Act in the USA, is a clear challenge for Cochrane [14]. A “Big Data” or “real- 
world evidence” revolution may be a threat to controlled trials and consequently 
also to Cochrane.

• The global demand to increase accessibility to research output, as part of moves 
toward open science, has recently been reinforced by the European Parlia-
ment, following the US National Institutes of Health (NIH) and other organi-
zations. Cochrane’s CET and its technical infrastructure, including its content 
management systems and online learning programs, are currently dependent on 
the income from royalties from the publisher of the Cochrane Library. Cochrane 
has made important strides to develop its open access provision. Since the intro-
duction of its green and gold open access models, the proportion of open access 
reviews has risen to 72%, and this figure will continue to rise. However, contem-
porary moves toward universal immediate open access will further challenge 
the financial sustainability of the organization in its current form.

This chapter has been completed during a period in which the world has been 
shaken by the novel coronavirus. This has been superimposed on a time of great 
transition in the wider scientific publishing world. Cochrane has many reasons for 
optimism, the greatest of which is the continuing enthusiasm, commitment, and skills 
of its community, but the challenges it faces from these developments are real and 
need to be taken seriously to allow the Cochrane success story to continue.
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Using Systematic Reviews 
in Guideline Development
The GRADE Approach
Holger J. Schünemann

22.1 INTRODUCTION

Guidelines are systematically developed, evidence- based statements that help pro-
viders, patients, policymakers, and other stakeholders make informed decisions about 
health care and public health policy [1]. Systematic reviews are essential to producing 
trustworthy guidelines that make data and their interpretation fully transparent [1–
8]. Expert opinion, defined as the combination of interpretation and assessment of 
relevant data, can be crucial too. The Grading of Recommendations Assessment, 
Development and Evaluation (GRADE) system also plays an important role in guide-
line development.

22.1.1 The Role of Systematic Reviews in Guidelines

Systematic reviews increase transparency by making sure that all members of a guide-
line panel discuss the same, comprehensive body of evidence. Systematic reviews are 
relevant to anything that influences the direction and strength of a recommendation. 
Questions such as those dealing with prognosis, test accuracy, or values and preferences 
related to different outcomes will need more than one systematic review. Figure 22.1 
details the place of systematic reviews in the guideline development process [8].

The GRADE working group (www.gradeworkinggroup.org) is a collaboration of 
over 500 scientists, clinicians, and people with other backgrounds that has developed 
the GRADE approach to assessing the quality of or the certainty in the body of evidence 
summarized in systematic reviews [9, 10]. GRADE is used by over 100 organizations, 
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including the World Health Organization (WHO), the National Institute of Health 
and Care Excellence, the Canadian Task Force for the Preventive Services, numerous 
professional organizations, and Cochrane. GRADE is applicable to different types of 
evidence that include evidence on intervention effects (including multiple treatment 
comparisons), test accuracy, prognosis, resources and values, and preferences.

22.1.2 GRADE’s Role in the Systematic Review Process 
and Guideline Development

GRADE defines certainty in the evidence as the “extent to which one can be confi-
dent that an estimate of the effect or association is correct.” In the context of guideline 
development, certainty in the evidence reflects the confidence that the estimates of 
an effect are adequate to support a particular decision or recommendation [11–13]. 
GRADE uses the terms certainty in the evidence, quality of the evidence, strength of 
the evidence, and confidence in effect estimates interchangeably, but the preferred 
term is certainty in the evidence. Certainty in the evidence is one of several criteria 
used for grading the strength and direction of a recommendation or decision in 
GRADE Evidence to Decision (EtD) Frameworks  [14–17] (see Section  22.3). These 
criteria consider risk of bias, imprecision, inconsistency, indirectness, and publication 
bias, which may downgrade certainty in the evidence, as well as the magnitude of 
effects, dose–response relations, and the impact of residual confounding and opposing 
bias, which may upgrade certainty in the evidence. Judgments consider specific items 
such as concealment of allocation, which is an important item to gauge the risk of 
bias in randomized trials, and the I2 measure [18], which is important in the context 
of inconsistency (see also Chapters 4 and 9). A guideline development group will use 
GRADE assessments as the basis for its discussions to formulate recommendations. 
The group should have a basic understanding of GRADE. Figure  22.2 presents the 
detailed process of how GRADE is considered in the guideline development process.

22.1.3 Who Performs the Assessment of the Certainty 
in the Evidence?

Just as conducting a systematic review is a specialized task, assessing evidence and 
developing evidence summaries are best done by an experienced systematic review 
author or methodologist, with input from a multidisciplinary group and content 
experts. GRADE assessments have been found to be reproducible, in particular when 
done by assessors with training in health research methods [19, 20].

22.2  THE CERTAINTY IN THE EVIDENCE, QUALITY OF THE 
EVIDENCE, OR STRENGTH OF THE EVIDENCE

GRADE categorizes the certainty in the evidence as high, moderate, low, or very low 
(Table  22.1). These certainty levels apply to the body of evidence assessed for each 
key question, not to individual studies. However, an assessment of the risk of bias is 
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needed for each study in order to assess the certainty in the evidence. This assessment 
can lead to lowering or increasing the certainty in the evidence.

22.2.1 Evidence on the Effects of Interventions

For interventions, the starting point for rating the certainty of the evidence is the study 
design, broadly separated into two types [13, 21, 22]:

• Randomized controlled trials (RCTs).
• Nonrandomized studies (NRSs) or observational studies (including but not 

limited to cohort studies, and case–control studies, cross- sectional studies, or 
case series and case reports).

Although RCTs are the preferred source of evidence to assess interventions, 
in many instances guideline developers must rely on information from NRSs, in 
particular to evaluate potential harms, and the feasibility of, and barriers and facilita-
tors to, implementation of an intervention. Relevant data can be obtained from both 
RCTs and NRSs, with each type of evidence complementing the other. In GRADE, a 
body of evidence based on RCTs begins with a high certainty rating and evidence from 
NRSs begins with a low- certainty rating, as a result of the potential bias induced by 
the lack of randomization. However, if an assessment tool is used that covers the risk 
of bias due to lack of randomization (such as the new ROBINS- I tool: Risk Of Bias In 
Non- randomized Studies – of Interventions [23]), then all studies may start as high 
certainty in the evidence (see also Chapter 15).

22.2.2 Certainty in the Evidence from Randomized Controlled Trials 
and Nonrandomized Studies can be Lowered in Five Domains

The initial ratings are followed by detailed ratings across the five domains – risk of 
bias, inconsistency, indirectness, imprecision, and publication bias – which can lower 
certainty. The ratings in systematic reviews are conducted initially on a “per outcome” 

TABLE 22.1  GRADE categories of certainty in the evidence.

Quality 
level

Definition

High We are very confident that the true effect lies close to that of the estimate of 
the effect.

Moderate We have moderate confidence in the effect estimate. The true effect is likely 
to be close to the estimate of the effect, but there is a possibility that it is 
substantially different.

Low Our confidence in the effect estimate is limited. The true effect may be 
substantially different from the estimate of the effect.

Very low We have very little confidence in the effect estimate. The true effect is likely to 
be substantially different from the estimate of effect.
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level. This requires detailed knowledge of the individual studies included in the body 
of evidence. Reasons for lowering the certainty in the evidence should be guided by 
GRADE [24]; for details readers are referred to the online GRADE Handbook [25] and 
the cited publications. The following provides a short description of the domains.

22.2.2.1  Risk of Bias

For RCTs, some of the main criteria for assessing the risk of bias are  [26] (see also 
Chapter 4):

• Randomization methods, including concealment of allocation to interven-
tion group.

• Blinding of participants and investigators and other relevant groups, particu-
larly if the outcomes were measured subjectively and thus may be subject to bias.

• Appropriate use of intention- to- treat analysis.
• Examination of information about withdrawals of study participants.

For NRSs, the criteria depend on the design, but can be categorized as follows [26]:

• Application of appropriate eligibility criteria.
• Use of an unbiased approach to measurement and reporting of exposure 

and outcomes.
• Adequate control for confounding.
• Examination of information about withdrawals of study participants.

The assessment of the risk of bias is initially completed for each study and then 
summarized across studies for each outcome. Study limitations across the body of evi-
dence for each outcome can be categorized as follows (Table 22.2):

• No serious limitations means that the majority of studies meet all the minimum 
quality criteria for the design.

• Serious limitations means that one of the minimum criteria for quality is not 
met by the majority of studies in the review. This results in lowering the overall 
quality rating (e.g. high becomes moderate for RCTs or low becomes very low 
for observational studies).

• Very serious limitations means that the risk of bias likely has a strong influence 
on the estimate of the effect, and potential study limitations are present in the 
majority of studies in the review. This typically results in lowering the quality 
by two levels.

22.2.2.2 Inconsistency

There is inconsistency if the results for an outcome are heterogeneous  [27]. Incon-
sistency may arise from differences in the populations in the studies, in the interven-
tions, comparators, or in outcomes. To explore inconsistency, sensitivity or subgroup 
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analyses are useful. Three main criteria are used to assess the presence of important 
inconsistency [27]:

• Wide variation of the point estimates across studies.
• Minimal or no overlap of confidence intervals.
• If a meta- analysis was performed, a small P value from a test for heterogeneity, 

or a high I2 value (see also Chapter 9).

If the confidence intervals of all the results overlap, the presence of important 
inconsistency is unlikely. If there is some inconsistency in the results, such as if the 
largest study shows results that contradict smaller studies, then the overall quality is 
lowered by one level. Evidence will be downgraded for an outcome by two levels if the 

TABLE 22.2  Guidance for the risk of bias domain in a GRADE assessment: going 
from assessments of risk of bias to judgments about study limitations for main out-
comes across all included studies.

Risk of 
bias

Across studies Interpretation Considerations GRADE 
assessment 
of study 
limitations/risk 
of bias

Low 
risk of 
bias

Most information 
is from studies at 
low risk of bias

Plausible bias 
unlikely to 
seriously alter 
the results

No apparent  
limitations

No serious 
limitations, do 
not downgrade

Unclear 
risk of 
bias

Most information 
is from studies at 
low or unclear risk 
of bias

Plausible bias 
that raises  
some doubt 
about the  
results

Potential limitations 
are unlikely to lower 
confidence in the 
estimate of effect

No serious 
limitations, do 
not downgrade

Potential limitations 
are likely to lower 
confidence in the 
estimate of effect

Serious 
limitations, 
downgrade one 
level

High 
risk of 
bias

The proportion 
of information 
from studies at 
high risk of bias is 
sufficient to affect 
the interpretation 
of results

Plausible bias 
that seriously 
weakens 
confidence in  
the results

Crucial limitation for 
one criterion, or some 
limitations for multiple 
criteria, sufficient to 
lower confidence in  
the estimate of effect

Serious 
limitations, 
downgrade one 
level

Crucial limitation 
for one or more 
criteria sufficient to 
substantially lower 
confidence in the 
estimate of effect

Very serious 
limitations, 
downgrade two 
levels
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results are very heterogeneous. If only one study is present, certainty in the evidence 
should not be lowered due to inconsistency. However, when there is only one study, 
certainty in the overall body of evidence likely will be lowered for risk of bias, publica-
tion bias, imprecision, or indirectness.

22.2.2.3  Indirectness

Directness, generalizability, external validity, transferability, and applicability of study 
results all refer to similar concepts that are addressed in GRADE in the domain of 
indirectness [28, 29].

Indirectness arises when the identified evidence differs with respect to the PICO 
questions (Population, Intervention, Comparator, Outcome) formulated by the guide-
line development group or the systematic reviewers. While all evidence is indirect 
to some degree  [30], serious or very serious indirectness will lead to downrating 
the overall certainty in the evidence by one or two levels. However, certainty in the 
evidence should be lowered only if the effect is likely to differ between the target 
population and the identified evidence. This may be the case if there is evidence of 
relevant effect modification, if interventions are applied differently, or if there are dif-
ferences in the comparator or the use of outcome measures that may not reflect the 
outcome of interest.

A special case of indirectness arises if direct comparisons between the interven-
tion of interest and the comparator of interest are not available: for example, if the 
guideline panel is interested in a comparison of intervention A versus B, but studies 
only exist in which A was compared with C and B was compared with C. While these 
studies allow indirect comparisons of the magnitude of effect of A versus B, such 
indirect evidence may be of lower quality than direct comparisons and is therefore 
downrated. The results of network meta- analyses or multiple treatment comparisons 
are often subject to this indirectness [31] (see Chapter 13).

Systematic review authors should use GRADE’s indirectness tables (Table 22.3), 
which provide a transparent record and starting point for evidence synthesis [24, 28]. 
The assessments of systematic reviewers may differ, though, from those of a guide-
line panel that uses systematic reviews. Guideline panels should discuss whether 
they agree with reviewers’ judgments and may alter an overall certainty rating by re- 
assessing indirectness in the context of their PICO questions.

22.2.2.4 Imprecision

Judgments about imprecision are made across studies and not at the level of an 
individual study  [32]. In general, results are imprecise when the body of evidence 
includes few participants and few events, with wide confidence intervals around the 
estimate of the effect [22, 32]. GRADE suggests using the 95% confidence interval (95% 
CI) as the primary criterion to make judgments about imprecision, and the optimal 
information size (OIS) as a second criterion for determining adequate precision. If the 
confidence interval overlaps with a threshold for decision- making, then the body of 
evidence is imprecise for that outcome and certainty in the evidence is lowered [32]. 
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GRADE suggests that a guideline panel take the following steps to decide whether to 
downgrade the overall certainty in the evidence for imprecision:

• Consider the boundaries of the 95% CI: do they cross the health decision 
threshold between recommending and not recommending an intervention?

• If the answer is yes (i.e. the 95% CI crosses the threshold), downgrade for impre-
cision irrespective of where the point estimate and 95% CI lie.

The OIS is defined by a sample size calculation for a single, adequately powered 
trial to detect a worthwhile effect of interest [32, 33]. If the total number of patients 
included in a systematic review is less than the number of patients from a sample 
size calculation, one should consider downrating for imprecision. The OIS depends 
on a worthwhile effect that needs to be determined with input from decision- makers. 

TABLE 22.3  Judgments about indirectness by outcome.

Outcome: . . .

Domain 
(original 
question 
asked)

Description (evidence found 
and included, including 
evidence from other 
studies) – consider the 
domains of study design 
and study execution, 
inconsistency, imprecision, 
and publication bias

Judgment – is the evidence sufficiently 
direct?

Population: Yes Probably yes Probably no No

◽ ◽ ◽ ◽

Intervention: Yes Probably yes Probably no No

◽ ◽ ◽ ◽

Comparator: Yes Probably yes Probably no No

◽ ◽ ◽ ◽

Direct 
comparison:

Yes Probably yes Probably no No

◽ ◽ ◽ ◽

Outcome: Yes Probably yes Probably no No

◽ ◽ ◽ ◽

Final 
judgment 
about 
indirectness 
across 
domains:

◽ No 
indirectness

◽ Serious 
indirectness

◽ Very serious 
indirectness

Source: Adapted from Schünemann et al. [28].
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Indeed, guideline panels need to consider the context of a recommendation and other 
outcomes (for example, adverse effects), whereas judgments about specific outcomes 
in a systematic review are often free of that context. Another approach is to consider 
the review information size (RIS), which does not require defining a worthwhile effect 
but relies on plausible effects [17]. For continuous outcomes, a similar approach can 
be used that is based on a sample size calculation for plausible effects for continuous 
outcomes [32]. Generally speaking, if the sample size exceeds 400 for a continuous 
outcome, imprecision is unlikely to be present.

To formulate recommendations, all outcomes need to be considered together. 
Guideline panels will have to assess whether outcomes are critical, or important 
but not critical for decision- making. Downgrading for imprecision is dependent on 
both the decision threshold and consideration of the trade- off between desirable 
and undesirable effects and other consequences. Imprecision is therefore another 
domain where guideline panels may modify the judgments of systematic review 
authors [17].

22.2.2.5  Publication Bias

Publication bias is the systematic deviation of the effect estimated in a systematic 
review from the underlying true effect due to the selective publication of studies. 
The benefits of interventions typically are overestimated because negative studies 
remain unpublished (see Chapter  5). Statistical methods exist to detect the possi-
bility of publication bias, but these should be applied and interpreted with caution 
(see Chapter 5). Systematic reviewers and guideline panels must often make assump-
tions about the extent of publication bias. Publication bias should be suspected in 
situations when published evidence is limited to a low number of small studies, or 
when all or almost all available studies were funded by a for- profit organization [34]. 
GRADE suggests downrating the certainty in the evidence in these situations. Of 
note is that selective outcome reporting bias is covered under the risk of bias domain 
(see above). Selective outcome reporting bias may arise when investigators fail to 
report outcomes that they have measured because of the direction of the results (see 
also Chapter 5).

22.2.3 Three Factors Can Increase the Certainty in the Evidence 
of Nonrandomized Studies

If and only if there are no further limitations, i.e. there is no reason for downgrading 
the quality of a body of evidence from NRSs, then upgrading the certainty in the evi-
dence may be possible, within the following three domains [35].

22.2.3.1  Dose–Response Gradient

The presence of a dose–response gradient has long been recognized as supporting 
the causal nature of an association observed in NRSs [36]. Such a gradient will often 
increase confidence in the findings of NRSs, and thereby increase the certainty in the 
evidence. If there is evidence of a dose–response gradient, one may therefore upgrade 
the evidence for this outcome by one level.
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22.2.3.2  Direction of Plausible Residual Confounding and Bias

It is possible that all plausible confounders or biases that could not be accounted for 
in a well- conducted NRS could result in an underestimate of an observed treatment 
effect. Consider the situation where sicker individuals tend to receive an experimental 
intervention, yet they still fare better. In this situation it is likely that the intervention 
effect is larger than the evidence suggests. If there is evidence that all of the plausible 
residual confounding or bias would influence the effect in this way, one can uprate the 
evidence for such an outcome by one level.

22.2.3.3  Magnitude of the Effect

Similar to the dose–response gradient, the strength of an association has long been 
proposed for consideration when assessing data from NRSs [35]. If a large or very large 
effect is observed, this will generally increase confidence in the results. GRADE sug-
gests two thresholds when considering upgrading the evidence: a relative risk greater 
than 2.0 or smaller than 0.5 to upgrade by one level, and a relative risk of greater than 
5.0 or smaller than 0.2 to upgrade by two levels [35]. Other aspects that should be con-
sidered in addition to the thresholds include the consistency of the effect across differ-
ent studies and populations, and the precision of the effect estimate (as judged by the 
95% CI). If the estimate is large but imprecise or inconsistent across populations, then 
the confidence in the evidence should not be upgraded.

22.2.4 Certainty in the Evidence by Outcome

A hypothetical assessment criterion for each of the eight GRADE domains in the cer-
tainty of evidence is shown in Table 22.4. This approach can be used to describe the 
findings of a systematic review and justify its judgments. A final rating of the evidence 

TABLE 22.4  Domains for describing certainty in the evidence and justifying 
d owngrading or upgrading.

Criteria for 
assessing 
certainty in the 
evidence by 
outcome

Results section Examples of reasons for lowering or 
increasing the quality of evidence

Risk of bias Describe the risk of bias 
based on the criteria used 
in the risk of bias table

Of eight randomized trials, five did not 
blind patients and caretakers and the other 
three trials had important loss to follow- up

Inconsistency Describe the degree 
of inconsistency by 
outcome using one or 
more items (e.g. I2 and P 
value), confidence interval 
overlap, and difference in 
point estimate

The proportion of the variability in 
effect estimates that is due to true 
heterogeneity rather than chance is 
not important (I2 = 0%, P values for 
heterogeneity >0.4), confidence intervals 
overlapping
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TABLE 22.4  (Continued)

Criteria for 
assessing 
certainty in the 
evidence by 
outcome

Results section Examples of reasons for lowering or 
increasing the quality of evidence

Indirectness Describe if the majority of 
studies address the PICO – 
were they similar to the 
question posed? Use the 
GRADE directness table

The included studies were restricted to 
patients with advanced cancer and did 
not cover the full spectrum of cancer 
patients

Imprecision Describe the number of 
events, and width of the 
confidence intervals

The confidence intervals for the effect on 
mortality are compatible with both an 
appreciable benefit and appreciable harm

Publication bias Describe the possible 
degree of publication bias

1. The funnel plot of 19 randomized trials 
indicated that there were several small 
studies with a small positive effect, but 
small studies that showed no effect or 
harm may have been unpublished

2. There are only three small positive 
studies; it appears that studies 
showing no effect or harm have not 
been published. There also is for- profit 
interest in the intervention

Large effects 
(upgrading)

Describe the magnitude 
of the effect and the 
widths of the associated 
confidence intervals

The RR is 0.2 (95% CI 0.1 to 0.3) with a 
sufficient number of events

Dose–response 
(upgrading)

The studies show a clear 
relation of increases in 
the outcome frequency 
or severity with higher 
exposure or intervention 
levels

The dose–response relation shows a 
relative risk increase of 6% in never 
smokers, 10% in smokers of 10 pack- 
years, and 14% in smokers of 15 pack- 
years

Opposing 
plausible 
residual bias 
and confounding 
(upgrading)

Describe which opposing 
biases and confounders 
may not have been 
considered

An effect is observed between an 
intervention or exposure and an outcome. 
The estimate of effect is not controlled for 
the possible confounders smoking and 
degree of education, but the distribution of 
these factors in the studies is likely to lead 
to an underestimate of the true effect

CI, confidence interval; PICO, Population, Intervention, Comparator, Outcome; RR, risk ratio.

is obtained as shown in Figure  22.3. Judgments about one domain influence judg-
ments about other domains; they need to be considered in context. For example, the 
domains of indirectness, inconsistency, and imprecision are closely related [12]. The 
final rating creates the transparency that allows others such as decision- makers to 
understand the judgments made in the systematic review.



1. 

Establish initial
level of certainty

2.

Consider lowering or raising
level of certainty

3. 

Final level of 
certainty rating 

Study design Certainty in the evidence 
across those considerations

Lower if Higher if*

Randomized trials
Risk of Bias
Inconsistency
Indirectness
Imprecision
Publication bias

Large effect
Dose response
All plausible 
confounding and 
bias

• would 
reduce a 
demonstra
ted effect 

or
• would 

suggest a 
spurious 
effect if no 
effect was 
observed

High
⊕⊕⊕⊕

Moderate
⊕⊕⊕

Observational studies
Low
⊕⊕

Very low
⊕

Reasons for considering lowering
or raising certainty 

Initial certainty
in the evidence

Low
certainty

High
certainty

FIGURE 22.3  Obtaining a final rating for the certainty in the evidence. Certainty, quality, strength of the evidence, 
or the confidence in the estimate of effect are determined for each outcome based on a systematic review of the 
evidence for each outcome. For recommendations, the overall certainty is determined across outcomes based on the 
lowest- quality outcome among those critical for decision- making. *Criteria for upgrading the quality are usually only 
applicable to observational studies without any reason for downrating.
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22.2.5 GRADE Evidence Profiles and Summary of Findings Tables

GRADE evidence profiles include detailed assessment of the quality or certainty in the 
evidence for each outcome [37]. Table 22.5 shows an example from a clinical practice 
guideline of the treatment of idiopathic pulmonary fibrosis (IPF) [38]. The effects of 
the intervention (pirfenidone, a drug that inhibits the production of growth factors and 
procollagens) are summarized both in relative terms and as absolute risk differences. 
The main reason for a quality assessment or other noteworthy points is documented in 
explanatory footnotes that constitute an essential part of GRADE tables [24, 39]. The 
summary of findings (SoF) table (Table 22.6) includes an assessment of the quality of 
evidence for each outcome, but not the detailed judgments on which that assessment 
is based. SoF tables are intended for a broader audience like users of guidelines; they 
provide a concise summary of the key information underlying a recommendation.

22.2.6 How is the Overall Certainty in the Evidence for a Decision  
or Recommendation Determined?

Guideline developers should assess all the information from the systematic review 
and make a final decision about which outcomes are critical and which are impor-
tant given the recommendations they are dealing with. Panels then determine the 
overall certainty in the evidence across all the critical outcomes for a recommendation 
by providing a single grade of certainty in the evidence for every recommendation. 
Because certainty in the evidence is rated separately for each outcome, the certainty 
usually differs across outcomes. If the certainty in the evidence is the same for all criti-
cal outcomes, then this becomes the overall certainty in the evidence supporting the 
answer to the question. If the certainty in the evidence differs across critical outcomes, 
the overall certainty in the recommendation is not higher than the lowest certainty for 
any outcome that is critical for a decision. Therefore, the lowest certainty in the evi-
dence for any of the critical outcomes determines the overall certainty in the evidence.

22.2.7 Assessing the Certainty in a Body of Evidence About Tests

The best evidence about the benefit of using a diagnostic or screening test comes from 
RCTs of test and intervention strategies that directly measure the relevant outcomes. 
Indeed, if a test fails to improve outcomes, there is no reason to use it whatever its 
accuracy [21]. The systematic review process should therefore begin with a search for 
intervention studies. If such studies are found, then the GRADE approach for inter-
ventions is used [16, 21].

In many situations, direct evidence from intervention studies is lacking and the evi-
dence from studies of diagnostic test accuracy needs to be linked to other data to assess 
the likely effects on outcomes. This is a two- step process. In the first step, test accuracy 
studies are evaluated in systematic reviews and, where appropriate, combined in meta- 
analyses. The appropriate study design to measure test accuracy is observational, and 
the assessment of the certainty in the evidence therefore begins with a rating of high 
certainty. The evaluation follows the basic GRADE principles and the five domains for 



TABLE 22.5  Example of a GRADE evidence profile.

Author(s): Schünemann HJ for the ATS/IPF Guideline Group
Date: January 30, 2016
Question: Pirfenidone compared to placebo for patients with Idiopathic pulmonary fibrosis (IPF)
Setting: inpatient and outpatient treatment
Bibliography: ATS/ERS guidelines on treatment of IPF [38]

Quality assessment № of patients Effect Quality Importance

№ of 
studies

Study  
design

Risk of 
bias

Inconsistency Indirectness Imprecision Other 
considerations

Pirfenidone Placebo Relative 
(95% CI)

Absolute 
(95% CI)

Mortality (follow- up: 72 weeks)

5 Randomized 
trials

Not 
serious

Not serious Not serious Seriousa None 41/804 
(5.1%)

59/763 
(7.7%)

RR 0.70 
(0.47 to 
1.02)

23 fewer 
per 1000 
(from 2 more 
to 41 fewer)

⊕⊕⊕○ 
MODERATE

CRITICAL

Acute exacerbation (follow- up: 72 weeks)

4 Randomized 
trials

Seriousb Not serious Not serious Seriousc None 10/526 
(1.9%)

14/486 
(2.9%)

RR 0.69 
(0.20 to 
2.42)

9 fewer per 
1000 (from 
23 fewer to 
41 more)

⊕⊕○○ 
LOW

CRITICAL



Disease progression (follow- up: 72 weeks; assessed with: Vital capacity [higher numbers are better])

4 Randomized 
trials

Not 
seriousd

Not serious Not serious Not serious None 521 – – SMD 
0.23 more 
(0.06 more 
to 0.41 more)

⊕⊕⊕⊕ 
HIGH

CRITICAL

Disease Progression (assessed with: DLCO [Higher numbers better])

4 Randomized 
trialse

Not 
serious

Not serious Seriousf Not serious None 526 486 – See 
comment

⊕⊕⊕○  
MODERATE

CRITICAL

a Relatively wide confidence intervals. In the worst- case scenario one would not accept cost/side effects of drug.
b One trial stopped early (Azuma et al.) because of perceived benefit in regards to exacerbations.
c There are sparse data leading to imprecision. The confidence intervals are wide and compatible with important harm and benefit.
d Data were imputed in studies 004 and 006.
e It is not clear which patients had DLCO measured and the data provided in the primary publications do not allow for pooling of results.
f The importance of this outcome measure for patients and the relation to patient important outcomes is uncertain.
CI, confidence interval; DLCO, diffusing capacity of lung for carbon monoxide; MD, mean difference; RR, risk ratio; SMD, standardized mean difference.

Quality assessment № of patients Effect Quality Importance

№ of 
studies

Study 
design

Risk of 
bias

Inconsistency Indirectness Imprecision Other 
considerations

Pirfenidone Placebo Relative 
(95% CI)

Absolute 
(95% CI)

Quality assessment № of patients Effect Quality Importance

№ of 
studies

Study  
design

Risk of 
bias

Inconsistency Indirectness Imprecision Other 
considerations

Pirfenidone Placebo Relative 
(95% CI)

Absolute 
(95% CI)

TABLE 22.5  (Continued)



TABLE 22.6  Example of a GRADE summary of findings table.

Pirfenidone compared to placebo for patients with idiopathic pulmonary fibrosis (IPF)

Bibliography: ATS/ERS guidelines on treatment of IPF [38]

Outcomes № of partici pants 
(studies)
Follow- up

Quality of the 
evidence (GRADE)

Relative effect 
(95% CI)

Anticipated absolute effects

Risk with 
placebo

Risk difference with 
Pirfenidone*

Mortality
follow- up: 72 weeks

1567 (5 RCTs) ⊕⊕⊕○ 
MODERATEa

RR 0.70  
(0.47 to 1.02)

77 per 
1000

23 fewer per 1000 (41 
fewer to 2 more)

Acute exacerbation
follow- up: 72 weeks

1012 (4 RCTs) ⊕⊕○○  
LOWb,c

RR 0.69  
(0.20 to 2.42)

29 per 
1000

9 fewer per 1000 (23 
fewer to 41 more)

Disease progression
assessed with: vital capacity (higher 
numbers are better)
follow- up: 72 weeks

1006 (4 RCTs) ⊕⊕⊕⊕  
HIGHd

– – SMD 0.23 more (0.06 more 
to 0.41 more)

Disease progression
assessed with: DLCO (higher 
numbers better)

1012 (4 RCTs)e ⊕⊕⊕○ 
MODERATEf

– Not 
pooled

Not pooled

*The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the 
intervention (and its 95% CI).
CI, confidence interval; DLCO, diffusing capacity of lung for carbon monoxide; MD, mean difference; RCTs, randomized controlled trials; RR, risk ratio;  
SMD, standardized mean difference.

GRADE Working Group grades of evidence
High quality: We are very confident that the true effect lies close to that of the estimate of the effect
Moderate quality: We have moderate confidence in the effect estimate. The true effect is likely to be close to the estimate of the effect, but there is a 
possibility that it is substantially different
Low quality: Our confidence in the effect estimate is limited. The true effect may be substantially different from the estimate of the effect.
Very low quality: We have very little confidence in the effect estimate. The true effect is likely to be substantially different from the estimate of effect.

a Relatively wide confidence intervals. In the worst- case scenario one would not accept cost/side effects of drug.
b One trial stopped early (Azuma et al.) because of perceived benefit with regard to exacerbations.
c There are sparse data leading to imprecision. The confidence intervals are wide and compatible with important harm and benefit.
d Data were imputed in studies 004 and 006.
e It is not clear which patients had DLCO measured and the data provided in the primary publications do not allow for pooling of results.
f The importance of this outcome measure for patients and the relation to patient important outcomes is uncertain.
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downrating certainty. Domains for uprating may exist, but further work is required to 
better describe them.

In the second step, the best estimates of test accuracy are linked to other evidence 
such as data on the prevalence of the condition, its natural history, or the effectiveness 
of treatments. For recommendations based on linking different bodies of evidence, the 
overall certainty in the evidence involves an evaluation of which data are critical for 
decision- making. The overall rating is then based on the lowest certainty in any part of 
the evidence considered critical. For example, a WHO cervical cancer guideline panel 
had very low confidence in some of the critical evidence used to derive the estimates 
of benefit at the population level, despite the fact that the diagnostic test accuracy 
information was of moderate to high quality [40].

22.2.8 Prognosis, Resource Use, and Values and Preferences

Similar to evidence for intervention effects, the GRADE approach to rating certainty in 
the evidence can be used in systematic reviews of prognostic questions. Given that NRSs 
are the most appropriate design to assess prognosis, they start as high certainty in the 
evidence. While the operationalization of the domains differs for prognostic evidence, 
the domains for downrating the certainty in the evidence are the same. For details the 
reader is referred to the relevant guidance from the GRADE working group [41, 42]. 
Resource utilization can also be assessed using the GRADE approach [43, 44]. GRADE 
guidance on how to assess the certainty in the evidence about values and preferences 
is currently under review.

22.3  DEVELOPING RECOMMENDATIONS AND 
MAKING DECISIONS

The GRADE working group has developed EtD frameworks to help guideline panels 
use the available evidence and develop decisions and recommendations in a struc-
tured and transparent way [14, 45–48]. The EtD framework consists of three sections: 
the PICO questions, summaries of the evidence, and the conclusions.

Guideline panels typically use evidence from several systematic reviews to 
formulate their recommendations. These are usefully summarized in SoF tables 
(Table 22.5). The GRADE criteria that determine the direction and strength of the 
recommendation and a description of how they influence the recommendation 
are summarized in Table 22.7. An example of a detailed EtD framework can be 
found on the book’s website at www.systematic-reviews3.org.

22.3.1 The Strength of the Recommendation

The strength of a recommendation reflects the confidence of a guideline development 
group in the balance of the desirable and undesirable consequences of implementing 
a recommendation:
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TABLE 22.7  Criteria that influence the strength and direction in the GRADE 
E vidence to Decision frameworks.

Criteria How the criterion influences the direction and strength of a 
recommendation

1. Problem The judgment about the problem is determined by the importance 
and frequency of the health care issue that is addressed (burden 
of disease, prevalence, cost, or baseline risk). If the problem is of 
great importance, a strong recommendation may be more likely

2. Values and 
preferences or 
the importance of 
outcomes

This describes how important health outcomes are to those 
affected, how variable they are, and if there is uncertainty 
about this

3. Certainty in 
the evidence 
about the health 
benefits and harm

The higher the certainty in the evidence, the more likely is a strong 
recommendation

4. Health benefits 
and harms and 
burden and their 
balance

1. This requires an evaluation of the absolute effects of both 
the benefits and harms and their importance, including the 
judgment about the criterion

2. The greater the net benefit or net harm, the more likely is a 
strong recommendation for or against the option

5. Resource 
implications

This describes how resource intense an option is, if it is 
cost- effective, and if there is incremental benefit. The more 
advantageous or clearly disadvantageous these resource 
implications are, the more likely is a strong recommendation

6. Equity The greater the likelihood of reducing inequities or increasing 
equity and the more accessible an option is, the more likely is a 
strong recommendation

7. Acceptability The greater the acceptability of an option to all or most 
stakeholders, the more likely is a strong recommendation

8. Feasibility The greater the acceptability of an option to all or most 
stakeholders, the more likely is a strong recommendation

• Strong: the guideline group is confident that the desirable effects outweigh any 
undesirable consequences.

• Conditional or weak: there is considerable uncertainty about the balance of 
desirable and undesirable effects.

Strong recommendations are not very common. Guideline panels often deal with 
low-  or very low- quality evidence and therefore are reluctant to make strong recom-
mendations [49].

The EtD framework (Table  22.7, Table S22.1 on www.systematic-reviews3.org) 
documents not only the evidence and the judgments leading to a recommendation, 
but also the justifications for the direction and strength of the recommendation and 
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TABLE 22.8  Interpretation of the certainty in a body of evidence according 
to in dividual GRADE domains.

By outcome Implications for 
research

Examples Implications for 
practice

Risk of bias Need for 
methodologically 
better- designed and 
- executed studies

All studies suffered 
from lack of 
blinding of outcome 
assessors. Trials of 
this type are required

The estimates of 
effect may be biased 
because of a lack of 
blinding

Inconsistency Unexplained 
inconsistency: need for 
individual participant 
data meta- analysis 
(IPDMA); need for 
studies in relevant 
subgroups

Studies in patients 
with small cell lung 
cancer are needed 
to understand if the 
effects differ from 
those in patients 
with pancreatic 
cancer

Unexplained 
inconsistency: 
consider and 
interpret overall 
effect estimates as 
for the certainty in a 
body of evidence
Explained 
inconsistency (if 
results are presented 
in strata): consider 
and interpret 
effects estimates by 
subgroup

Indirectness Need for studies that 
more directly address 
the PICO question of 
interest

Studies in patients 
with early cancer 
are needed because 
the evidence is 
from studies with 
advanced cancer

It is uncertain if the 
results directly apply 
to the patients or 
the way that the 
intervention is applied 
in your setting

Imprecision Need for more studies 
with more participants 
to reach optimal 
information size

Studies with 
approximately 
200 more events in 
the treatment and 
control group are 
required

Same as for 
certainty in a body 
of evidence

the process. Whether or not the panel voted on some or all of the recommendations 
and what the results of the vote were should be reported. Considerations regarding 
subgroups of patients, implementation of the recommendation, evaluation, and mon-
itoring gaps may also be covered.

22.3.2 Research Gaps

The systematic assessment of certainty in the evidence in GRADE helps reviewers 
identify important gaps in the evidence base. Table 22.8 illustrates how review authors 
may interpret a body of evidence and draw conclusions about the need for future 
research. Guideline panels can then discuss these and formulate the concrete questions 
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TABLE 22.8  (Continued)

By outcome Implications for 
research

Examples Implications for 
practice

Publication 
bias

Need to investigate 
and identify 
unpublished data; 
large studies might 
help resolve this issue

Same as for 
certainty in a body 
of evidence

Large effects No implications No implications The effect is large 
in the populations 
that were included 
in the studies. The 
effect is going to be 
in the vicinity of the 
observed effect

Dose effects No implications No implications The greater the 
reduction in the 
exposure, the larger 
is the expected 
benefit (harm)

Opposing 
bias and 
confounding

Studies controlling 
for the residual bias 
and confounding are 
needed

Studies controlling 
for following possible 
confounders are 
required: smoking, 
degree of education

The effect could be 
even larger than the 
one that is observed 
in the studies 
presented here

PICO, Population, Intervention, Comparator, Outcome.

for future research that will strengthen the evidence base underpinning their future 
recommendations. Guideline panels should be as specific as possible about what is 
needed and why the GRADE criteria are used in the EtDs.

22.3.3 GRADEpro Software

The GRADE process – from creating an SoF table to interactive EtD frameworks and 
full guidelines – is facilitated by the GRADEpro software (www.gradepro.org), which 
is used by Cochrane systematic review authors to produce SoF tables and by guideline 
developers to produce and publish recommendations online. GRADEpro can also be 
used to develop apps on handheld devices.

22.4  OUTLOOK

GRADE provides an approach to assess the certainty or quality of a body of evidence 
by outcome and across outcomes. GRADE also provides an approach to moving from 
evidence to a decision using EtD frameworks. The strength of the GRADE approach 
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rests in its structured framework for the assessment of evidence independent of the 
actual intervention or question, and the requirement for explicit processes and trans-
parent judgments. GRADE has been applied to a wide range of health care interventions, 
from clinical to public health and health policy questions [50]. The ease of applying the 
GRADE approach will vary according to the type of evidence being assessed, yet the cir-
cumstances in which GRADE cannot be usefully applied are rare. GRADE has been used 
for questions about prognosis, resource use, values and preferences, and tests. As in any 
such approach in science, GRADE is not perfect and will evolve with future research [51]. 
The GRADE working group currently hosts more than 20 project groups on issues such as 
how to assess certainty in the evidence for values and preferences, animal research, and 
how to formulate recommendations in fields such as environmental health.
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Systematic review methods seek to deliver an accurate summary of the available 
evidence for specific health questions. In practice, increasing methodological standards 
[1] and a deluge of primary studies challenge the ability of many review teams to 
produce high- quality systematic reviews that are timely, accurate, and useful, and are 
kept up to date [2].

Current systematic review production systems face several challenges. The time 
and resources required to complete many of the tasks of a systematic review are 
substantial (Table  23.1). In a study of systematic reviews in neurotrauma, reviews 
were published at medians of 2.5–6.5 years after the studies that were included in 
the respective systematic reviews, which is a substantial lag between publication of 
a primary study and its incorporation into a systematic review [3]. This lag typically 
reflects more than two years for the production of the systematic review [4] and more 
than one year from the date of the last search to review publication [5]. This slows the 
translation of research findings into guidelines and health practices. Furthermore, 
only a minority of reviews are updated within two years [6], and as new research is 
published in the intervening period these delays can lead to significant inaccuracies. 
One estimate is that 7% of systematic reviews are inaccurate the day they are pub-
lished, and after two years 23% of reviews that are not updated will present incorrect 
conclusions [7].

Given these challenges, it is not surprising that innovations that seek to 
improve the production of systematic reviews often focus primarily on improving 
the efficiency of review production while maintaining existing methodological 
approaches and rigor.
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23.1 WORKFLOW PLATFORMS

Despite the fact that systematic reviews are important for the health of society, highly 
specialized, resource- intensive, and time- critical review production still relies largely 
on a fragmented mix of generic word- processing, spreadsheet, email, reference 
management, and statistical analysis tools [8]. A number of more specialized software 
tools are available that aim to improve the efficiency, quality, and experience of review 
production [9]. At the time of writing, the most widely used of these include Covidence, 
Distiller SR, EPPI- Reviewer, JBI- SUMARI, and Rayyan. In general, these tools are well 
adapted to the specific needs of systematic reviewers, but few independent evaluation 
data exist that concern their benefits to review production efficiency or quality.

23.2 SEMI- AUTOMATION

One of the most active areas of research in the field of systematic review produc-
tion is the use of computerized systems to automate, or semi- automate, routine and 
time- consuming tasks  [10]. The aim is usually to improve the efficiency of review 
 production and redirect human effort to higher- level tasks [11]. Some have envisioned 
a future in which systematic reviews are fully automated, executed as computer 
 programs defined by the review protocol [12]. This vision excludes human interpre-
tation,  currently a critical step in review production [13], and is not currently feasible. 
However, semi- automation systems are feasible and are beginning to be deployed in 
production systems.

TABLE 23.1  Estimated time to perform specific tasks required to produce a 
 systematic review.

Task Unit Number of 
units (mean)

Time per unit 
(minutes)

Total time 
(hours)

Search Review 1 420 7.0

Citation screening Citation 2475 2.6 107.3

Importing full- text 
articles

Article 100 9.2 15.3

Full- text article 
review

Article 100 12.5 20.8

Data extraction Article 19 246 77.9

Risk of bias 
assessment

Article 19 40.8 12.9

TOTAL 241.2

Source: Unit time data generated during the Cochrane Fit For Purpose Project (Final report, July 2011). 
Volume data calculated from a one- year sample of Cochrane Reviews published between March 2013 
and February 2014).
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Given the substantial resources required to identify studies for inclusion in a systematic 
review, this task has received the most attention. Text presented in citations and full- text 
reports is commonly processed by computer systems using techniques known as natural 
language processing and machine learning. Natural language processing is the process of 
deriving high- quality, structured information from unstructured free text, and machine 
learning is the process by which analytic models learn from reference data and make 
predictions about new data (see Box 23.1).

23.2.1 Study Identification

The most recent systematic review of research on study identification was published 
in 2015  and identified 44 studies (Table  23.2)  [14]. The reviewers were not able to 
perform a quantitative synthesis due to variability in the metrics and processes inves-
tigated in the studies. They concluded that although they were not able to establish 
which approaches were best, it was clear that substantial reductions in workload and 
efficiency gains were potentially achievable. Many studies suggested a 30–70% reduction 
in workload might be possible, although sometimes with a loss of approximately 5% of 
relevant studies (i.e. sensitivity or recall of 95%).

The issue of sensitivity or recall is an important challenge for semi- automation 
or automation of citation screening. Systematic reviewers value sensitivity/recall 
over specificity/precision, as is demonstrated by the use of highly sensitive search 
strategies that return large numbers of irrelevant citations. Various responses to this 
challenge have been proposed, including a “committee” approach in which multiple 
machine classifiers “vote” on each citation and the citation is selected if at least one, 

Box 23.1 Natural Language Processing and Machine Learning

Natural Language Processing
Natural language processing is a process of deriving high- quality information from 
text. It takes the relatively unstructured data encapsulated in the natural language 
of text and creates structured data and new insights. The process typically involves 
collecting and organizing text, converting the text into structured forms (parsing), 
manipulating and transforming the text, analyzing (mining) the text, and evaluation 
and interpretation of the outputs of the analysis.

Machine Learning
Machine learning involves the creation of algorithms that learn from data to make 
predictions or decisions, rather than following static program instructions as is typical 
for conventional statistical models. The essential difference is that the performance 
of machine learning algorithms changes with exposure to data. Often the algorithm 
is given a set of inputs (“training data”) and desired outputs, from which it derives a 
general rule (“learning”). This can be applied to a new set of inputs to predict outputs.
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or a majority, of the classifiers votes for inclusion; or weighting the classifiers to penalize 
false negatives more than false positives [14]. A related challenge is the imbalance bet-
ween the number of includes and the number of excludes in a typical set of citations, 
which results in few relevant items to “train” the classifiers. Weighting and unders-
ampling of nonrelevant citations are two approaches that have been used to address 
this issue.

Although the semi- automation of citation screening is an active research area, 
there are a number of limitations to the evidence base. As mentioned, a diversity of 
metrics and processes have been studied, limiting our ability to compare alternative 
approaches. Furthermore, there has been close to no replication of studies and very lit-
tle use of common datasets. Many of the systems have been evaluated using relatively 
small, single- citation datasets and not tested across a diversity of citation set types (e.g. 
clinical and public health; interventions and diagnostic tests).

At the time of writing, few citation- screening semi- automation systems have been 
deployed. The review described earlier identified Abstrackr, EPPI- Reviewer, and Revis, 
and the generic text mining platform RapidMiner. The SRToolbox site  [9] describes 
additional tools that use text mining to support study selection.

TABLE 23.2  Approaches to semi- automation of study identification.

Purpose Method Description Number 
of studies

Reduce the number 
of citations needing 
to be screened

Classifier Explicit binary (include/exclude) 
decisions

23

Ranking Rank by likelihood of inclusion and 
exclude citations below a given 
threshold

7

Active 
learning

Machine “learns” from ongoing 
interaction with reviewer screening 
decisions

9

Machine as a second 
screener

Classifier Remove or significantly reduce 
need for second, independent 
screener using classifier as above

6

Increase the rate of 
screening

Visual data 
mining

Visual representation of document 
connections to speed up 
identification of studies more likely 
to be similar to one another

5

Efficient 
citation 
assignment

Assignment of citations to expert 
and novice screeners based on 
estimated time to screen

1

Screening 
prioritization

Ranking Order citations by likelihood of 
inclusion to improve the overall 
efficiency of the review team

4

Source: Adapted from [14].



  Innovations in Systematic Review Production 455

23.2.2 Data Extraction

“Extracting” (capturing) data reported in the abstract or full- text article is an important 
and time- consuming task in systematic review production (Table 23.1). A number of 
studies have investigated semi- automation of this process, including studies that focus 
on data contained in abstracts and those concerned with capturing data from full- text 
articles. Some studies have examined the ability of automation systems to identify text 
that refers to specific elements (e.g. PICO [Population, Intervention, Comparison, Out-
come] descriptors), whereas other studies have pursued the capturing of these data 
(e.g. the specific details of the population included in the study).

A systematic review published in 2015 identified 26 studies in this field [15]. Overall, 
the review identified many studies with encouraging findings such as F- scores (mean of 
sensitivity and positive predictive value) above 70%. As with the review described above, 
the authors were unable to perform a quantitative synthesis due to the variety of datas-
ets and metrics used in the included studies. They also highlighted the small number of 
data elements examined in the included studies and that many standard data elements 
have not been investigated in any study published to date. Very few deployed systems are 
available for use. One relevant example is the open- source tool Robot Reviewer [16, 17], 
which has demonstrated encouraging performance in a randomized trial [17].

23.3 CROWDSOURCING

The long history of citizen science, in which members of society contribute to a scientific 
endeavor, has recently been transformed by online platforms that engage large vol-
unteer communities to help scientists and researchers efficiently and accurately deal 
with the flood of data that confronts them. Researchers working with Cochrane have 
evaluated this “crowdsourcing” approach for systematic review production.

For example, anonymous individuals (the “crowd”) can indicate through an 
online interface (Cochrane Crowd [18]) whether a citation identified during a broad 
and sensitive search of bibliographic databases represent a report of a randomized 
trial. To date, a crowd of over 23 000 contributors has performed over six million 
classifications. The decisions of multiple crowd members are combined using “crowd 
algorithms” to derive final citation classifications. Evaluations of crowd performance 
have compared the performance of the crowd to that of an information specialist and a 
systematic reviewer acting as a reference standard [19]. In these studies, the sensitivity 
and specificity of crowd assessments were over 99 and 98%, respectively.

23.4 DATA STRUCTURES

At present, systematic reviews are usually disseminated as published full- text articles 
in academic journals. The data underlying the review findings are locked within the 
full- text pdf or html format, making them difficult for humans or machines to access 
or reuse. Furthermore, valuable data accrued during the production of the review 
(detailed study data or review process data) are usually not made available. These 
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issues contribute to the wasteful aspects of systematic review duplication and often 
force groups with similar, but not identical, questions to repeat systematic reviews in 
very closely related topics.

In order to address these issues and make systematic review data more easily 
accessible and reusable, groups are pursuing the development of new data infrastruc-
ture. One step in this direction has been the development of a “linked data” project by 
Cochrane [20]. Linked data is a method of publishing structured data. It builds upon 
standard web technologies to share information in a way that computers can read 
automatically. This enables data from different sources to be connected and queried.

One aspect of Cochrane’s linked data work has been the development of a “PICO 
Ontology.” An ontology is a formal naming and definition of the types, properties, and 
interrelationships of entities that exist in a particular domain. Ontologies are used to limit 
complexity, organize information, and support problem- solving. The PICO Ontology [21] 
provides an overarching framework for the organization of data in systematic reviews, 
including studies included in the review, analyses conducted as part of the review, and 
the review itself. These data elements can then be annotated with metadata: terms from 
controlled vocabularies (e.g. Medical Subject Headings [MeSH] in MEDLINE/PubMed, 
SNOMED Clinical Terms) and other categories (e.g. COMET core outcome sets) to enable 
much richer data reuse options, for example finding and using data from across multiple 
systematic reviews, linking systematic review data to other relevant datasets, and using 
systematic review data within guideline development platforms (see below).

23.5 EVIDENCE USE

The systems described above enable more efficient production of structured, share-
able systematic review data. This provides value for the production of other systematic 
reviews, but these data can also be used in “downstream” processes, including the 
development of guidelines, standards, decision aids, and clinical decision support 
 systems. The key requirement is technical infrastructure that enables the easy transfer 
and reuse of data from systematic review tools and data repositories to systems sup-
porting these downstream processes. At the time of writing, these links were only 
beginning to be established.

In turn, guideline development platforms are beginning to be linked to other 
downstream platforms, enabling the presentation of guideline recommendations 
within electronic medical records (EMRs) and online decision aids, and enabling more 
efficient production of decision support rules. Together, these interlinked systems may 
evolve into a much more efficient “ecosystem,” extending from primary study data 
through systematic review and guideline development to decision support systems 
(Figure 23.1) [3]. Overall, it is likely the data generated during a systematic review will 
become at least as important as the systematic review report itself.

23.6 LIVING SYSTEMATIC REVIEWS

Interlinked platforms and systems that utilize the potential of automation and crowd-
sourcing are likely to make the production of systematic reviews more efficient (see 
Figure  23.2). This will reduce the resources required to produce reviews, but also 



Health Practice

Decision support
systems

Knowledge
translation

PublicationPublication

Hypotheses
prioritization

Learning
health care systems

Living guidance

Living evidence
services Living

systematic
review

Linked data
repositories

Systematic
review

Guidance Primary research Health “big data”

FIGURE 23.1  Current and emerging health knowledge ecosystems. The current health knowledge 
ecosystem (inner circle) is characterized by inefficiencies that hamper the flow of knowledge from 
health practice through primary research, systematic review, and guidelines, and finally back to 
impacts on health practice. The new health knowledge ecosystem that is emerging (outer circle) is 
characterized by a continuous flow of knowledge between efficient, living components, including 
the growing importance of learning health care systems, which together with traditional primary 
research will populate common data repositories. Living evidence services derived from these 
repositories, supporting living guidance and decision support systems, will close a “living” health 
knowledge loop. Source: Elliott et al. [3].

EVIDENCE PIPELINE

Enriched Dataset

Cochrane
Crowd

CRS

97%

85%

65%

Routine searches
for specialised

registers

What are the
PICO characteristics
of this trial?
A probability
is assigned

%

PICO REVIEW
GROUP

STUDY
DESIGN

Verify
Classify
Use

% %

Which Review
Group does
this belong to?
A probability
is assigned

What is the
study design?
eg RCT, DTA...
A probability
is assigned

Individual
searches for

reviews

Centralised
search
service

FIGURE 23.2  Cochrane’s evidence pipeline. As an alternative to searching bibliographic databases for 
individual reviews and wholly manual screening, Cochrane’s evidence pipeline uses the combination of 
broad searches of bibliographic databases for reports of controlled trials (“centralized search”), together 
with text mining and machine learning algorithms, combined with designations provided by the citizen 
science platform “Cochrane Crowd” to substantially reduce the resources required to identify reports of 
studies eligible for inclusion in Cochrane Reviews. Source: Cochrane.



458 Systematic Reviews in Health Research 

improve the feasibility of review updating. Current challenges in review updating 
limit updating frequency and lead to considerable inaccuracy [7], to some extent under-
mining the value created through the use of rigorous methods.

Living systematic review (LSR) is an approach to the updating of systematic reviews 
that utilizes the emerging “evidence ecosystem” already described to keep review find-
ings constantly up to date, even in fast- moving research areas [3]. LSRs are systematic 
reviews that are updated frequently, typically every month or so [22]. A number of LSR 
projects have demonstrated the feasibility of this approach for intervention and other 
review types [23–28] and its application in network meta- analysis has been proposed [29]. 
Box 23.2 describes some of its implementation during the COVID- 19 pandemic.

The key areas in which LSRs differ from conventionally updated systematic 
reviews are team and workflow management and publication. Instead of the intense, 
sporadic effort of conventional systematic reviews and systematic review updates, 
LSRs require a continuous workflow, with a moderate amount of effort coordinated 
over long periods of time, and gradual evolution in the review team. Authors of LSRs 
should pre- specify the criteria that will be used to determine when new evidence will 
be incorporated into the review, and when the methods of the review will be revised 
(in light of, for example, changes to subject headings in databases searched, etc.)

Box 23.2 COVID- 19 Living Systematic Reviews

The COVID- 19 pandemic provided a clear example of the need for living, continually 
updated evidence syntheses to guide health decisions. In the early phase of the 
pandemic, there was little research to guide clinical practice and substantial uncer-
tainty about which treatments were effective in treating people with COVID- 19. 
However, research was rapidly produced, and static systematic reviews were almost 
immediately outdated. The value of living reviews in this context was very clear. 
Several groups applied living methods to develop evidence syntheses of evidence for 
treatments, which were frequently updated.

An international research group developed an LSR of drug treatments for 
COVID- 19 that was first published on July 30, 2020, and by June 2021 had been 
updated and republished an additional three times [30]. This living review was used 
as the basis of a World Health Organization (WHO) living guideline, which was 
updated in line with updates to the systematic review [31].

Supported by WHO and Cochrane, the COVID- NMA initiative (https://covid- nma.
com) undertook a living mapping and living systematic review of COVID- 19 trials 
addressing preventive interventions, treatments, and vaccines for the virus [32]. By 
June 2021, the LSR included more than 300 randomized controlled trials, and the 
mapping of registered trials included more than 3000 studies.

The Australian National COVID- 19 Clinical Evidence Taskforce (https://
covid19evidence.net.au) used living evidence synthesis methods to develop living 
guidelines for treatment of people with COVID- 19 [33]. These guidelines were first 
published in April 2020, and then updated weekly to reflect new research evidence. 
As of June 2021, the living guidelines had been updated more than 40 times and 
included over 140 recommendations.
Source: Adapted from Siemieniuk R et al. [30], Siemieniuk R et al. [31], Boutron I et al. [32], and Tendal B, 
et al. [33].

https://covid-nma.com
https://covid-nma.com
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The publication of LSRs also requires some adaptation of existing norms. When a 
search does not identify any new studies for inclusion, only the published search date 
need be updated. If new studies are identified, a new publication may be generated 
with a new digital object identifier (DOI), bibliographic database listing, and citation.

23.7 DIVERSE DATA

The sources of data available for health decision- making are increasing in volume, 
velocity, and variety. From genomic sequences to clinical trial individual participant 
data, EMRs, mobile devices, wearables, and social networking applications  [34], 
we face an increasing deluge of data and limited methods or technical infrastruc-
ture to manage and make sense of it, particularly within the evidence- based health 
care community. Conversely, many in data science fields, who are immersed in the 
combination and analysis of large and diverse datasets, are unaware of the approaches 
and methods of evidence synthesis, particularly the risks of bias associated with each 
data type and how to incorporate these risks into analyses [35].

As these fields evolve, evidence- based practice and other data science commu-
nities will benefit from better cross- talk and collaboration, developing a range of 
empirically verified and widely accepted methods for making sense of diverse data. 
Academic organizational structures, funding opportunities, and conferences may be 
reconfigured to encourage this interdisciplinary work. In the longer term, we may also 
see the emergence of a new type of data scientist, adept at appraising and combining 
diverse data.

23.8 DATA ANALYTICS

In parallel with the increasing availability of diverse datasets as already described, we 
are likely to see the emergence of increasingly sophisticated decision support systems 
that use artificial intelligence (AI) to make judgments and give recommendations to 
end users without the need for direct human input [36]. At present these systems learn 
from a wide range of data sources, including systematic reviews and guidelines, but it 
is conceivable that in the future these will not be necessary and a more direct connec-
tion from data to decisions will become prevalent. Also, over time it is likely that an 
increasing array of competing AI- based decision support systems will become avail-
able. The regulation and selection of systems will be complex, particularly given that 
at present it is virtually impossible to understand the reasoning used by the AI system 
to derive a specific statement or recommendation.

23.9 CONCLUSIONS

The science of evidence synthesis has provided incalculable benefit to human health 
and many other fields by helping to bridge the evidence–practice gap. However, less 
investment has been made in systems and processes than in methods; rigor has been 
emphasized more than currency. As such, the systems available to systematic reviewers 
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have changed little over many years, hindering the production, updating, and availability 
of high- quality systematic reviews.

New systems are now emerging on several fronts. These range from improve-
ments in workflow and collaboration platforms customized for the specific needs 
of systematic review teams, to the use of text mining, machine learning, and crowd-
sourcing to semi- automate or outsource specific tasks in the production of systematic 
reviews. Underlying these are new systems for structuring and organizing the data 
generated during a systematic review.

Altogether, these systems will have significant implications for other evidence 
processes, particularly guideline development and decision support systems. As the 
processing and synthesis of conventional data sources become more efficient, these 
downstream activities will benefit, creating an environment for more dynamic, inter-
linked synthesis and use of health data.

In parallel, there will be increasing complexity from the opportunities  – and 
demand – for evidence syntheses incorporating a much wider range of data sources, 
including novel, large, and diverse data. This will occur in a context in which method-
ological approaches to the “analysis” and “synthesis” of these datasets will draw from 
a wide range of methods from statistics and machine learning.
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The use of evidence in changing clinical and public health practice has increased greatly 
since the previous edition of this book [1] was published. Systematic reviews, too, have 
expanded from summarizing the randomized evidence of the effects of interventions 
to diagnostic and prognostic studies (see Chapters  16,  17, and  18), nonrandomized 
studies (Chapters 15, 19, and 20), and inclusion of public health interventions targeted 
at populations rather than individuals. This rapid growth in scope has resulted in the 
development of new methods and the involvement of many more people – biomedical 
and social scientists, research and health care funders, policymakers, patients, and 
the general public – and has created a complex environment within which systematic 
reviews are booming. This massive scope ensures there will be a future for systematic 
reviews, but it also engenders some challenges.

24.1  THE DEMAND FOR SYSTEMATIC REVIEWS

The major driver of demand for systematic reviews has been health care policymakers. 
The need to curb government spending on health care has resulted in several countries 
implementing processes to assess evidence of benefits of new (and old) health tech-
nologies and to conduct cost- effectiveness analyses to provide a rational approach to 
making decisions about which technologies deliver value. The UK’s National Institute 
for Health and Care Excellence (NICE) has demonstrated how such approaches can 
transform health care delivery. The World Health Organization and the United States 
Preventive Services Task Force commission systematic reviews and support review 
groups to provide evidence required to inform policy. The US National Academy of 
Medicine has also set forth recommendations for providing reliable evidence to help 
the health sector make better decisions. Many other countries have similar agencies 
conducting this sort of work.
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Medical professional organizations and medical societies have also contributed 
demand for reviews as part of their role in continuing professional development. 
Guidelines produced by these organizations have moved from “expert opinion” to 
using systematic reviews where available to underpin recommendations for clinical 
practice. Clinical trials research funders have also played a role by requiring systematic 
reviews of previous evaluations of interventions before funding further trials. Patients 
and patient advocacy organizations are keen to get an understanding of their options 
for diagnosis and treatment, and the potential hazards of treatments. They, too, have 
increased demand for reviews.

Editors of medical journals are happy to publish high- quality systematic reviews. 
Systematic reviews can achieve higher citations, exceeding the citations of the primary 
studies. This results in a cycle in which authors find publishing reviews an excellent way 
of achieving high- profile publications that get cited and improve chances of career pro-
gression and research grants. Journals enjoy more citations, which results in a higher 
impact factor, and scientists in some countries are financially rewarded for publishing 
in higher impact factor journals. The massive growth in funding of medical science in 
China has spurred a huge output of systematic reviews focused not only on traditional 
Chinese medicine, but also conventional treatments. This growth raises problems of 
quality (see Box 24.1), though, it overloads journals, and may make it more difficult for 
readers to find reliable, high- quality systematic reviews. It seems likely that other low-  
and middle- income countries will follow suit and make investments in infrastructure 
for producing systematic reviews, which could potentially compound these problems.

24.2  INCREASING DEMAND IS GOOD

The demand for systematic reviews has broken down hierarchical structures of medical 
research, allowing small groups with limited resources to carry out systematic reviews 
that may challenge orthodox views. The historical failure of pharmaceutical companies 
to release all randomized controlled trial data and the selective reporting of findings 

Box 24.1 Chinese Systematic Reviews and the Curious Case  
of the “Begger” Plot

A dramatic increase in systematic reviews archived in a complementary medicine 
database was noted in 2014, with 32 reviews written by 28 different groups in several 
Chinese universities. The papers had exactly the same structure and figures, includ-
ing a “Begger’s funnel plot.  .  . a surrealistic fusion of Begg and Egger (Colin Begg 
and Matthias Egger both gave their name to a test for publication bias)” [2]. On the 
basis of all these submissions having been made within only two months, this strange 
naming, and other grammatical errors, the best explanation for all these reviews was 
not plagiarism, but that the papers had been written by a ghostwriter or more likely 
ghostwriters working for a systematic review writing company in China.
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focused on outcomes showing benefits and nonreporting of harms of treatment are 
now well known. Industry- funded research groups are beginning to respond to the 
demands for greater transparency and independent, verifiable summaries of the effects 
of drug treatments. The +AllTrials group, supported by over 700 institutions globally, 
previously reported that pension funds and asset managers worth more than €3.5 tril-
lion have asked pharmaceutical companies to provide plans to register all clinical trials 
(past, present, and future) [3]. An “enlightenment” has spread across clinical medicine 
in many countries: systematic reviews are useful; they are more likely to give robust 
answers to clinical questions than single studies; they are essential tools for designing 
better trials; and sharing all the data is a good thing. Systematic reviews have democra-
tized health sciences as entry into the field for researchers in low-  and middle- income 
countries has become more feasible.

24.3  THE SUPPLY SIDE OF SYSTEMATIC REVIEWS

The demand side is clear about what it wants: timely, reliable evidence of the bene-
fits and harms of interventions to aid in clinical and public health decision- making. 
And it is frequently if not always willing to pay for this evidence. The supply side, 
discussed in its various forms below, has been providing reviews of the evidence that 
exists. Systematic reviews (particularly Cochrane reviews, see also Chapter 21) have 
been placed at the top of the hierarchy of evidence tree. But this is to conflate “high 
methodological quality” of a systematic review with “high quality” of the source 
material. Most interventions of interest in modern medicine have small effect sizes, 
and the evidence available comprises small trials that are often not well designed and 
may be biased. Many Cochrane (and other) reviews – which aim to produce “trusted 
evidence, informed decisions, better health” – are comprised of trials that are of low 
quality (see Chapter 4), making the resulting pooled intervention effects of uncertain 
value. Future sustainability will depend on bridging the gap between what clinicians 
and patients want and what systematic reviewers are capable of providing. In spite of 
progress over the past few decades, improvements in the standards of both the conduct 
and publication of the primary studies making up the evidence base continue to be 
required. Many systematic reviews should be considered hypothesis generating, and 
tools for prioritizing research spending by exposing inadequate evidence in priority 
areas of health care.

24.4  NEW FRONTIERS FOR SYSTEMATIC REVIEWS

24.4.1 When will Basic Medical Sciences Embrace 
Systematic Reviews

Though the market for systematic reviews in basic medical sciences is still small, 
reviews from a somewhat different direction offer much potential. Animal experiments 
that evaluate the effects of treatments intended for future use in humans could benefit 
from systematic reviews of existing animal trial evidence before further experiments 
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are embarked upon [4]. In part this is because much of the basic trial methodology 
used in animal experiments of interventions that might be useful for treating human 
diseases has not been well designed, conducted, or reported, and can introduce biases 
similar to those that occur in human trials. For example, the disappointing and expen-
sive failures of animal studies to discover new treatments for acute ischemic stroke 
and Alzheimer’s disease provide strong stimuli for changes in research practices.

Some animal experimenters have made the unwarranted assumptions that calls 
for systematic reviews of animal studies are misguided and are dominated by people 
who generally are hostile to animal experimentation. This simply is not true: many 
experiments have demonstrated the value of exploring pathophysiological mecha-
nisms of disease in animals [5].

Even when systematic reviews of animal experiments are conducted, they may 
be oversimplistic, as shown by a recent meta- analysis of 53 rodent trials of maternal 
obesogenic diet on offspring appetite and body mass [6]. This meta- analysis concluded 
that “we found an effect on offspring body weight, consistent with permanent alter-
ations of offspring metabolism in response to maternal diet.” However, this interpreta-
tion is at odds with the heterogeneity between the effects observed in the studies, the 
strong evidence of small- study bias in body mass effects, and the lack of any grading 
of the quality of the trials included (see also Chapters 4 and 5).

Would guidelines similar to those widely adopted for randomized controlled trials 
in humans  [7] help? A recent systematic review of the use of guidelines in animal 
experiments found 26 guidelines that made 55 recommendations for the design and 
conduct of in vivo animal experiments [8]. However, guidelines that may help reduce 
the discordance between preclinical animal findings and their effects in humans are 
not often implemented. It seems likely that there will be a major shift in basic med-
ical sciences in the next decade, leading to a much greater acceptance of the value of 
(i) use of guidelines to aid in the design, conduct, and reporting of primary studies; 
and (ii) systematic reviews. Funding bodies such as national research councils have a 
responsibility to take a leadership role by providing training and grants to support such 
activities in both clinical and basic sciences.

24.4.2 Genetics and Novel Systematic Review Methods

Following early recognition of the study power required to generate robust estimates 
and the failure to replicate associations, the Human Genome Project has spawned a 
massive field of activity in which genome- wide association studies (GWAS) routinely 
use meta- analysis methodology (see also Chapter 20). Meta- analysis as used in many 
GWAS studies is simply a means of generating more power and reducing false- positive 
findings. Uniform standards of meta- analysis for GWAS will continue to be updated 
and more widely used, with greater attention given to sources of heterogeneity (phe-
notypic, ancestry- based, and population stratification), method of synthesis (fixed, 
random, and Bayesian), and correlated outcomes and genetic variants [9–11]. Exten-
sions of these methods to epigenetics, metabolomics, and other fields that rely upon 
large data synthesis are underway. Novel uses of systematic review methodology have 
arisen with use of the Egger plot to assess pleiotropy in Mendelian randomization 
studies using multiple instruments (see Chapter 20) [12].
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24.4.3 Wasted Resources, Duplication of Effort

The National Academy of Medicine’s recommendations for the creation of trust-
worthy clinical practice guidelines require high- quality systematic reviews that meet 
its Standards for Systematic Reviews of Comparative Effectiveness Research [13, 14]. 
Instead of using existing high- quality reviews, though, guideline panels often ask 
nuanced, different questions and create de novo systematic reviews for each new 
guideline. This is frequently inefficient and, worse, most guideline writers do not 
have the necessary skills to undertake high- quality systematic reviews within the typ-
ical guideline timeframe. To meet tight deadlines, systematic reviews conducted for 
clinical practice guidelines are outsourced to specialist teams. This dichotomization 
provides independence in the evidence synthesis process, but can also lead to disagree-
ments between the review team and guideline writers based on the inevitable judg-
ments required for evidence synthesis.

Overviews of existing, high- quality systematic reviews (see also Chapter 1) would 
save resources and be a better way to initiate a clinical guideline process than convening 
an expert committee, dividing up the topics, searching the literature (either indepen-
dently or with the support of a systematic review group), and writing guidelines for 
which evidence is limited to opinion. For example, a 2009 analysis of American Heart 
Association/American College of Cardiology guidelines demonstrated that nearly half 
(48%) of clinical practice guidelines were based on expert opinion [15]. Not unexpectedly, 
recommendations based on expert opinion are less likely to be retained (74% retained) 
from one guideline to its next iteration when compared with observational studies (81% 
retained) or multiple randomized trials (91% retained) [16]. A 2019 update to this anal-
ysis demonstrated increases in the number of guidelines (from 17 to 28) and recommen-
dations (from 3075 to 3509) over the previous decade, with only modest improvement in 
the proportion of recommendations supported by expert opinion (43%) [17].

In the current “mixed economy” of systematic reviews, one of the major Cochrane 
principles of reducing wasted effort is violated. In a review of systematic reviews con-
ducted in 2010, two- thirds (49 of 73 reviews) had one or more overlapping reviews, 
with a maximum of 13 overlapping reviews [18]. The authors of this study commented, 
“While some independent replication of meta- analyses by different teams is possibly 
useful, the overall picture suggests that there is a waste of efforts with many topics 
covered by multiple overlapping meta- analyses” [18].

24.5  IS THE CURRENT WORLD OF SYSTEMATIC REVIEWS 
SUSTAINABLE?

There are four major ways of doing systematic reviews related to health care: under the 
auspices of Cochrane review groups, collaboration between randomized controlled trials 
investigators, independent groups, and commercial agencies. Each of these has strengths 
and weaknesses that affect its future sustainability. The Campbell Collaboration is an 
international research network that produces systematic reviews of the effects of social 
interventions, which also produces reviews of some health- related interventions (e.g. 
community rehabilitation, family therapy, improving reproductive health) [19].
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24.5.1 Cochrane

Cochrane has been a spectacular success over the last two decades and has a reputa-
tion for methodologically high- quality, updated reviews (see Chapter 21). However, it 
is heavily dependent on funding from the UK National Institute for Health Research 
(NIHR), with over half the review groups based in the UK. Withdrawal of this funding for 
the Cochrane infrastructure would be highly damaging. The organization has established 
a new, expanded managerial structure, which has a daunting set of challenges ahead: 
improve quality, increase auditing, standardize reviews, innovate methodologically, 
engage with policymakers, update reviews more rapidly, involve more authors from devel-
oping countries, and retain the enthusiasm of a very large number of senior clinicians, 
academics, and patients – for all of whom participation is discretionary and not part of 
paid employment. Buy- in from governmental and nongovernmental agencies of other 
countries in supporting this collective international effort has grown in the last decade. 
Cochrane does not accept commercial or conflicted funding, as that could constrain its 
ability to produce authoritative and reliable reviews [20]. The commercial health services 
sector has played virtually no part in funding systematic reviews, yet it benefits from the 
evidence gained by public funding. Given the ongoing pressures on public- sector services 
and funding, it would be timely to explore ways in which the commercial sector could 
contribute to funding without jeopardizing the integrity and independence of Cochrane 
reviews. In the USA, Evidence Practice Centers funded by the Agency for Healthcare 
Research and Quality represent a parallel program to conduct evidence synthesis activ-
ities for governmental agencies [21]. The Cochrane US Network, established in 2019 and 
comprising existing Cochrane US review groups, fields, and affiliated institutions, will 
work collaboratively to promote evidence- based health care and public health [22].

24.5.2 Clinical Trial Collaborations

Collaborations between trialists have the great advantage of having access to all (at 
least in theory) the individual patient data from trials of the same intervention. In 
practice, collaboration will fall short of encompassing all trials of an intervention and 
not all the relevant data are shared or are available. Typically, collaborations present 
data on the intended benefit of interventions, but are much less likely to publish or 
have access to all the data on unintended consequences of interventions, which may 
be beyond the initial trial aim. The +AllTrials initiative and wider access to publicly 
and industry- funded trials may reduce this fundamental advantage of trialist collabo-
rations as data from more and more trials are made freely available.

Another potential problem is that most collaborations between trialists are funded 
by the pharmaceutical industry; investigators who work on these trials and collabo-
rations will, inevitably, be suspected of bias in favor of industry influence. Reducing 
possible bias in reviews conducted by trial collaborations is difficult to achieve, but 
may be assisted by partnerships with Cochrane review groups and other groups 
independent of pharmaceutical companies, as occurred with a systematic review of 
the unintended effects of statins in primary prevention of cardiovascular diseases [23]. 
Progress remains difficult, though, as evidenced by the uncovering of large amounts 
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of unpublished data from trials evaluating the effect of neuraminidase inhibitors for 
patients with influenza [24].

24.5.3 Independent Systematic Review Groups

Groups of academic, independent systematic reviewers are increasing, particularly with 
the current investment in medical sciences in China. They often provide timely reviews 
of “hot” topics and give training opportunities to people who might not want the com-
mitment required for Cochrane reviews and subsequent updates. But quality is variable, 
particularly with searching and assessment of risks of bias. Updating of reviews rarely 
happens, which is a major disadvantage. Moreover, huge duplication of effort is making 
it more difficult for patients, clinicians, and guideline developers to decide which of the 
many systematic reviews of the same intervention to use. Old reviews, particularly those 
published in major journals, remain in the public domain, but may be succeeded by more 
recent reviews conducted by other independent groups. Updates and reviews of old inter-
ventions lack novelty and may end up being published in minor journals. Doctors and 
patients doing quick searches on an intervention will almost certainly find the first rele-
vant review in a major journal, but will not always find the review of unintended effects 
or an updated review including more recent trials. Partnerships between independent 
review groups and Cochrane groups may improve the situation and prove mutually ben-
eficial. Novel strategies for such collaborations are explored later in this chapter.

24.5.4 Commercial Agencies

For- profit commercial agencies are not common, but have found a useful role in 
carrying out methodologically high- quality reviews quickly (though at a high price) 
for those who require evidence rapidly. Some Cochrane review groups have found it 
expedient to contract out updating of high- priority reviews to such agencies. It is quite 
possible that with open- access trial data and methodological developments discussed 
below for lowering costs, industrial- scale commercial systematic review agencies 
could become major players in the next decade.

24.6  METHODS FOR IMPROVING THE PROCESS OF CREATING 
AND UPDATING SYSTEMATIC REVIEWS

The number of randomized controlled trials published over the last decade has more than 
doubled and will double again in less than a decade [25]. The broad inclusion of diagnos-
tics, prognosis, public health interventions, and nonrandomized studies in systematic 
reviews has only just begun in earnest. Open data mean that more information will 
be available for potential synthesis for some but not all trials, particularly older trials 
of interventions of common interventions that are the very trials for which open data 
would be most useful. Reviews that compare the effects of multiple interventions with 
multiple comparators can also be useful, but may be hampered by methodological 
complexity that can lead to misleading conclusions when not performed properly (see 
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Chapter 13). The growing mass of primary data also threatens to overwhelm our ability 
to synthesize and assimilate it in a timely fashion using our current methods of conduct-
ing systematic reviews.

The most important methodologies for the next decade will be those that reduce our 
reliance on individual searching, abstracting, cross- checking data, assessing bias, interpret-
ing, writing up, and updating reviews. The human costs of reviewing are high and need 
to be minimized and shared. While people are not consistent and have their own biases, 
there can be wisdom in crowds given the right context. Such innovations will increase the 
sustainability of systematic review efforts and are discussed in detail in Chapter 23.

24.6.1 Informatics

Searching for trials related to a common patient group of interest is not straightfor-
ward when different reviewers are using different search terms. For example, a study 
of renal diseases demonstrated that using validated search terms improves retrieval 
of articles relevant to specific patient populations; used routinely this would improve 
the completeness of reviews  [26]. Automated searching of biomedical databases by 
means of comprehensive search filters is also being researched at McMaster Univer-
sity, Canada in the HEDGES project. Such research could overcome the need to hand- 
search journals and reduce time taken to retrieve relevant articles [27].

Experts in information technology expect to see major gains from prospective reg-
istration of all trials, greater access to databases of regulatory bodies, the ability to 
search across databases automatically, and wider use of gateways (portals) and full- 
text databases (see also Chapter 3). Improvements in Google Scholar, Scopus, and Web 
of Science will occur and further assist with finding relevant articles. However, experts 
believe that searching will remain a major challenge despite technological advances in 
text analysis and data mining [28].

Empirical studies of automated or semi- automated systematic review processes are 
well underway. For example, risk of bias assessment (sequence generation, allocation 
concealment, and blinding) of trial reports has been done efficiently using machine 
learning. One- quarter of trial reports typically performed by two reviewers could thus be 
assessed by a single reviewer [29]. Natural language processing with machine learning 
represents an exciting possibility for automating systematic reviews (see Chapter 23). 
However, this field is in its infancy. A 2015 systematic review of automated methods 
for data extraction in systematic reviews found that there was no unified information 
extraction framework or standard, and most reports (out of only 26 total) focused on a 
small number of data elements (<7) compared with the total potential number of data 
elements in a typical systematic review of 52 [30]. Further investments in biomedical 
and health informatics are needed for these concepts to become mainstream tools.

24.6.2 Open Data

New data sources and data formats will also need to be incorporated into reviews. For 
example, while reviewers know how to extract and evaluate data from both published 
and unpublished sources, they have limited experience in handling new data elements 
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such as clinical study reports. Doshi and colleagues have highlighted the opaque 
process of raw data filtering, distillation, and synthesis [31]. Clinical study reports rep-
resent a “new world of evidence” that will require methods of extraction, evaluation of 
risk of bias, and synthesis – as these investigators learned when they reviewed 22 000 
pages of documents from published and unpublished neuraminidase inhibitor trials. 
They describe their methods of reviewing clinical study reports as “forensic,” which 
sounds hard going for even the most experienced systematic reviewer.

The National Heart, Lung, and Blood Institute’s Biologic Specimen and Data 
Repository Information Coordinating Center (BioLINCC) hosts observational, trial 
and other data that systematic reviewers are increasingly accessing. In 2016, there were 
more than 800 requests for data from 100 trials available in this dataset, though only 7% 
of requests were for meta- analysis and only two were for reproduction analyses [32]. 
As reviewers become more familiar with these platforms and as information spe-
cialists develop reproducible search methods for these data sources, these numbers 
should rise considerably. Despite the low overall numbers in 2016, organizations such 
as the European Medicines Agency started to provide clinical study reports and related 
data supporting drug applications – actions that are supported by European and US 
pharmaceutical trade organizations. Unfortunately, as a consequence of Brexit, the 
European Medicines Agency relocated from London to Amsterdam in March 2019, 
suspending the publication of clinical data in 2018, and this decision has extended 
into 2021 because of the COVID- 19 pandemic [33]. Despite the European Medicines 
Agency’s current position, reviewers will need to learn how to search, extract, eval-
uate, and synthesize in ways they have not previously imagined as a result of these 
sources providing data in new formats.

Doshi, Jefferson, and colleagues spent years pressuring companies to provide 
trial data; some companies have started to share their data more openly. Yale’s Open 
Data Access (YODA) project  [34] is one model by which an academic institution 
serves as the independent broker of the de- identified dataset and individual partic-
ipant data for various companies. Important legal, ethical, and intellectual property 
issues need to be addressed, which include whether data sharing is permitted under 
informed consent procedures at the time of the trial. Nevertheless, clinical study 
reports are freely available on YODA [34], and data requests require only a data- use 
agreement and research protocol, though completing these relatively simple steps 
still takes considerable time [35]. Whether academic organizations will remain the 
primary data holder or whether companies might simply put their data on the web 
for open access remains to be seen. A 2014 report of the industry- supported website 
www.clinicalstudydatarequest.com demonstrated that only one  quarter of requests 
(13 out of 53) led to data sharing in the first year. The experience of reviewers trying 
to access data from this site in 2015 also did not meet expectations [36], which may 
have contributed to a transfer of oversight to the Wellcome Trust. In 2019, the esti-
mated time from submission to data access took, on average, 9 months and as of April 
2021, only 84 (13%) reports from 633 requests had been published from a total of 3069 
available trial datasets, demonstrating the continued challenges in operationalizing 
data sharing [37].

Some might describe these methods of outside reviewers re- evaluating trial data 
as “research voyeurism,” particularly if outside investigators pursue analyses for 
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personal rather than professional reasons. However, the openness of this process and 
replication of initial findings through independent analyses would seem more likely to 
strengthen the validity of results. While the challenges in re- analyzing trial data have 
been reported even by the trialists themselves, these challenges of re- analysis or repro-
ducibility highlight the need for greater rather than less sharing of statistical analysis 
plans, statistical code, and case report forms with the original publication or on public 
sites such as GitHub (https://github.com).

The +AllTrials campaign is an effective activist organization, but a still more 
fundamental shift is required to change a fringe activity to a routine one. The National 
Academy of Medicine’s 2015 report on open data calls for data sharing to be the 
“expected norm,” including making complete datasets available 18 months after trial 
completion or 6 months after trial reporting [38]. The National Academy of Medicine 
further recommends that data holders should be responsible for risk mitigation and 
that sponsors should lead multistakeholder discussions to overcome infrastructure, 
technological, sustainability, and workforce challenges. This would represent a sea 
change for performing systematic reviews, but given recent history it seems improb-
able without binding regulatory action.

24.6.3 Leveraging the Power of the Crowd

Machine learning and open data represent top- down examples of the future of 
systematic reviews, whereas crowdsourcing represents a complementary, bottom- up 
approach that captures the grassroots spirit of groups such as Cochrane. Rather than 
creating overlapping reviews, systematic reviewers from all over the world can collab-
orate around topics of common interest. Cochrane’s Project Transform, from 2015 to 
2018, allowed reviewers to work in teams on projects and tasks that are matched to 
their interests [39]. Traditional methods will need to be adapted to fit this format (and 
new ones created), but crowdsourcing can speed up reviews as steps are performed 
almost in parallel rather than serially. Authorship will be tricky. The Cochrane and 
Campbell Collaborations might wish to set a trend by reviving the notion of “contribu-
torship” rather than authorship, which in the future would make more sense [40, 41].

24.7  MULTIPLE INTERVENTIONS AND NETWORK 
META- ANALYSIS

Overviews (also called “umbrella” reviews) have been used to summarize the findings 
of multiple systematic reviews examining different treatments for the same condition 
using a narrative approach (see also Chapter 1). Overviews have developed in response 
to the clinical need to make choices among several treatments for the same condition 
in terms of potential benefits and harms. For example, in treating a child with noc-
turnal enuresis, the doctor, family, and child will want to know which of the follow-
ing treatments is best: alarm systems, toileting during the night, a range of drugs, or 
psychological and complementary treatments [42]. Systematic reviews independently 
capture the effects of each of the treatments, reflecting the trial designs available to 
them and the ease of conducting a review of the effects of a single intervention. The 
overview pulled together findings from seven Cochrane reviews and presented the 



 Future for Systematic Reviews and Meta- Analysis 473

effect sizes from 13 treatment comparisons, with odds ratios ranging from 0.17 to 1.33 
for failure to achieve 14 consecutive dry nights, and 11 of these estimates having an 
upper confidence interval below 1. The methodological quality of all the trials was 
rated as poor, but marked heterogeneity in most of the included meta- analyses was 
not explored. The authors considered that the “best buy” treatment was an alarm 
system, despite the effect of an alarm in conjunction with dry- bed training actually 
being greater than an alarm alone. Interestingly, this overview was re- analyzed using 
a network meta- analysis approach, which demonstrated that the conclusions of the 
original overview were not supported by the evidence. Furthermore, the network 
meta- analysis demonstrated marked inconsistency of direct and indirect treatment 
effects, making robust judgments on the best treatment impossible [43].

Attempting to trawl useful evidence from existing reviews is problematic not only 
because of reporting biases in the original trials, but also because of differences bet-
ween reviews in their target populations, search methods, inclusion criteria, quality 
appraisal, and updating. A proposal that overviews should be conducted prospectively 
with a defined protocol has been made, on the grounds that this may be a more effi-
cient approach than conducting reviews in an uncoordinated way [44].

There are still many areas in which small trials are conducted for pharmaceutical 
regulatory purposes to demonstrate the effectiveness of new drugs compared to “usual 
care” comparators or a placebo, or no treatment control if this is appropriate. These 
trials help neither the clinician nor the patient, who want to know which is the better 
of two treatments. Usually, head- to- head comparisons of new treatments do not get 
conducted for several years. For example, patients with atrial fibrillation might choose 
between aspirin, other more potent anti- platelet drugs, or anti- coagulants for the pre-
vention of vascular events such as strokes and heart attacks. Trials of each treatment 
versus placebo exist, and there are head- to- head comparisons of some of the combina-
tions. But how best to analyze these sources of data?

Methods of multiple treatment comparison through network meta- analysis have 
developed rapidly to tackle this problem over the last decade. Network meta- analysis 
(see Chapter 13) has grown in popularity, as it enables questions to be answered about 
best treatment options in the absence of direct head- to- head trials. Software applica-
tions have been developed that have made analysis more straightforward, which has 
also contributed to increased use. In many clinical areas network meta- analysis is not 
a panacea, as typically only small, underpowered trials exist comparing, for example, 
A versus placebo, B versus placebo, and A versus B. Pooling these data retains the 
inherent biases common to small trials and comparator biases. Moreover, heteroge-
neity of effects and incoherence between findings from direct and indirect compari-
sons may occur, making interpretation difficult. Investigators using these methods are 
advised to make cautious inferences [45].

24.8  IMPROVING TRIAL REGISTRATION, REPORTING 
AND DETECTING FRAUD

The failure of investigators to report trial findings or to delay publication has been an 
issue for decades, but continues despite efforts by funders and others to ensure pro-
spective registration (see also Chapter 5). This problem includes nonpharmacological 
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interventions just as much as pharmacological interventions. It is surprising that 
academic institutions and funders do not consider it part of their governance to mon-
itor and enforce trial registration and publication. Better methods of assessing publi-
cation bias in systematic reviews are not a solution to this problem.

The poor reporting of randomized controlled trials remains a major issue for con-
ducting systematic reviews and meta- analyses of the effects of interventions. It is diffi-
cult to distinguish between poor conduct of a trial and poor reporting of an adequately 
conducted trial. Guidelines for the reporting of trials produced by clinical trial meth-
odologists, guideline developers, knowledge translation specialists, and journal editors 
aimed to solve this problem. The first CONSORT (CONsolidated Standards Of Report-
ing Trials) guidelines appeared in 1996 and comprehensive guidelines were published 
in 2010 (http://www.consort- statement.org/consort- 2010). These guidelines have 
made it easier for investigators, journal editors, and peer reviewers to ensure that all 
relevant information is included in randomized trial reports. But they cannot deal with 
the “discrepancies” within and between reports of trials (e.g. in design: conflicting 
statements on randomization; in methods/baseline characteristics: percentages that 
could not be an integer number of patients; in results: conflicts between tables). In a 
study of 343 journal readers, of whom 260 agreed to read an article to identify discrep-
ancies, remarkably 95% of discrepancies were missed by these readers, despite them 
having been asked specifically to look for them [46].

It might be thought that a few errors in numbers would not make any major 
difference – but that would be wrong. Bone marrow stem cells for heart disease are a 
cutting- edge treatment and trials have shown promising results. In a review of 49 trials 
with 133 reports, over 600 discrepancies were found [47]. What is worrying is that the 
more discrepancies detected in a trial, the greater was the effect size for the primary 
outcome of these trials – ejection fraction, a marker of how well the heart is pumping 
(see Figure 24.1). In the five trials with no discrepancies, the effect size was zero. Not 
a popular result for stem cell enthusiasts.

These problems of discrepancies are not isolated, and the analysis shown raises 
questions about the credibility of trial reports that incorporate errors. While many 
errors may be innocent, there are circumstances where fraudulent manipulation of 
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data has resulted in misleading findings that may have a huge influence on clinical 
practice if guidelines are adhered to. One outstanding example is the use of beta- 
blockade in patients undergoing non- cardiac surgery. The European Society of Cardi-
ology guidelines [48] included a family of trials from the same scientific team that had 
discrepancies in reporting that were questioned, but action was not taken to remove 
these trials from the accumulated evidence. Indeed, these suspect trials contributed 
most of the evidence of benefit, with the remaining trials showing no benefit, but 
rather a 27% increase in mortality [49].

Surprisingly, in the 2014 update of these guidelines [50] the evidence that beta- 
blockers increased mortality was ignored, and their use was condoned [51]. A 2019 
Cochrane review on this topic reported that beta- blockers may make little or no 
difference to the number of people who die within 30 days of surgery [52].

24.9  PRIORITIZATION OF REVIEWS AND UPDATES

The massive scope of health care that is now the remit for systematic reviews requires 
prioritization if it is to continue within finite resources, produce timely updates, and 
continue to engage the people who provide their time and energy to conduct systematic 
reviews, many for no financial gain. No clear strategy for prioritization of reviews 
and updates has emerged. Various ideas have been proposed within Cochrane. For 
example, they could implement rapid updates, which would be triggered on publica-
tion of a new major trial relevant to a specific systematic review. A Cochrane Agenda 
and Priority Setting methods group was established in 2011 [53] to develop policies 
and has produced empirical research  [54–57], but no publications since 2017  have 
been logged on its website.

24.10  CONCLUSION

In the foreword to the last edition of this book, Sir Iain Chalmers, who established 
the Cochrane Collaboration, highlighted five developments he hoped to see before 
this next edition appeared (see also his foreword to the current edition) [58]. The 
first was the acknowledgment by researchers, funders, and journal editors of the 
central importance of research synthesis anticipated by Lord Rayleigh, in 1884, 
in the forward’s epigraph: “discovery and explanation go hand in hand, in which 
not only are new facts presented, but their relation to old ones is pointed out.” 
Second, more effort is needed to make bias less likely in studies contributing to 
reviews, and reporting biases should be reduced through registration of study 
protocols and full reporting of findings. Third, systematic reviews need to tackle 
etiology, diagnosis, risk prediction, and prognosis. Fourth, reviewers should be 
guided by systematic reviews of individual empirical studies addressing method-
ological questions. And fifth, social scientists, health researchers, and lay people 
will need to cooperate to improve both the science of research synthesis and the 
design of new studies. Gratifying progress has been made in all these areas, but 
much remains to be done.
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Given the large and rapidly increasing number of studies worldwide, current 
methods of producing systematic reviews are not sustainable. Automation and 
crowdsourcing of generating systematic reviews of interventions will help. The role 
of systematic reviewers will move toward verification of the effects of high- priority 
interventions. A much stronger focus on the registration, publication, and quality of 
the primary studies will be needed. Metrics of success will focus on the hypothesis- 
generating role of most systematic reviews, rather than simply on their application in 
clinical practice guidelines or health technology assessments.
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In this chapter we show how to perform meta- analysis using the statistical package 
Stata. There are more than 50 Stata commands to perform a meta- analysis, for differ-
ent types of studies and data [1] (see https://www.stata.com/support/faqs/statistics/
meta-   analysis). In addition, Stata 16 (released in June 2019) includes built- in meta -
analysis functionality for the first time.

We will describe how to perform a standard meta- analysis in Stata, and discuss how 
to examine the data in more detail, such as by looking at the accumulation of evidence 
in cumulative meta- analysis, using graphical and statistical techniques to look for evi-
dence of bias, and using meta- regression to investigate possible sources of heterogeneity. 
We will also take a brief look at some more advanced topics, including network meta- 
analysis. To complement this chapter, Chapter 26 describes how to use the R software for 
meta- analysis and Chapter 27 introduces the Comprehensive Meta-   Analysis software.

25.1 GETTING STARTED

Stata is a commercial, general- purpose, command- line- driven, programmable statistical 
package. Although Stata 16 introduced a built- in meta- analysis suite into the core package, 
at the time of writing it has limited functionality and it is unclear which directions its 
future development might take. Examples of its use will be given where appropriate, but 
otherwise we will concentrate on the numerous user- written routines for meta- analysis, 
which are freely available and are compatible with older versions of Stata. Hence, to follow 
the examples in this chapter, the reader should install these routines by downloading 
the relevant files from the internet. Throughout this chapter, Stata commands appear in  
bold monospaced font, and are followed by the Stata output that they produce in normal 
monospaced font. The easiest way to download user- writing commands is to type:
search commandname

then choose the latest version of the command, follow the appropriate links, and click on 
(click here to install). For example, at the time of writing, the most recent 

https://www.stata.com/support/faqs/statistics/meta-analysis
https://www.stata.com/support/faqs/statistics/meta-analysis
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version of command metareg was published in Stata Journal volume 8, issue 4 (SJ- 8-   4). 
Clicking on the name of the package (sbe23_1) leads the user to the installation screen. 
All commands described here can be downloaded in this way. Often, the most recent 
version of a command is made available through the Statistical Software Components 
(SSC) archive (see help ssc in Stata). In that case, a more direct way is to type:

ssc describe commandname
ssc install  commandname

A more detailed description of the features and rationale of the commands (often 
with data examples) can be found in the help file of the command (type help com-
mandname or go into the “Help” menu and click on the “Stata command. . .” option.). 
In addition, the book Meta- Analysis in Stata: An Updated Collection from the Stata 
Journal provides details of most of the key commands [1]. An overview of the com-
mands we cover is given in Table 25.1. All the output shown in this chapter was pro-
duced using Stata version 16 although, as already stated, the featured user- written 
commands should produce similar output with earlier Stata versions. All the Stata 
data files are available from the book’s website at www.systematic-reviews3.org.

TABLE 25.1  Summary of useful Stata commands for meta- analysis

Command What the command does Default data input See also

metan General- purpose meta- analysis 
command with a large number 
of features, including:
• Fixed- effect inverse variance
• Mantel–Haenszel and Peto 

fixed- effect analysis for 
2 × 2 data

• A variety of random- effects 
models including REML

• Confidence intervals for 
heterogeneity parameters, 
including those suggested by 
HigginsandThompson [2]

• Cumulative and influence 
analysis

Any of the following:
• Studyeffect

estimates and 
standard errors

• Numbers of events 
and nonevents in 
two groups

• Means, standard 
deviations, and 
sample sizes in two 
groups

• Numbers of events 
and sample sizes, for 
analysis of single- 
group proportions

Chapters 
8, 9

metaan Performs random- effects meta- 
analysis with several options 
for between- study variance, 
including REML

Studyeffectestimates
and standard errors

Chapter 9

metareg Performs random- effects meta- 
regression with several options 
for between- study variance, 
including REML

Studyeffectestimates
and standard errors, 
and study- level 
covariates

Chapter 10

metabias Test for funnel plot asymmetry 
using several regression- based 
methods

Depends on the 
choice of test (see 
documentation)

Chapter 5
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Command What the command does Default data input See also

glst Generalized least squares for 
trend estimation of summarized 
dose–response data for single 
or multiple summarized dose–
response epidemiological 
studies

Effect estimates and 
standard errors per 
exposure level and per 
study; information for 
estimating within- study 
covariances

Chapter 14

metamiss Meta-analysisof2 × 2(binary
outcome) trials with missing 
data from some participants

Numbers of events, 
nonevents, and missing 
values in two groups

Chapter 11

metamiss2 Extension to metamiss, 
allowing binary, continuous, 
or generic outcome types and 
able to handle a broader range 
of missingness assumptions

Depends on the 
type of analysis (see 
documentation)

Chapter 11

metandi Meta- analysis of diagnostic 
accuracy

Numbers of true 
positives, false 
positives, false 
negatives, and true 
negatives for each 
study

Chapter 16

mvmeta Multivariate random- effects 
meta- analysis and meta- 
regression

Takes vectors and 
matrices as input

Chapters 
9,10

network Suiteofmorethan10
commands for network meta- 
analysis

Depends on the 
command used within 
this suite

Chapter 13

Graphics commands (note that some of the above commands may also produce 
graphics)

forestplot Produces generalized forest 
plots directly from source data, 
without analysis. Used by 
metan to produce its plots, but 
can also be used by itself

Effect estimates and 
confidence limits

Chapter 9

confunnel Contour- enhanced funnel plots 
for meta- analysis

Effect estimates and 
standard errors

Chapter 5

metafunnel Older command for producing 
funnel plots, with option to 
add fitted line from Egger’s 
regression- based test

Effect estimates and 
standard errors or 
confidence limits

Chapter 5

All commands in this list are user written and maintained. For the built- in suite of meta- analysis com-
mands introduced in Stata 16, see the official documentation.

TABLE 25.1  (Continued)
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25.2  COMMANDS TO PERFORM A STANDARD META- ANALYSIS

25.2.1 Example1 –IntravenousStreptokinasein Myocardial
Infarction

Table 25.2 gives data from 22 randomized controlled trials of streptokinase in the pre-
vention of death following myocardial infarction [3–5].

TABLE 25.2  Data from 22 randomized controlled trials of streptokinase in the 
prevention of death following myocardial infarction.

Trial name Publication 
year

Intervention group Control group

Deaths Total Deaths Total

Fletcher 1959 1 12 4 11

Dewar 1963 4 21 7 21

1stEuropean 1969 20 83 15 84

Heikinheimo 1971 22 219 17 207

Italian 1971 19 164 18 157

2nd European 1971 69 373 94 357

2nd Frankfurt 1973 13 102 29 104

1stAustralian 1973 26 264 32 253

NHLBISMIT 1974 7 53 3 54

Valere 1975 11 49 9 42

Frank 1975 6 55 6 53

UK Collaborative 1976 48 302 52 293

Klein 1976 4 14 1 9

Austrian 1977 37 352 65 376

Lasierra 1977 1 13 3 11

N German 1977 63 249 51 234

Witchitz 1977 5 32 5 26

2nd Australian 1977 25 112 31 118

3rdEuropean 1977 25 156 50 159

ISAM 1986 54 859 63 882

GISSI-1 1986 628 5860 758 5852

ISIS-2 1988 791 8592 1029 8595

Source: Adapted from Yusuf S et al. 1985 [2], GISSI 1986 [3] and ISIS-2 1988 [4].
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We saved these data in the Stata dataset strepto.dta. We can list the vari-
ables contained in the dataset, with their descriptions (variable labels), by using the 
describe command:

describe
 
Contains data from strepto.dta
  obs:            22                          Streptokinase and mortality
 vars:             7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
   1. trial     byte   %8.0g                  Trial number
   2. trialnam  str14  %14s                   Trial name
   3. year      int    %8.0g                  Year of publication
   4. pop1      int    %12.0g                 Treated population
   5. deaths1   int    %12.0g                 Treated deaths
   6. pop0      int    %12.0g                 Control population
   7. deaths0   int    %12.0g                 Control deaths
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Sorted by:  trial

25.2.2 TheMetan Command

The metan command [6] (but more recently updated via the SSC archive) provides a 
variety of methods for combining results, all of which assume independence of the 
observations, as would be the case when each observation represents a different study. 
Results may be available in the form of an effect estimate together with its standard error 
or 95% confidence interval. Alternatively, where two groups have been compared in a 
randomized trial, more detailed information may be available such as means, standard 
deviations, and sample sizes for continuous outcomes; or the number of individuals in 
each group who did, and did not, experience a binary outcome. Single- group proportion 
data may also be analyzed. In all cases, either fixed- effect (sometimes called “common- 
effect”) or random- effects models can be fitted.

In our streptokinase example, we have data from randomized trials with two 
groups with a binary outcome. The data in Table 25.2 comprise the number of indi-
viduals who experienced the event (death) and the totals, by group. To use metan, we 
need to create variables containing the number of individuals who did not experience 
the event, as follows:

generate alive1 = pop1 -  deaths1
generate alive0 = pop0 -  deaths0

With binary outcome data, the effect measure can be the difference between pro-
portions (sometimes called the risk difference), the ratio of two proportions (risk ratio 
or relative risk), or the odds ratio. Here, we will use the metan command to perform 
a meta- analysis of risk ratios, derive a summary estimate using Mantel–Haenszel 
methods, and produce a forest plot. The options (following the comma) that we use are:
rr  Perform calculations using risk ratios (for which Mantel–

Haenszel methods are the default)
label(namevar = trialnam)  Label the output and vertical axis of the graph with the trial name. 

The trial year may also be added by specifying yearvar = year
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forestplot(xlabel(.1 1 10))  Label the x- axis in the forest plot (note that all options relating 
to the plot should be placed inside the forestplot() option)

The command and output of this analysis are as follows:

metan deaths1 alive1 deaths0 alive0, rr label(namevar=trialnam)  
forestplot (xlabel(.1 1 10))
 
Studies included: 22
Participants included: 35834
 
Meta- analysis pooling of Risk Ratios
using the Mantel- Haenszel method
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
                     |    Risk
Trial name           |   Ratio     [95% Conf. Interval]   % Weight
- - - - - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Fletcher             |     0.229      0.030     1.750       0.18
Dewar                |     0.571      0.196     1.665       0.30
1st European         |     1.349      0.743     2.451       0.64
Heikinheimo          |     1.223      0.669     2.237       0.75
Italian              |     1.011      0.551     1.853       0.78
2nd European         |     0.703      0.534     0.925       4.10
2nd Frankfurt        |     0.457      0.252     0.828       1.22
1st Australian       |     0.779      0.478     1.268       1.39
NHLBI SMIT           |     2.377      0.649     8.709       0.13
Valere               |     1.048      0.481     2.282       0.41
Frank                |     0.964      0.332     2.801       0.26
UK Collab            |     0.896      0.626     1.281       2.25
Klein                |     2.571      0.339    19.481       0.05
Austrian             |     0.608      0.417     0.886       2.68
Lasierra             |     0.282      0.034     2.340       0.14
N German             |     1.161      0.840     1.604       2.24
Witchitz             |     0.812      0.263     2.506       0.24
2nd Australian       |     0.850      0.537     1.345       1.29
3rd European         |     0.510      0.333     0.780       2.11
ISAM                 |     0.880      0.619     1.250       2.65
GISSI- 1              |     0.827      0.749     0.914      32.34
ISIS- 2               |     0.769      0.704     0.839      43.86
- - - - - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Overall, MH          |     0.799      0.755     0.845     100.00
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Test of overall effect = 1:  z =  - 7.747  p = 0.000
 
Heterogeneity measures, calculated from the data
with Conf. Intervals based on non- central chi2 (common- effect) distribution 
for Q
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 Measure              |     Value      df     p- value
- - - - - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Mantel- Haenszel Q    |     30.41       21     0.084
                     |            - [95% Conf. Interval]- 
H                    |     1.203     1.000     1.545
I2 (%)                 |     30.9%      0.0%     58.1%
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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H = relative excess in Mantel- Haenszel Q over its degrees- of- freedom
I2 = between- study variance (tau2) as a percentage of total variance (based on Q)

The output shows, for each study, the effect estimate (here the risk ratio) together 
with the corresponding 95% confidence interval (CI) and the percentage weight con-
tributed to the overall meta- analysis. Underneath is the summary (pooled) treatment 
effect and 95% confidence interval, below which is a test for statistical significance 
of the summary effect, with a P value. The heterogeneity test and I2 statistic (see 
Chapter 9) are also shown, along with related heterogeneity statistics. By default, Stata 
adds new variables to the dataset containing the effect estimate, its standard error, the 
95% CI, study weights, and sample sizes.

The metan command also automatically produces a forest plot (see Chapter 9), 
shown in Figure 25.1. In a forest plot, the contribution of each study to the meta- 
analysis (its weight) is proportional to the area of a box whose center represents the 
effect estimate from that study (point estimate). The confidence interval for the effect 
estimate from each study is also shown, as a horizontal line. The summary effect 
estimate is shown by the middle of a diamond whose left and right extremities repre-
sent the corresponding confidence interval.

Overall, MH (I2  = 30.9%, P = 0.084)
ISIS-2
GISSI-1
ISAM
3rd European
2nd Australian
Witchitz
N German
Lasierra
Austrian
Klein
UK Collab
Frank
Valere
NHLBI SMIT
1st Australian
2nd Frankfurt
2nd European
Italian
Heikinheimo
1st European
Dewar
Fletcher

Trial name

0.80 (0.75, 0.85)
0.77 (0.70, 0.84)
0.83 (0.75, 0.91)
0.88 (0.62, 1.25)
0.51 (0.33, 0.78)
0.85 (0.54, 1.34)
0.81 (0.26, 2.51)
1.16 (0.84, 1.60)
0.28 (0.03, 2.34)
0.61 (0.42, 0.89)
2.57 (0.34, 19.48)
0.90 (0.63, 1.28)
0.96 (0.33, 2.80)
1.05 (0.48, 2.28)
2.38 (0.65, 8.71)
0.78 (0.48, 1.27)
0.46 (0.25, 0.83)
0.70 (0.53, 0.92)
1.01 (0.55, 1.85)
1.22 (0.67, 2.24)
1.35 (0.74, 2.45)
0.57 (0.20, 1.66)
0.23 (0.03, 1.75)

(95% CI)
Risk Ratio

100.00
43.86
32.34
2.65
2.11
1.29
0.24
2.24
0.14
2.68
0.05
2.25
0.26
0.41
0.13
1.39
1.22
4.10
0.78
0.75
0.64
0.30
0.18

Weight
%

.1 1 10

NOTE: Weights are from Mantel-Haenszel model

FIGURE 25.1  Forest plot of the data in Table 25.2 using metan with Mantel–Haenszel meta  -
analysis of risk ratios.



490 Systematic Reviews in Health Research 

The following additional options are also likely to be useful:

eform (Exponential form) display the output on the ratio scale
effect(Relative risk)  Label the effect size column differently
or Perform calculations using odds ratios
rd Perform calculations using risk differences
counts  Add columns of numbers of events and participants, by group
lcols(trialnam year)  Add columns containing a trial identifier and year; alternative 

to label()
second(random) Add a second (random- effects) meta- analysis
rfdist Add prediction interval for random- effects model

For a complete list of options, the help file can be consulted at any time within 
Stata by typing help metan.

Both the output text and the graph show that streptokinase protects against death 
following myocardial infarction. The meta- analysis is dominated by the large GISSI- 1 
and ISIS- 2 trials, which contribute 76.2% of the weight in this analysis. We may choose 
to omit the weights or treatment effects from the graph, using the options nowt and 
nostats, respectively. The metan command will perform all the widely used fixed  -
effect and random- effects analyses (see Chapter 7).

As mentioned earlier, the metan command leaves behind new variables contain-
ing the calculated effect estimates and their standard errors. We can demonstrate how 
this works by calculating the summary log risk ratio and standard error for each study 
ourselves from our available data, using standard formulae. The log risk ratio is cal-
culated as:

generate logrr = log((deaths1/pop1)/(deaths0/pop0))

and its standard error is approximately:

generate selogrr = sqrt((1/deaths1)- (1/pop1)+(1/deaths0)- (1/pop0))

It can easily be seen (for example using list or browse) that these variables con-
tain the same values as the variables _ES and _seES left behind by metan.

25.2.3 Example2 –IntravenousMagnesiumin AcuteMyocardial
Infarction

Table 25.3 gives data from 16 randomized controlled trials of intravenous magnesium 
in the prevention of death following myocardial infarction. These trials are a well- 
known example where the results of a meta- analysis [7] were contradicted by a single 
large trial (ISIS- 4) [8–10].
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These data were saved in Stata dataset magnes.dta.

describe

Contains data from magnes.dta
  obs:            16                          Magnesium and CHD
 vars:             7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
storage   display    value
variable name   type    format     label      variable label
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
trial           byte    %8.0g                 Trial number
trialnam        str12   %12s                  Trial name
year            int     %8.0g                 Year of publication
pop1            int     %12.0g                Treated population
deaths1         double  %12.0g                Treated deaths
pop0            int     %12.0g                Control population
deaths0         double  %12.0g                Control deaths
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Sorted by: trial

TABLE 25.3  Data from 16 randomized controlled trials of intravenous magnesium 
in the prevention of death following myocardial infarction.

Trial name Publication 
year

Intervention group Control group

Deaths Total Deaths Total

Morton 1984 1 40 2 36

Rasmussen 1986 9 135 23 135

Smith 1986 2 200 7 200

Abraham 1987 1 48 1 46

Feldstedt 1988 10 150 8 148

Schechter 1989 1 59 9 56

Ceremuzynski 1989 1 25 3 23

Bertschat 1989 0 22 1 21

Singh 1990 6 76 11 75

Pereira 1990 1 27 7 27

Schechter1 1991 2 89 12 80

Golf 1991 5 23 13 33

Thogersen 1991 4 130 8 122

LIMIT-2 1992 90 1159 118 1157

Schechter2 1995 4 107 17 108

ISIS-4 1995 2216 29 011 2103 29 039
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Let us run a meta- analysis of the 2 × 2 count data in Table  25.3. This time we 
request odds ratios as the effect measure, but otherwise the commands are very sim-
ilar to those in our previous example. The forest plot appears in Figure 25.2.

generate alive1 = pop1- deaths1
generate alive0 = pop0- deaths0
metan deaths1 alive1 deaths0 alive0, or lcols(trialnam) nohet forestplot(xlabel(.1 1 10))

Studies included: 16
Participants included: 62607

Meta- analysis pooling of Odds Ratios
using the Mantel- Haenszel method

Continuity correction of 0.50 applied to studies with zero cells
for inclusion in summary table and forest plot (marked with *)
Mantel- Haenszel pooled effect is estimated from uncorrected counts

Overall, MH

ISIS-4

Schechter 2

LIMIT-2

Thogersen

Golf

Schechter 1

Pereira

Singh

Bertschat

Ceremuzynski

Schechter

Feldstedt

Abraham

Smith

Rasmussen

Morton

Trial name

1.01 (0.95, 1.07)

1.06 (1.00, 1.13)

0.21 (0.07, 0.64)

0.74 (0.56, 0.99)

0.45 (0.13, 1.54)

0.43 (0.13, 1.44)

0.13 (0.03, 0.60)

0.11 (0.01, 0.97)

0.50 (0.17, 1.43)

0.30 (0.01, 7.88)

0.28 (0.03, 2.88)

0.09 (0.01, 0.74)

1.25 (0.48, 3.26)

0.96 (0.06, 15.77)

0.28 (0.06, 1.36)

0.35 (0.15, 0.78)

0.44 (0.04, 5.02)

(95% CI)

Odds Ratio

100.00

89.70

0.75

5.03

0.37

0.39

0.57

0.31

0.47

0.05

0.14

0.42

0.35

0.05

0.32

0.99

0.09

Weight

%

.1 1 10

NOTE: Weights are from Mantel-Haenszel model

FIGURE 25.2  Forest plot of the data in Table 25.3 using metan with Mantel–Haenszel meta  -
analysis of odds ratios.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
                     |    Odds
Trial name           |   Ratio     [95% Conf. Interval]   % Weight
- - - - - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Morton               |     0.436      0.038     5.022       0.09
Rasmussen            |     0.348      0.154     0.783       0.99
Smith                |     0.278      0.057     1.357       0.32
Abraham              |     0.957      0.058    15.773       0.05
Feldstedt            |     1.250      0.479     3.261       0.35
Schechter            |     0.090      0.011     0.736       0.42
Ceremuzynski         |     0.278      0.027     2.883       0.14
Bertschat *          |     0.304      0.012     7.880       0.05
Singh                |     0.499      0.174     1.426       0.47
Pereira              |     0.110      0.012     0.967       0.31
Schechter 1          |     0.130      0.028     0.602       0.57
Golf                 |     0.427      0.127     1.436       0.39
Thogersen            |     0.452      0.133     1.543       0.37
LIMIT- 2              |     0.741      0.556     0.988       5.03
Schechter 2          |     0.208      0.067     0.640       0.75
ISIS- 4               |     1.059      0.996     1.127      89.70
- - - - - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Overall, MH          |     1.006      0.948     1.068     100.00
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Test of overall effect = 1:  z =   0.200  p = 0.841

The discrepancy between the results of the ISIS- 4 trial and the earlier trials can 
be seen clearly in the forest plot. Note that because the ISIS- 4 trial provides 89.7% 
of the total weight in the meta- analysis, the overall (summary) estimate of the odds 
ratio using the Mantel–Haenszel method is very similar to the estimate from the 
ISIS- 4 trial alone. We will return to this point later, when we discuss influence analysis 
(Section 25.3.2).

25.2.4 Dealingwith ZeroCells

If we look again at the output above, we see the message “Continuity correction of 0.50 
applied to studies with zero cells (marked with *)” and that an asterisk was placed next 
to the Bertschat trial. For this trial, there were no deaths in the intervention group, so 
that if calculated using standard formulae the odds ratio would be zero and the stan-
dard error would be undefined.

When one arm of a study contains no events (or, alternatively, all events; that is, no 
nonevents), we have what is termed a “zero cell” in the 2 × 2 table. Zero cells can create 
problems in the computation of odds ratios or risk ratios, and of the standard error of 
any effect measure.

For an individual study, a common way to deal with this problem is to add what 
is termed a “continuity correction” of 0.5 to each cell of the 2 × 2 table for studies with 
zero cells, and then proceed with calculations in the usual way. We could then go on 
to perform an inverse- variance meta- analysis. However, there are alternative methods 
available such as Mantel–Haenszel (for odds ratios, risk ratios, or risk differences) or 
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Peto’s method (for odds ratios only) for computing summary estimates and standard 
errors, even in the presence of zero cells, because they use the 2 × 2 cell counts in ways 
that avoid division by zero. With these methods, “continuity correction” is unneces-
sary and may even introduce bias [11]. (Note that if there are no events in either the 
intervention or control arms of the study – sometimes termed “double- zero” studies – 
then any measure of effect summarized as a ratio is undefined, and such studies would 
typically be discarded from the meta- analysis.)

The metan command deals with these issues automatically, by detecting studies 
with zero cells and, for inverse- variance meta- analysis, adding 0.5  where necessary 
before combining the results. For Mantel–Haenszel analysis, metan still adds 0.5 to 
“zero- cell” studies for the purpose of presentation (since otherwise those studies could 
not be listed in the table), but the summary estimate and standard error are computed 
from the original, uncorrected data, as the on- screen output makes clear. In either 
case, an asterisk is shown next to the name of studies with zero cells, such as the Berts-
chat trial in our magnesium example.

For commands that require summary statistics to be calculated (e.g. metabias 
and metareg), it may be necessary to correct manually for zero cells before calculating 
effect estimates and standard errors. Alternatively, as described in Section 25.2.2, sum-
mary statistics accounting for zero cells may be taken from the variables _ES and 
_seES left behind by metan, which will already have been corrected for zero cells.

25.2.5 HeterogeneityVarianceand RandomEffects

In this section, we will analyze the magnesium data from a different perspective. We 
will use summary statistics (logor selogor, accounting for zero cells as described in 
the previous section) instead of 2 × 2 counts (deaths1 alive1 deaths0 alive0). 
Furthermore, in this example we will compare results from two inverse- variance 
analyses: a fixed- effect and a random- effects analysis (see also Figure 25.3).

The next code follows on from the previous call to metan, first storing the meta- 
analytic log odds ratio and its standard error as variables logor and selogor, 
respectively.

rename _ES logor
rename _seES selogor
metan logor selogor, or random second(fixed) lcols(trialnam) nowt notable  
 forestplot(xlabel(.1 1 10))

Studies included: 16
Participants included: Unknown

Meta- analysis pooling of Odds Ratios
using multiple analysis methods

Tests of overall effect = 1:
  DL               z =  - 3.706  p = 0.000
  IV               z =   0.484  p = 0.629

Heterogeneity measures, calculated from the data
with Conf. Intervals based on Gamma (random- effects) distribution for Q
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Measure              |     Value       df        p- value
- - - - - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Cochran's Q          |      47.06       15         0.000
                     |            - [95% Conf.  Interval]- 
H                    |       1.771     1.000       3.026
I2 (%)                 |    68.1%      0.0%       89.1%
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
H = relative excess in total variance over "typical" within- study variance
I2 = between- study variance (tau2) as a percentage of total v ariance

Heterogeneity variance estimates
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Method               |     tau2

- - - - - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - 
DL                   |    0.2239
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Overall, IV

Overall, DL (I2  = 68.1%, P = 0.000)

ISIS-4

Schechter 2

LIMIT-2

Thogersen

Golf

Schechter 1

Pereira

Singh

Bertschat

Ceremuzynski

Schechter

Feldstedt

Abraham

Smith

Rasmussen

Morton

Trial name

1.01 (0.96, 1.08)

0.48 (0.33, 0.71)

1.06 (1.00, 1.13)

0.21 (0.07, 0.64)

0.74 (0.56, 0.99)

0.45 (0.13, 1.54)

0.43 (0.13, 1.44)

0.13 (0.03, 0.60)

0.11 (0.01, 0.97)

0.50 (0.17, 1.43)

0.30 (0.01, 7.88)

0.28 (0.03, 2.88)

0.09 (0.01, 0.74)

1.25 (0.48, 3.26)

0.96 (0.06, 15.77)

0.28 (0.06, 1.36)

0.35 (0.15, 0.78)

0.44 (0.04, 5.02)

Odds Ratio
(95% CI)

.1 1 10

FIGURE 25.3  Forest plot of the data in Table 25.3 using metan with inverse- variance fixed- effect 
meta- analysis and DerSimonian–Laird random- effects meta- analysis of odds ratios.
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Note the dramatic difference between the fixed- effect and random- effects s ummary 
estimates, and the highly statistically significant test of heterogeneity using Cochran’s 
Q statistic. Under a random- effects model, true effects across studies are assumed to 
follow a normal distribution, and the estimated mean of this distribution is taken as the 
summary estimate. The variance of the distribution – commonly referred to as “τ2” – 
measures the spread of the study effects around this mean. The most popular random- 
effects estimation method, which metan will fit by default if a “random-   effects model” 
is requested, is that of DerSimonian and Laird  [12]. In our current example, using 
this method gives a value for τ2 of 0.2239. One consequence of using a random- effects 
model is that study estimates are weighted much more equally: compare the weights in 
Figure 25.3 with the Mantel–Haenszel fixed- effect weights in Figure 25.2. Smaller studies 
are given more influence, and larger studies (such as ISIS- 4) less, which largely explains 
the dramatic difference in summary effect size and statistical significance. Note that if 
τ2 were to be estimated as zero, then the summary effect estimate would be the same as 
from the (inverse- variance) fixed- effect model. The metan command can fit a variety of 
other estimation methods suggested in the literature, some of which were developed for 
particular scenarios or rely upon particular assumptions. For example, and unlike at the 
time of its publication, the vast majority of methods included in a recent comprehensive 
review of meta-   analysis models [13] are now able to be fitted by metan.

As discussed, τ2 is an important component of the random- effects model, and may 
be used to compare meta- analysis results derived from similar types of data. How-
ever, as it is measured on the same scale as the effect estimates, it is unsuitable as a 
“universal” heterogeneity statistic (the value of τ2 for meta- analysis based on mean 
differences cannot be compared to a value based on a meta- analysis of [log] odds ra-
tios). In an attempt to resolve this issue, Higgins and Thompson suggested various 
other heterogeneity statistics, of which the most well- known is I2, which expresses 
τ2 as a percentage of total variance [2]. By default, the metan command reports these 
statistics, together with confidence intervals. In our current example, I2 is estimated 
to be 68%, with 95% confidence limits of 0% to 89%, suggesting a moderate to large 
degree of heterogeneity (but note the wide confidence limits, reflecting the difficulties 
in accurately measuring such quantities).

25.2.6 ThemetaCommandSuiteinStata16

We will now briefly explain how to re- create the analyses we have so far performed 
using the built- in meta command suite available in Stata 16. The term “command 
suite” signifies that rather than carry out a full analysis with a single command (as 
with e.g. metan), we use several subcommands in a step- by- step fashion to set up, ana-
lyze, and plot our meta- analysis data.Recall that with metan we may analyze either 
counts from a 2 × 2 table, or generic effect estimates and standard errors (or, alterna-
tively, the mean and standard deviation of a continuous outcome for each treatment 
group). With meta, we must specify the data structure prior to analysis, using either 
meta esize (for 2 × 2 counts or group means) or meta set (for generic effect esti-
mates). At this time we also specify the outcome measure (e.g. odds ratio or risk ratio) 
and study name labels, and any other specifications such as adjustment for zero cells 
(see previous section). Then, having set up our data, we may use meta summarize to 
produce a summary analysis, and meta forestplot to produce a forest plot. Return-
ing to our first example (streptokinase):
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use "strepto.dta", clear
generate alive1 = pop1 -  deaths1
generate alive0 = pop0 -  deaths0
meta esize deaths1 alive1 deaths0 alive0, esize(lnrr) studylab(trialnam)  
 common(mh)

Meta- analysis setting information

 Study information
    No. of studies:  22
       Study label:  trialnam
        Study size:  _meta_studysize
      Summary data:  deaths1 alive1 deaths0 alive0

       Effect size
              Type:  lnrratio
             Label:  Log Risk- Ratio
          Variable:  _meta_es
   Zero- cells adj.:  None; no zero cells

         Precision
         Std. Err.:  _meta_se
                CI:  [_meta_cil, _meta_ciu]
          CI level:  95%

  Model and method
             Model:  Common- effect
            Method:  Mantel- Haenszel
 
 . meta summarize, eform

  Effect- size label:  Log Risk- Ratio
        Effect size:  _meta_es
          Std. Err.:  _meta_se
        Study label:  trialnam

Meta- analysis summary                     Number of studies =     22
Common- effect model
Method: Mantel- Haenszel

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
            Study |     Risk Ratio    [95% Conf. Interval]  % Weight
- - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
         Fletcher |          0.229       0.030       1.750      0.18
            Dewar |          0.571       0.196       1.665      0.30
     1st European |          1.349       0.743       2.451      0.64
      Heikinheimo |          1.223       0.669       2.237      0.75
          Italian |          1.011       0.551       1.853      0.78
     2nd European |          0.703       0.534       0.925      4.10
    2nd Frankfurt |          0.457       0.252       0.828      1.22
   1st Australian |          0.779       0.478       1.268      1.39
       NHLBI SMIT |          2.377       0.649       8.709      0.13
           Valere |          1.048       0.481       2.282      0.41
            Frank |          0.964       0.332       2.801      0.26
        UK Collab |          0.896       0.626       1.281      2.25
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FIGURE 25.4  Forest plot of the data in Table 25.2 using meta with Mantel–Haenszel 
meta-analysis of risk ratios.

            Klein |          2.571       0.339      19.481      0.05
         Austrian |          0.608       0.417       0.886      2.68
         Lasierra |          0.282       0.034       2.340      0.14
         N German |          1.161       0.840       1.604      2.24
         Witchitz |          0.813       0.263       2.506      0.24
   2nd Australian |          0.850       0.537       1.345      1.29
     3rd European |          0.510       0.333       0.780      2.11
             ISAM |          0.880       0.619       1.250      2.65
          GISSI- 1 |          0.827       0.749       0.914     32.34
           ISIS- 2 |          0.769       0.704       0.839     43.86
- - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
       exp(theta) |          0.799       0.755       0.845
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Test of theta = 0: z = - 7.75                     Prob > |z| = 0.0000

meta forestplot, eform nullrefline

(See Figure 25.4 for the forest plot.)
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Note that the two commands meta and metan have different default settings, 
and therefore different options need to be specified to achieve the same result. For 
example, the forest plot in Figure 25.4 includes columns of numbers of events and 
patients by treatment group by default, but requires the null- effect line to be requested 
explicitly, whereas metan is the opposite way around. More information is available in 
the help files.

25.3  CUMULATIVE AND INFLUENCE META- ANALYSIS

25.3.1 CumulativeMeta-Analysis

The metan command can also perform and illustrate meta- analyses in non- standard 
ways in order to draw out particular features of the data. One approach is cumulative 
meta- analysis [14, 15], where the summary effect is recalculated and displayed as each 
study in turn is added to the data set. The syntax is almost exactly the same as before: 
we just need to add the cumulative option, and to specify the order in which the 
studies should be accumulated using sortby().We now return to the streptokinase 
trials (strepto.dta) and conduct a cumulative meta- analysis by year of publica-
tion (see also Figure 25.5). Note that test statistics and heterogeneity information are 
given for the final combined analysis using all the studies, which appears alongside 
the final study name, in this case ISIS- 2 (compare with, for example, the output in 
Section 25.2.6).

generate alive1 = pop1 -  deaths1
generate alive0 = pop0 -  deaths0
metan deaths1 alive1 deaths0 alive0, or cumulative lcols(trialnam year)  
 sortby(year) forestplot(xlabel(.1 1 10))

Studies included: 22
Participants included: 35834

Cumulative meta- analysis of Odds Ratios
using the Mantel- Haenszel method

Studies added cumulatively in order of year

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
                     |    Odds
Trial name           |    Ratio    [95% Conf. Interval]   % Weight
- - - - - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Fletcher             |     0.159      0.015     1.732       0.18
Dewar                |     0.345      0.104     1.141       0.46
1st European         |     0.952      0.514     1.760       1.00
Heikinheimo          |     1.079      0.688     1.693       1.75
Italian              |     1.058      0.727     1.542       2.53
2nd European         |     0.806      0.624     1.040       6.29
2nd Frankfurt        |     0.737      0.580     0.936       7.49
1st Australian       |     0.740      0.594     0.921       8.91
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NHLBI SMIT           |     0.765      0.616     0.950       9.03
Valere               |     0.776      0.629     0.959       9.39
Frank                |     0.781      0.635     0.962       9.65
UK Collab            |     0.798      0.662     0.963      11.78
Klein                |     0.807      0.670     0.972      11.82
Austrian             |     0.761      0.642     0.903      14.52
Lasierra             |     0.756      0.638     0.896      14.67
N German             |     0.808      0.691     0.946      16.55
Witchitz             |     0.808      0.691     0.945      16.77
2nd Australian       |     0.808      0.694     0.940      17.90
3rd European         |     0.769      0.664     0.889      19.89
ISAM                 |     0.781      0.682     0.895      22.69
GISSI- 1              |     0.796      0.730     0.868      55.18
ISIS- 2               |     0.774      0.725     0.825     100.00
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Test of overall cumulative effect = 1:  z =  - 7.757  p = 0.000

Heterogeneity measures, calculated from the data
with Conf. Intervals based on non- central chi2 (common- effect) distribution 
for Q
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Measure              |     Value      df     p- value
- - - - - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Mantel- Haenszel Q    |     31.50       21     0.066
                     |            - [95% Conf. Interval]- 
H                    |     1.225     1.000     1.569
I2 (%)                 |     33.3%      0.0%     59.4%
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
H = relative excess in Mantel- Haenszel Q over its degrees- of- freedom
I2 = between- study variance (tau2) as a percentage of total variance (based 
on Mantel- Haenszel Q)

By the late 1970s, there was clear evidence that streptokinase prevented death following 
myocardial infarction. However, it was not used routinely until the late 1980s, when the 
results of the large GISSI- 1 and ISIS- 2 trials became known (see Chapter 1). The cumulative 
meta- analysis plot makes it clear that although these trials reduced the confidence interval 
width for the summary estimate, they did not change the estimated effect.

25.3.2 Examiningthe Influenceof IndividualStudies

The influence of individual studies on the summary effect estimate may also be exam-
ined using the metan command. With the influence option, metan will omit one 
study at a time from the sample and re- compute the meta- analysis estimates. The 
syntax is otherwise the same as in previous sections. We return to the magnesium data 
for this analysis.
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metan deaths1 alive1 deaths0 alive0, or influence lcols(trialnam year)
 nohet nograph

Studies included: 16
Participants included: 62607

Influence meta- analysis of Odds Ratios
using the Mantel- Haenszel method

Continuity correction of 0.50 applied to studies with zero cells
 for inclusion in summary table (marked with *)

ISIS-2

GISSI-1

ISAM

3rd European

2nd Australian

Witchitz

N German

Lasierra

Austrian

Klein

UK Collab

Frank

Valere

NHLBI SMIT

1st Australian

2nd Frankfurt

2nd European

Italian

Heikinheimo

1st European

Dewar

Fletcher

Trial name

1988

1986

1986

1977

1977

1977

1977

1977

1977

1976

1976

1975

1975

1974

1973

1973

1971

1971

1971

1969

1963

1959

published

year

0.77 (0.72, 0.83)

0.80 (0.73, 0.87)

0.78 (0.68, 0.89)

0.77 (0.66, 0.89)

0.81 (0.69, 0.94)

0.81 (0.69, 0.94)

0.81 (0.69, 0.95)

0.76 (0.64, 0.90)

0.76 (0.64, 0.90)

0.81 (0.67, 0.97)

0.80 (0.66, 0.96)

0.78 (0.63, 0.96)

0.78 (0.63, 0.96)

0.77 (0.62, 0.95)

0.74 (0.59, 0.92)

0.74 (0.58, 0.94)

0.81 (0.62, 1.04)

1.06 (0.73, 1.54)

1.08 (0.69, 1.69)

0.95 (0.51, 1.76)

0.35 (0.10, 1.14)

0.16 (0.01, 1.73)

(95% CI)

Odds Ratio

100.00

55.18

22.69

19.89

17.90

16.77

16.55

14.67

14.52

11.82

11.78

9.65

9.39

9.03

8.91

7.49

6.29

2.53

1.75

1.00

0.46

0.18

Weight

%

.1 1 10
NOTE: Weights are from Mantel-Haenszel model

FIGURE 25.5  Forest plot of the data in Table 25.3 using metan with cumulative Mantel–
Haenszel meta- analysis of odds ratios.
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Mantel- Haenszel pooled effect is estimated from uncorrected counts

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
                     |    Odds
Trial name omitted   |   Ratio     [95% Conf. Interval]   % Weight
- - - - - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Morton               |     1.007      0.948     1.068      99.91
Rasmussen            |     1.013      0.954     1.075      99.01
Smith                |     1.008      0.950     1.070      99.68
Abraham              |     1.006      0.948     1.068      99.95
Feldstedt            |     1.005      0.947     1.067      99.65
Schechter            |     1.010      0.952     1.072      99.58
Ceremuzynski         |     1.007      0.949     1.069      99.86
Bertschat *          |     1.007      0.948     1.068      99.95
Singh                |     1.009      0.950     1.070      99.53
Pereira              |     1.009      0.951     1.071      99.69
Schechter 1          |     1.011      0.953     1.073      99.43
Golf                 |     1.008      0.950     1.070      99.61
Thogersen            |     1.008      0.950     1.070      99.63
LIMIT- 2              |     1.020      0.960     1.084      94.97
Schechter 2          |     1.012      0.954     1.074      99.25
ISIS- 4               |     0.543      0.436     0.676      10.30
- - - - - - - - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Overall, MH          |     1.006      0.948     1.068     100.00
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Test of overall effect = 1:  z =   0.200  p = 0.841

The meta- analysis is dominated by the ISIS- 4 study, so omission of other studies 
makes little or no difference. If ISIS- 4 is omitted, then there appears to be a clear effect 
of magnesium in preventing death after myocardial infarction.

25.4  FUNNEL PLOTS AND TESTS FOR FUNNEL PLOT ASYMMETRY

A funnel plot is a plot of the standardized effect against standard error. It is com-
monly used to assess evidence of potential publication bias or other small- study 
biases, which may manifest as asymmetry in a funnel plot (see Chapter 5). The 
older metafunnel and the more recent confunnel commands both produce 
funnel plots, with slightly different option sets. For the magnesium data there 
is clear evidence of funnel plot asymmetry if the ISIS- 4 trial is included. There-
fore, it may be of greater interest to assess whether there was evidence of funnel 
plot asymmetry before the results of the ISIS- 4 trial were known. Thus, in the 
following analysis we omit the ISIS- 4 trial. The resulting funnel plot is shown in 
Figure 25.6.

use "magnes.dta", clear
generate alive1 = pop1 -  deaths1
generate alive0 = pop0 -  deaths0
generate logor   = log((deaths1/alive1) / (deaths0/alive0))
generate selogor = sqrt((1/deaths1)+(1/alive1)+(1/deaths0)+(1/alive0))
confunnel logor selogor if trialnam!="ISIS- 4"
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The sloping lines indicate the expected 95% confidence intervals for a given standard 
error, assuming no heterogeneity between studies. Another command, metabias, pro-
vides a formal test for funnel plot asymmetry using one of several available methods, 
due to Begg et al. [16], Egger et al. [10], Harbord et al. [17], or Peters et al. [18]. For 
2 × 2 count data, the Harbord test is recommended, with the Peters test a reasonable 
alternative. For other outcome types, the Egger test may be used. The Begg test is 
an older test that is no longer recommended. If we apply the Harbord test, we find 
significant funnel plot asymmetry even when excluding ISIS- 4.

metabias deaths1 alive1 deaths0 alive0 if trialnam!="ISIS- 4", harbord

Note: data input format tcases tnoncases ccases cnoncases assumed
Note: Odds ratios assumed as effect estimate of interest

Harbord's modified test for small- study effects:
Regress Z/sqrt(V) on sqrt(V), where Z is the efficient score and V is the 
score variance

Number of studies =  15                                Root MSE      =   1.033
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  - - - - 
   Z/sqrt(V) |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
- - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  - - - 
      sqrt(V)|  - .1975284   .1837316    - 1.08   0.302    - .5944565    .1993997
            |
        bias |  - 1.207083   .4372929    - 2.76   0.016    - 2.151796   - .2623686
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  - - - - 

Test of H0: no small- study effects          P = 0.016
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FIGURE 25.6  Funnel plot of the data in Table 25.3 using risk ratios.
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In Stata 16 there are also the built- in commands meta funnelplot and meta 
bias (note the spacing between the words).

25.5 META- REGRESSION

If there is heterogeneity in the treatment effect estimates between studies, then meta- 
regression can be used to analyze associations between treatment effect and study 
characteristics (see also Chapter 10). Meta- regression can be done in Stata by using 
the metareg command [19].

25.5.1 Example3:Trialsof BCGVaccineAgainstTuberculosis

Table 25.4 provides data from a meta- analysis by Colditz et al. [20], which examined 
the efficacy of the BCG vaccine against tuberculosis.

TABLE 25.4  Data from 11 studies of BCG vaccine to prevent tuberculosis (TB).

Trial name Authors Start 
year

Latitudea Intervention 
group

Control group

TB 
cases

Total TB 
cases

Total

Canada Ferguson and 
Simes

1933 55 6 306 29 303

Northern 
USA

Aronson 1935 52 4 123 11 139

Chicago Rosenthal 
et al.

1937 42 17 1716 65 1665

Georgia 
(School)

Comstock and 
Webster

1947 33 5 2498 3 2341

Puerto Rico Comstocket al. 1949 18 186 50 634 141 27 338

UK Hart and 
Sutherland

1950 53 62 13 598 248 12 867

Madanapalle Frimont- Moller 
et al.

1950 13 33 5069 47 5808

Georgia 
(Community)

Comstocket al. 1950 33 27 16 913 29 17 854

Haiti Vandeviere 
et al.

1965 18 8 2545 10 629

SouthAfrica Coetzee and 
Berjak

1965 27 29 7499 45 7277

Madras TB Prevention 
Trial

1968 13 505 88 391 499 88 391

a = absolute value.
Source: Adapted from Colditz GA et al. 1994 [20].
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The data were saved in Stata dataset bcgtrial.dta:

describe

Contains data from bcgtrial.dta
  obs:            11                          BCG and tuberculosis
 vars:            10
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
              storage   display    value
variable name   type    format     label      variable label
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
trial           int     %8.0g                 Trial number
authors         str20   %20s                  Authors
startyr         int     %8.0g                 Year trial started
latitude        int     %8.0g                 Latitude
trialnam        str14   %14s                  Trial name
pop1            long    %12.0g                BCG vaccinated population
pop0            long    %12.0g                Unvaccinated population
cases1          int     %8.0g                 BCG vaccinated cases
cases0          int     %8.0g                 Unvaccinated cases
alloc           float   %33.0g     alloc      Allocation method
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Sorted by: trial

Scientists had been aware of discordance between the results of these trials since the 
1950s. The clear heterogeneity in the protective effect of BCG between trials can be 
seen in the forest plot in Figure 25.7 (we analyze this data set using risk ratios).

generate h1 = pop1 -  cases1
generate h0 = pop0 -  cases0

Overall, DL

Overall, MH (I2 = 92.1%, P = 0.000)

Canada

UK

Northern USA

Chicago

Georgia (Comm)

Georgia (Sch)

South Africa

Haiti

Puerto Rico

Madras

Madanapalle

Trial name

55

53

52

42

33

33

27

18

18

13

13

Latitude

0.51 (0.34, 0.77)

0.70 (0.64, 0.76)

0.20 (0.09, 0.49)

0.24 (0.18, 0.31)

0.41 (0.13, 1.26)

0.25 (0.15, 0.43)

0.98 (0.58, 1.66)

1.56 (0.37, 6.53)

0.63 (0.39, 1.00)

0.20 (0.08, 0.50)

0.71 (0.57, 0.89)

1.01 (0.89, 1.14)

0.80 (0.52, 1.25)

(95% CI)

Risk Ratio

100.00

2.47

21.61

0.88

5.60

2.39

0.26

3.87

1.36

15.53

42.31

3.71

MH

% Weight,

.1 1 10

FIGURE 25.7  Forest plot of the data in Table 25.4 using metan with Mantel–Haenszel 
meta-analysis and random- effects meta- analysis of risk ratios.
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metan cases1 h1 cases0 h0, rr label(namevar=trialnam) second(random)  

 forestplot(xlabel(.1 1 10)) sortby(latitude startyr)

To use the metareg command, we need to derive the treatment effect estimate (in this 
case log risk ratio) and its standard error, for each study. As described previously, we 
can either calculate these using standard formulae, or make use of the variables left 
behind by metan:

generate logrr = log((cases1/pop1)/(cases0/pop0))

generate selogrr = sqrt(1/cases1 -  1/pop1 + 1/cases0 -  1/pop0)

or, following the previous call to metan:

rename _ES logrr

rename _seES selogrr

In their meta- analysis, Colditz et al. noted the pronounced heterogeneity between 
studies, and concluded that a random- effects meta- analysis was appropriate [20]. The 
authors then examined possible explanations for the clear differences in the effect of 
BCG between studies. The earlier studies may have produced different results than 
later ones. The latitude at which the studies were conducted may also be associated 
with the effect of BCG. As discussed by Fine  [21], the possibility that BCG might 
provide greater protection at higher latitudes was first recognized by Palmer and 
Long [22], who suggested that this trend might result from exposure to certain envi-
ronmental mycobacteria, more common in warmer regions, which impart protection 
against tuberculosis. In Figure 25.7, we have pre- emptively sorted the trials by latitude 
so that this trend can be clearly seen.

To use metareg, we provide a list of variables, the first of which is the treatment 
effect (here, the log risk ratio) and the rest of which are (one or more) study char-
acteristics (additional variables in the dataset) hypothesized to be associated with 
the treatment effect. In addition, the standard error of the treatment effect must be 
provided, in the wsse() option. It is also possible to specify the method for estimating 
the between- study variance; here we use the default, which is using the restricted 
maximum likelihood (REML) method. To investigate the association with latitude we 
use the following code:

metareg logrr latitude, wsse(selogrr)

Meta- regression                                    Number of obs  =      11
REML estimate of between- study variance            tau2           =      .1
% residual variation due to heterogeneity            I- squared_res  =  61.80%
Proportion of between- study variance explained       Adj R- squared  =  72.99%
With Knapp- Hartung modification
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
       logrr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
- - - - - - - - - - - - - +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
    latitude |  - .0288849   .0095887    - 3.01   0.015    - .0505759   - .0071938
       _cons |   .2247162   .3215322     0.70   0.502    - .5026402    .9520726

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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The regression coefficients are the intercept and the estimated increase in the log 
risk ratio per unit increase in latitude. The log risk ratio is estimated to decrease by 
0.0289 per unit increase in the latitude at which the study was conducted, with a log 
risk ratio of 0.2247 at zero latitude. The estimated between- study variance has been 
reduced from 0.37 (obtained from the metareg command without latitude) to 0.10. 
Similarly, the remaining I2 is 61.8%, reduced from 92.0%. The estimated treatment 
effect given particular values of the covariates may be derived from the regression 
equation. For example, for a trial at latitude 50°, the estimated log risk ratio would be  
0.2247–0.0289 × 50 = −1.2203, which corresponds to a risk ratio of exp.(−1.2203) = 0.295.

We might then proceed to investigate whether the log risk ratio differs according to 
any other recorded variables in the dataset, such as the year the trial started (startyr) 
or the type of random allocation (alloc).

25.6  MULTIVARIATE AND NETWORK META- ANALYSIS

25.6.1 MultivariateMeta-Analysis

Standard meta- analysis combines effect estimates on the assumption that they are 
independent, which will be the case when there is exactly one effect estimate from 
each study. Multivariate meta- analysis is an extension that can combine estimates of 
several related parameters from each study. For example, we may have estimates of 
treatment effects on two different outcomes in a series of randomized trials, or we may 
have estimates of the difference in outcome between “high,” “medium,” and “low” 
doses of treatment within each study. In both of these examples, estimates from the 
same study will be correlated, and therefore an analysis that encompasses the complete 
set of outcomes and their correlations will allow improved inference.

The user- written mvmeta command fits multivariate meta- analysis models. Recall 
that one of the input types for the metan command is an effect estimate and its stan-
dard error for each study. For mvmeta, the input can be seen as a generalization of this. 
First, we must rename all our desired effect sizes into the form b1, b2, b3... Next, 
we convert the associated standard errors into variances, and name them V11, V22, 
V33, ... Finally, if covariances are known, they should be held in variables named 
V12, V13, V23, ... Then a basic analysis may be run as follows:

mvmeta b V

Further information is given in White [23] and White [24].

25.6.2 NetworkMeta-Analysis

Network meta- analysis, also called “multiple treatments meta- analysis” or “mixed- 
treatment comparisons,” is a method of combining evidence from studies that do not all 
compare the same two (treatment) groups (see Chapter 13). For example, some studies 
might compare treatment B with A, while others might compare C with A, or C with B. 
Any number of treatments may be included, as can studies comparing more than two 
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treatments (e.g. “multi- arm trials”). Most often, a network meta- analysis model makes 
an assumption of consistency; that is, that the summary effect of treatment C versus A 
is equal to the effect of C versus B plus that of B versus A. Such models may be fitted 
in Stata as extensions to multivariate meta- regression [25] (Section 25.6.1). However, 
getting the data into the correct format can be tricky. There are two user- written com-
mands, network setup and network import, for achieving this; following which 
a model may be fitted using the command network meta consistency. Further 
information is given in White [25].
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Meta- Analysis in R
Guido Schwarzer

This chapter describes how to use the general statistical package R to conduct basic 
meta- analysis tasks. We start with a short introduction to R and show how to install 
R packages. R functions for meta- analysis with binary outcomes are introduced and 
applied to two classic meta- analysis examples. We describe meta- regression with R using 
another classic meta- analysis example, and illustrate methods to evaluate small-   study 
effects. We conclude with an overview of R packages and functions for more advanced 
statistical methods like network meta- analysis. The interested reader can find a more 
comprehensive introduction in a Use- R! book on meta- analysis with R [1].

We use the following syntax conventions: R packages are printed in bold, R functions 
are printed in monospaced, R commands are printed in bold monospaced, and 
the output from R commands is also printed in monospaced.

26.1 GETTING STARTED

R [2] is a general- purpose statistical package that is based on the statistical program-
ming language S developed in the 1970s. R has been available since 1993, and is actively 
developed, maintained, and supported by the R Foundation for Statistical Computing 
(https://www.r-project.org). Distinguishing features of R compared with other gen-
eral statistical packages are (i) release under the GNU General Public License, (ii) free 
of charge, and (iii) more than 15 000 add- on packages provided and maintained by 
community members/scientists that are available on the Comprehensive R Archive 
Network (CRAN) (https://cloud.r- project.org/web/packages). Additional R packages 
are available on other repositories like Bioconductor (http://bioconductor.org), which 

https://cloud.r-project.org/web/packages


 Meta-Analysis in R 511

provides software for bioinformatics, and GitHub (https://github.com), a website 
offering access to the distributed revision control system git.

Further resources are The R Journal, an open access journal of the R project with 
peer review, and several mailing lists, including R- help for discussions about general 
problems and solutions, and R- package- devel to support the package development 
process. R is inherently command- line driven, which is an initial hurdle for many 
users. RStudio (www.rstudio.com) is an advanced integrated development environ-
ment (IDE) for R that is popular with beginners. RStudio provides menu- driven tools 
for plotting, a history of previously run R commands, data management, and the 
installation and update of R packages.

An overview of R packages for meta- analysis available on CRAN is provided by a 
Task View (https://cloud.r- project.org/web/views/MetaAnalysis.html). In this chapter 
we will focus on two general R packages for meta- analysis: meta [3] and metafor [4].

26.2 INSTALLING R PACKAGES FOR META- ANALYSIS

During initial setup of R only a limited set of R packages is installed. This is no draw-
back, as the installation of R packages available on CRAN is easily done by using 
the install.packages function. The following R command installs the meta and 
metafor packages that will be used in this chapter. In RStudio it is possible to use the 
following menu items for this task: Tools – Install Packages. . .

install.packages(c("meta", "metafor"),
                 repos = "https://cloud.r- project.org/")
 
Installing packages into '/Users/sc/R/library/R- 4.0.4'
(as 'lib' is unspecified)
trying URL 'https://cran.rstudio.com/bin/macosx/contrib/4.0/meta_4.18- 0.tgz'
Content type 'application/x- gzip' length 1570096 bytes (1.5 MB)
==================================================
downloaded 1.5 MB
 
trying URL 'https://cloud.r- project.org/bin/macosx/contrib/4.0/metafor_2.4- 0.tgz'
Content type 'application/x- gzip' length 2988307 bytes (2.8 MB)
==================================================
downloaded 2.8 MB
... (output truncated)

This first R command already describes several aspects of R. First, we have to use 
brackets “( )” in order to execute an R command. Without these brackets, the command 
install.packages would print the definition, i.e. the R code, of this R function. 
Second, commands can receive a list of options, known as “arguments”, which appear 
inside the brackets, separated by commas. Third, the first argument in the command is 
provided without specifying its name. Using R command args(install.packages) 
one can see that the first argument of this function is called pkgs, which refers to the 
names of R packages to install. In the line above we omit the name of this argument. 

https://cloud.r-project.org/
https://cloud.r-project.org/web/views/MetaAnalysis.html
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The other argument repos is given its name because this is not the second argument 
of R function install.packages. Fourth, when specifying the arguments we can use 
additional functions. In the above command we use R function c to combine values 
into a vector, i.e. we provide names of the two R packages meta and metafor in a 
single vector. Fifth, after command execution, the output is printed directly below the R 
command; note, we use “...” to truncate the printout of R commands in the following.

The above R command installs the R packages meta and metafor as well as addi-
tional R packages that are required for their use, i.e. that provide R functions that are 
essential for meta and metafor to work properly. In addition to mandatory R pack-
ages, an additional list of suggested R packages can be defined by the maintainer of an 
R package in order to extend the functionality. R package meta defines metafor as 
mandatory because R functions from metafor are used to calculate some estimators 
of between- study variance, as well as to conduct meta- regression and to fit generalized 
linear mixed models (GLMM). Accordingly, specifying “metafor” in the command 
install.packages is not strictly necessary.

26.3 LOADING META- ANALYSIS PACKAGES

In order to make installed R packages available in the R session, either R function 
library can be used directly or one has to click on Tab: Packages – Select Package 
in RStudio.

library(meta)
Loading 'meta' package (version 4.18- 0).
Type 'help(meta)' for a brief overview.
library(metafor)
Loading required package: Matrix
Loading 'metafor' package (version 2.4- 0). For an overview
and introduction to the package please type: help(metafor).

The version numbers of the installed packages are provided and informative mes-
sages to provide a brief overview of the R packages are given.

Most of the following R commands will only work if the respective R package 
is available. Thus, before conducting a meta- analysis with meta or metafor, the 
library command has to be executed once to make the package available for the 
current R session.

26.4 GETTING HELP

R has an extended help system. Manuals and FAQs can be found on the R website, 
https://www.r-project.org; for beginners, the manual An Introduction to R is a good 
starting point. Furthermore, each R package provides its own documentation with 
help pages for individual R functions and datasets as a minimum requirement; the 
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existence of these help pages is checked during submission of a package update to 
CRAN. In addition, more detailed information can be provided by the maintainer of 
an R package.

The command help.start() opens a local website in the standard web browser. 
This website contains HTML versions of R manuals and FAQs, as well as help pages 
for all installed R packages. RStudio users can access the same information by opening 
the help window (menu: Help – R Help).

The R command help(meta) prints summary information for R package meta. 
This help page can also be accessed by typing meta in the search of the RStudio help 
window. A screenshot of the first part of this help page as provided by RStudio is 
shown in Figure 26.1. A brief description is followed by details of the meta- analysis 
methods available in meta, including names of corresponding R functions. We see 
that several R functions are available to conduct a fixed- effect or random- effects 
meta-   analysis for specific outcomes. For example, a meta- analysis with binary out-
comes can be conducted using the metabin function. Clicking on any of the links 
directs us to the corresponding help page with further information.

A similar introduction for R package metafor can be accessed using the R command 
help(metafor). Furthermore, a portable document format (pdf) file of  [4] can be 
opened using R command vignette(“metafor”). Note that quotes can optionally 
be used in the help command, but are mandatory in the vignette command.The 

FIGURE 26.1  Help page with brief overview of R package meta.
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help function can also be used to get information on a single R function, e.g. for the 
metabin function. Here, we show the text version of this help page to describe impor-
tant parts.

help(metabin)
metabin              package:meta              R Documentation

Meta- analysis of binary outcome data
Description:
     Calculation of fixed effect and random effects estimates
     (risk ratio, odds ratio, risk difference or arcsine
     difference) for meta- analyses with binary outcome data.
     Mantel- Haenszel, inverse variance, Peto method, generalised
     linear mixed model (GLMM), and sample size method are
     available for pooling. For GLMMs, the ‘rma.glmm’ function
     from R package metafor (Viechtbauer 2010) is called
     internally.

Usage:
     metabin(event.e, n.e, event.c, n.c, studlab,
             data = NULL, subset = NULL,
Arguments:
 event.e: Number of events in experimental group or true
          positives in diagnostic study.
     n.e: Number of observations in experimental group or number
          of ill participants in diagnostic study.
 ...
Details:
     Calculation of fixed and random effects estimates for
     meta- analyses with binary outcome data.
 

     The following measures of treatment effect are available
     (Rücker et al., 2009):

 ...

A short description of the R function is provided first, followed by the function call and 
its arguments. As we can see, the first four arguments of R function metabin are the 
number of events and observations in the two treatment groups or from a diagnostic 
test accuracy study. More details on statistical methods are typically provided under 
Details, followed by a list of references, related R functions, and examples. These 
examples can be run using the following command:

example(metabin)
metabn> metabin(10, 20, 15, 20, sm = "OR")
     OR           95%- CI     z p- value
 0.3333 [0.0874; 1.2716] - 1.61  0.1078

Details:
-  Mantel- Haenszel method ...

Here, we only show the result of the first example, which calculates the odds ratio 
for a single study. In addition to the odds ratio, a 95% confidence interval as well as 
Z  statistic and P value for a test for an overall treatment effect are printed.
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26.5.1  Meta- Analysis for Example 1 Using R Package Meta

As already mentioned above, R function metabin can be used to conduct a meta- 
analysis of binary outcomes.

m.ex1 <-  metabin(event.e, n.e, event.c, n.c, data = Fleiss93,
                 studlab = paste(study, year), sm = "OR")

The arrow “<- ” is used to generate an R object m.ex1 containing the results of the 
meta- analysis. The first four arguments of metabin (number of events and observations 
in the two treatment groups) are mandatory. Other arguments can be used to define the 
dataset (arguments data and subset) or specify the analysis method (e.g. argument sm 
to define the summary measure and method to define the meta-   analysis method). Here, 

Our first example is a meta- analysis on the use of aspirin in comparison with placebo 
to prevent death after myocardial infarction. Data from this meta- analysis have been 
extracted from Table 3 in [5] and are part of R package meta. The following commands 
can be used to make dataset Fleiss93 available in the current R session and to print 
summary information on the structure of Fleiss93.

data(Fleiss93)
str(Fleiss93)

'data.frame': 7 obs. of  6 variables:
 $ study  : chr  "MRC- 1" "CDP" "MRC- 2" "GASP" ...
 $ year   : int  1974 1976 1979 1979 1980 1980 1988
 $ event.e: int  49 44 102 32 85 246 1570
 $ n.e    : int  615 758 832 317 810 2267 8587
 $ event.c: int  67 64 126 38 52 219 1720
 $ n.c    : int  624 771 850 309 406 2257 8600

The str command shows that Fleiss93 is a data frame – essentially a dataset – with 
seven observations (studies) and six variables. For each variable the actual values are 
printed. All but the first variable with study labels are of type integer.
We can also print the whole dataset by simply typing its name.
Fleiss93

study year event.e n.e. event.c n.c.

1 MRC- 1 1974 49 615 67 624
2 CDP 1976 44 758 64 771
3 MRC- 2 1979 102 832 126 850
4 GASP 1979 32 317 38 309
5 PARIS 1980 85 810 52 406
6 AMIS 1980 246 2267 219 2257
7 ISIS- 2 1988 1570 8587 1720 8600

Here, we can see that all seven studies are rather large, with total sample sizes bet-
ween about 600 and 17 000 patients (variable n.e + n.c). Furthermore, numbers of 
events (variables event.e, event.c) are much larger than zero; we will come back to 
this point in the second example.

26.5 ASPIRIN IN PREVENTING DEATH AFTER MYOCARDIAL 
INFARCTION (EXAMPLE 1)



516 Systematic Reviews in Health Research 

we explicitly use the odds ratio as summary measure (sm = “OR”), because the risk 
ratio is used by default. Furthermore, argument studlab is used to define informative 
study labels (here a combination of study name and year of publication). By default, the 
Mantel–Haenszel method is used to combine the results (argument method = “MH”) 
and therefore is not provided in the metabin command.

Again, the str function can be used to print the structure of meta- analysis object m.ex1.

str(m.ex1)
List of 123
 $ event.e      : num [1:7] 49 44 102 32 85 246 1570
...
 $ TE.fixed     : num - 0.109
 $ seTE.fixed   : num 0.0331
...

We see that R object m.ex1 is a list with 123 elements of varying length. A list is an R 
object that can contain several other R objects as components, e.g. single values, vec-
tors, matrices, or data frames, and is thus roughly comparable to a storage room hosting 
boxes of different sizes. In principle, list components – like boxes in a storage room – do 
not have to be related. However, components in our list m.ex1 share the property that 
they contain information on meta- analysis results. Here we show information on three 
elements from this list: the number of events in the aspirin group (variable event.e) 
and the logarithm of the Mantel–Haenszel odds ratio (TE.fixed, i.e. treatment estimate 
in fixed- effect model), with corresponding standard error (seTE.fixed). The meaning 
of all 123 list elements is described on the help page of metabin.

As before, typing the name of an R object will print it.

m.ex1
                OR           95%- CI %W(fixed) %W(random)
MRC- 1 1974  0.7197 [0.4890; 1.0593]       3.2        8.2
CDP 1976    0.6808 [0.4574; 1.0132]       3.1        7.8
MRC- 2 1979  0.8029 [0.6065; 1.0629]       5.7       13.2
GASP 1979   0.8007 [0.4863; 1.3186]       1.8        5.4
PARIS 1980  0.7981 [0.5526; 1.1529]       3.2        8.9
AMIS 1980   1.1327 [0.9347; 1.3728]      10.2       20.7
ISIS- 2 1988 0.8950 [0.8294; 0.9657]      72.9       35.8

Number of studies combined: k = 7

                         OR           95%- CI     z p- value
Fixed effect model   0.8969 [0.8405; 0.9570] - 3.29  0.0010
Random effects model 0.8763 [0.7743; 0.9917] - 2.09  0.0365

Quantifying heterogeneity:
 tau^2 = 0.0096; tau = 0.0982; I^2 = 39.7% [0.0%; 74.6%]; H = 1.29 [1.00; 1.99]

Test of heterogeneity:
    Q d.f. p- value
 9.95    6  0.1269

Details on meta- analytical method:
-  Mantel- Haenszel method
-  DerSimonian- Laird estimator for tau^2
-  Mantel- Haenszel estimator used in calculation of Q and tau^2
  (like RevMan 5)
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As we see, the list with 123 elements is not fully printed, but a user- friendly print 
layout is generated instead. First, results for the seven studies are printed, i.e. odds 
ratios with 95% confidence intervals and percentage weights from fixed- effect and 
random- effects models. Next, results of both fixed- effect and random- effects meta-  -
analyses are followed by information on between- study heterogeneity. Details at the 
end specify that the analysis used the Mantel–Haenszel method in the fixed- effect 
model and the DerSimonian–Laird estimator of the between- study variance in the 
random-   effects model.

A forest plot can be produced using the forest.meta function, which is called 
using the following command:

forest(m.ex1, comb.random = FALSE,
       lab.e =“Aspirin”, lab.c = “Placebo”,
       label.left = “Favors Aspirin”,
       label.right = “Favors Placebo”)

Only the first argument  –  a meta- analysis object generated with meta  –  is 
mandatory to produce a forest plot. The other arguments are used to show only results 
for the fixed- effect model (comb.random = FALSE) and to enhance the forest plot, 
which is shown in Figure 26.2.

The Peto method is also available in R function metabin using argument method 
= "Peto". Instead of a new metabin call, a more concise way is to use the update.
meta function.

update(m.ex1, method = "Peto")
...
                         OR           95%- CI     z p- value
Fixed effect model   0.8968 [0.8405; 0.9570] - 3.29  0.0010...

A meta- analysis based on the inverse- variance method can be conducted in the 
following way:

update(m.ex1, method = "Inverse")
...
                         OR           95%- CI     z p- value
Fixed effect model   0.8969 [0.8405; 0.9571] - 3.28  0.0010...

Study

Fixed effect model
Heterogeneity: I2 = 40%, τ2 = 0.0096, P = 0.13

MRC−1 1974
CDP 1976
MRC−2 1979
GASP 1979
PARIS 1980
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  49
  44
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  32
  85
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Total

14186

  615
  758
  832
  317
  810

 2267
 8587

Aspirin
Events
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  38
  52
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  624
  771
  850
  309
  406
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Placebo
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0.90

0.72
0.68
0.80
0.80
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95%−CI

[0.84; 0.96]

[0.49; 1.06]
[0.46; 1.01]
[0.61; 1.06]
[0.49; 1.32]
[0.55; 1.15]
[0.93; 1.37]
[0.83; 0.97]

Weight

100.0%

3.2%
3.1%
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3.2%

10.2%
72.9%

FIGURE 26.2  Forest plot for aspirin meta- analysis [5] using the forest.meta function from R 
package meta.
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Results of the three methods are identical to the third decimal place in this meta-   analysis 
due to the large sample sizes and number of events.

26.5.2  Meta- Analysis for Example 1 Using R Package Metafor

The Mantel–Haenszel method is also available in metafor in R function rma.mh. The 
command args(rma.mh) gives a listing of all function arguments and shows that 
the first four arguments of rma.mh are the four cell frequencies, i.e. number of events 
and nonevents in the two treatment groups. Accordingly, we can use the following 
command to conduct the meta- analysis:

m4.ex1 <-  rma.mh(event.e, n.e -  event.e,
                 event.c, n.c -  event.c,
                 data = Fleiss93, slab = paste(study, year))

Argument slab defines study labels in this function. By default, the odds ratio is used 
as summary measure (argument measure).

The printout for a Mantel–Haenszel meta- analysis is different between meta and 
metafor. However, exactly the same results are calculated in both packages.

m4.ex1 
Fixed- Effects Model (k = 7)

I^2 (total heterogeneity / total variability):  39.67%
H^2 (total variability / sampling variability): 1.66

Test for Heterogeneity:
Q(df = 6) = 9.9461, p- val = 0.1269

Model Results (log scale):

estimate      se     zval    pval    ci.lb    ci.ub
 - 0.1088  0.0331  - 3.2876  0.0010  - 0.1737  - 0.0440

Model Results (OR scale):

estimate   ci.lb   ci.ub
  0.8969  0.8405  0.9570
Cochran- Mantel- Haenszel Test:  CMH=10.7107, df=1, p- val=0.0011
Tarone's Test for Heterogen.:  X^2= 9.9788, df=6, p- val=0.1255

Here, results are printed both as log odds ratio and odds ratio, with “ci.lb” and “ci.
ub” denoting the lower and upper limit of the 95% confidence interval. In addition, 
results for the Cochran–Mantel–Haenszel and Tarone’s test are given. On the other 
hand, results for individual studies are not reported.

A forest plot can be produced using the forest.rma function, which is called 
using the following command:
forest(m4.ex1, transf = exp, showweights = TRUE)

The resulting forest plot is shown in Figure 26.3. Again, only the first argument – a 
meta- analysis object created with metafor – is mandatory. Results would be printed 
as log odds ratios without argument transf and argument showweights is used to 
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print percentage weights for individual studies. In comparison to Figure 26.2, number 
of events and participants as well as heterogeneity information are not printed; how-
ever, several arguments are available to modify both forest plots – see the help pages of 
R functions forest.meta and forest.rma for more information.

The Peto method is implemented in metafor in a separate function called rma.
peto. Accordingly, this function has to be used instead of the update function.

rma.peto(event.e, n.e -  event.e, event.c, n.c -  event.c,
         data = Fleiss93, slab = paste(study, year))
...
Model Results (OR scale):

estimate ci.lb ci.ub
0.8968 0.8405 0.9570

The inverse- variance method is implemented in another R function called rma.uni 
(or rma), which is a generic function for meta- analysis based on the inverse- variance 
method. This function can also be used for meta- regression. Using the command 
args(rma.uni) we see the long list of arguments. In the following command we pro-
vide the number of events and participants as input to the rma.uni function and use 
argument method = ”FE” to calculate a fixed- effect meta- analysis:

m4.ex1.iv <- 
  rma.uni(ai = event.e, n1i = n.e, ci = event.c, n2i = n.c,

FE Model

0.4 0.8 1.2

Odds Ratio

ISIS−2 1988

AMIS 1980

PARIS 1980

GASP 1979

MRC−2 1979

CDP 1976

MRC−1 1974

 72.88%   0.89 [0.83, 0.97]

 10.15%   1.13 [0.93, 1.37]

  3.22%   0.80 [0.55, 1.15]

  1.80%   0.80 [0.49, 1.32]

  5.68%   0.80 [0.61, 1.06]

  3.10%   0.68 [0.46, 1.01]

  3.18%   0.72 [0.49, 1.06]

100.00%   0.90 [0.84, 0.96]

FIGURE 26.3  Forest plot for aspirin meta- analysis [5] using the forest.rma function from R 
package metafor.
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          data = Fleiss93, slab = paste(study, year),
          method = "FE", measure = "OR")
m4.ex1.iv
...
estimate      se     zval    pval    ci.lb    ci.ub
 - 0.1088  0.0331  - 3.2828  0.0010  - 0.1737  - 0.0438...

We see that results are only reported on the log scale. In order to print the odds ratio, 
we can use the predict function:

predict(m4.ex1.iv, transf = exp)
   pred    ci.lb     ci.ub
 0.8969   0.8405   0.9571

Here, “pred” corresponds to the odds ratio in a meta- analysis using the inverse-  -
variance method and “ci.lb” and “ci.ub” to the corresponding lower and upper limits 
of the 95% confidence interval.

In summary, R packages meta and metafor provide exactly the same meta-   analysis 
results, but they are printed using different layouts.

26.6 BETA-BLOCKER IN PREVENTING SHORT-TERM MORTALITY  
AFTER MYOCARDIAL INFARCTION (EXAMPLE 2)

Our second example is the classic meta- analysis of trials of oral beta- blockers to 
prevent short- term mortality after myocardial infarction. The data are from 
Table  6  in Yusuf et  al.  [6] and are included in dataset dat.yusuf1985 of R 
package metafor.

We use the get and subset functions to extract data from the meta- analysis of 
short- term mortality.

yusuf85 <-  get(data(dat.yusuf1985))
tab6 <-  subset(yusuf85, table == "6")
str(tab6)
'data.frame': 22 obs. of  7 variables:
 $ table: chr  "6" "6" "6" "6" ...
 $ id   : chr  "1.1" "1.2" "1.3" "1.4" ...
 $ trial: chr  "Balcon" "Clausen" "Multicentre" "Barber" ...
 $ ai   : int  14 18 15 10 21 3 2 NA 19 15 ...
 $ n1i  : int  56 66 100 52 226 38 20 NA 76 106 ...
 $ ci   : int  15 19 12 12 24 6 3 NA 15 9 ...
 $ n2i  : int  58 64 95 47 228 31 20 NA 67 114 ...

This dataset consists of 22 studies and provides information on the number of 
deaths in beta- blocker and control group (variables ai and ci) and the number of 
patients per group (n1i, n2i). We see a value of NA (not available) for each of these 
numbers, which means that information is missing.

0005256760.INDD   520 04-25-2022   17:19:12
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26.6.1  Meta- Analysis for Example 2 Using R Package Meta

We use the Peto method to analyze these data in the same way as in the original pub-
lication. Therefore, we suppress the printout of results for the random- effects model 
(argument comb.random = FALSE). Note that by using the Peto method (method = 
"Peto" in metabin) the odds ratio is used as summary measure. We use the summary 
function to suppress the printout of individual study results.

m.ex2 <-  metabin(ai, n1i, ci, n2i, data = tab6,
                 studlab = trial,
                 method = "Peto", comb.random = FALSE)
summary(m.ex2)
Number of studies combined: k = 18

                       OR           95%- CI     z p- value
Fixed effect model 0.9332 [0.7385; 1.1792] - 0.58  0.5623

Quantifying heterogeneity:
 tau^2 = 0 [0.0000; 0.2029]; tau = 0 [0.0000; 0.4504]
 I^2 = 0.0% [0.0%; 21.4%]; H = 1.00 [1.00; 1.13]

Test of heterogeneity:
     Q d.f. p- value
 10.83   17  0.8654

Details on meta- analytical method:
-  Peto method
-  DerSimonian- Laird estimator for tau^2
-  Jackson method for confidence interval of tau^2 and tau

Although the dataset consists of 22 studies, only 18 studies are combined in the meta- 
analysis. Information on studies that are not included in the meta- analysis, i.e. studies 
providing a weight of 0%, can be extracted using the following command:

subset(as.data.frame(m.ex2), w.fixed == 0) [, 1:9]

event.e n.e event.c n.c incr.e incr.c studlab TE seTE

8 NA NA NA NA 0 0 Snow 1 NA NA
12 0 9 0 8 0 0 Pitt NA NA
15 0 16 0 13 0 0 Hutton NA NA
19 0 11 0 11 0 0 Yusuf NA NA

First, the as.data.frame function generates a dataset from the meta- analysis object 
m.ex2. Afterwards, the subset of observations with 0% weight (w.fixed==0) is 
extracted and only the first nine variables are printed ([, 1:9]) in order to show 
only the essential information. We see that the study Snow 1 does not provide any 
information on short- term mortality, as both number of deaths (event.e, event.c) 
and patients (n.e, n.c) are missing. The other three studies provide information on 
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short- term mortality; however, the number of events is zero in both treatment groups, 
yielding an inestimable treatment effect (TE), i.e. log odds ratio and corresponding 
standard error (seTE).

The same information about zero events and missing data could also be derived 
from the forest plot shown in Figure 26.4. The four studies with 0% weight are printed 
at the bottom of this plot, which is sorted by decreasing weight in the fixed- effect 
model; missing values are printed as “.”. The forest plot in the layout of Review Man-
ager 5 was generated using the following R command:

forest(m.ex2, layout = "RevMan5", sortvar = - w.fixed)

26.6.2  Meta- Analysis for Example 2 Using R Package Metafor

Analyzing the short- term mortality data is also straightforward using R 
package metafor.

m4.ex2 <-  rma.peto(ai = ai, n1i = n1i, ci = ci, n2i = n2i,
                   data = tab6, slab = trial)
Warning messages:
1: In rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=tab6,  :
  Tables with NAs omitted from model fitting.
2: In rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=tab6,  :
  Some yi/vi values are NA.

Study

Total (95% CI)
Heterogeneity: Tau2 = 0; Chi2 = 10.83, df = 17 (P = 0.87); I2 = 0%

Norris
Barber
Clausen
Snow 2
Multicentre
Balcon
Fuccella
Lombardo
Barber
Wilcox 1
Wilcox 2
Briant
Kahler
Thompson
CPRG
Ledwich
Gupta
Tonkin
Snow 1
Pitt
Hutton
Yusuf

Events
21
14
18
19
15
14
15
 8
10
 8
 6
 5
 3
 3
 3
 2
 0
 1
.

 0
 0
 0

Total

1900

 226
 221
  66
  76
 100
  56
 106
 133
  52
 259
 157
  62
  38
  48
 177
  20
  25
  42

.
   9
  16
  11

Experimental
Events

24
15
19
15
12
15
 9
11
12
 7
 4
 4
 6
 3
 2
 3
 3
 1
.

 0
 0
 0

Total

1711

 228
 228
  64
  67
  95
  58
 114
 127
  47
 129
 158
  57
  31
  49
 136
  20
  25
  46

.
   8
  13
  11

Control
Weight

100.0%

14.5%
9.7%
9.5%
9.3%
8.3%
7.8%
7.6%
6.3%
6.1%
4.6%
3.5%
3.0%
2.8%
2.0%
1.7%
1.6%
1.0%
0.7%
0.0%
0.0%
0.0%
0.0%

Peto, Fixed, 95% CI

0.93 [0.74;  1.18]

0.87 [0.47;  1.61]
0.96 [0.45;  2.04]
0.89 [0.42;  1.90]
1.15 [0.53;  2.49]
1.22 [0.54;  2.74]
0.96 [0.41;  2.21]
1.90 [0.81;  4.42]
0.68 [0.27;  1.72]
0.70 [0.27;  1.79]
0.53 [0.18;  1.59]
1.52 [0.43;  5.34]
1.16 [0.30;  4.50]
0.37 [0.09;  1.50]
1.02 [0.20;  5.29]
1.15 [0.19;  6.83]
0.64 [0.10;  4.07]
0.12 [0.01;  1.25]
1.10 [0.07; 17.87]

Odds Ratio

0.1 0.51 2 10

Odds Ratio
Peto, Fixed, 95% CI

FIGURE 26.4  Forest plot for beta- blocker meta- analysis [6] in Review Manager 5 layout using 
the forest.meta function from R package meta.
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Execution of this command results in two warnings. The first warning states that 
studies with missing values in the corresponding two- by- two table are omitted from 
the meta- analysis. The second warning states that some estimated treatment effects 
(yi), i.e. log odds ratios, and corresponding variances (vi) are missing.

The printout of m4.ex2 reports that 21 of 22 studies in the dataset have been 
included in the meta- analysis. However, the heterogeneity test with 17 degrees of free-
dom (df) reflects that only 18 of these 21 studies contributed to the meta- analysis.

m4.ex2
Fixed- Effects Model (k = 21)

I^2 (total heterogeneity / total variability):  0.00%
H^2 (total variability / sampling variability): 0.64

Test for Heterogeneity:
Q(df = 17) = 10.8275, p- val = 0.8654

Model Results (log scale):

estimate      se     zval    pval    ci.lb   ci.ub
 - 0.0692  0.1194  - 0.5794  0.5623  - 0.3031  0.1648

Model Results (OR scale):

estimate   ci.lb   ci.ub
  0.9332  0.7385  1.1792

A function as.data.frame is not available in R package metafor. Accordingly, we 
construct our own dataset using with and data.frame to print information on studies 
that do not contribute to the meta- analysis (i.e. with missing variance vi.f identified 
using the is.na function).

with(m4.ex2,
     data.frame(event.e = ai.f, n.e = ai.f + bi.f,
                event.c = ci.f, n.c = ci.f + di.f,
                slab, TE = yi.f,
                seTE = sqrt(vi.f))[is.na(vi.f), ])

event.e n.e event.c n.c slab TE seTE

8 0 NA NA NA Snow 1 NA NA
12 0 9 0 8 Pitt NA NA
15 0 16 0 13 Hutton NA NA
17 0 11 0 11 Yusuf NA NA

This command results in a very similar output as given above for R package meta 
and identifies the same four studies that do not contribute to the meta- analysis. Based 
on this printout, we see that metafor reports the number of studies with non- missing 
data (including studies with double zeros, even though giving them 0% weight in the 
meta- analysis), whereas meta reports the number of studies contributing to the meta- -
 analysis (excluding studies with double zeros). Regardless, both R packages provide 
the exact same results for this meta- analysis using the Peto method.
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26.7  META- REGRESSION – INFLUENCE OF DISTANCE FROM THE 
EQUATOR ON TUBERCULOSIS VACCINE EFFECTIVENESS

Subgroup analysis and meta- regression can be conducted with meta and metafor. As sub-
group analysis can be seen as a special case of meta- regression with a categorical covariate, 
we only have a closer look at meta- regression. Subgroup analysis and meta- regression with 
meta and metafor are described in more detail in [1, 4] and in Chapter 10 of this book.

Colditz et al. [7] evaluated the overall effectiveness of the Bacillus Calmette- Guerin 
(BCG) vaccine against tuberculosis. This is a classic example for meta- regression [8], 
with distance from the equator as an effect modifying factor. The BCG data with 13 
studies is part of the metafor package.

bcg <-  get(data(dat.colditz1994, package = "metafor"))
bcg$ablat
[1] 44 55 42 52 13 44 19 13 27 42 18 33 33
bcg$year
 [1] 1948 1949 1960 1977 1973 1953 1973 1980 1968
[10] 1961 1974 1969 1976

Primary interest lies in the variable ablat, which contains information on the 
absolute geographic latitude, i.e. absolute distance from the equator. In a second 
meta-   regression, we will also consider the publication year. In order to get a more 
sensible interpretation of the intercept in the second meta- regression, we center 
variable year around its mean value.
bcg$year.c <-  bcg$year -  mean(bcg$year)

Meta- regression can be conducted with the metareg function in the meta package 
and the rma.uni function in metafor. Actually, metareg is a wrapper function that 
calls the rma.uni function internally to do the calculations.

The metareg function expects a meta- analysis object as the first argument and 
covariate(s) used in the meta- regression as the second argument. Therefore, we have 
to start by conducting a meta- analysis in the usual way without any covariates.

m.ex3 <-  metabin(tpos, tpos + tneg, cpos, cpos + cneg,
                 data = bcg, sm = "OR")

This meta- analysis object can be used as input to the metareg function.

m.ex3.mr <-  metareg(m.ex3, ablat)
m.ex3.mr
Mixed- Effects Model (k = 13; tau^2 estimator: DL)

tau^2 (estimated residual heterogeneity): 0.0480 (SE = 0.0451)
...

Test for Residual Heterogeneity:
QE(df = 11) = 25.0954, p- val = 0.0088

Test of Moderators (coefficient(s) 2):
QM(df = 1) = 26.1628, p- val < .0001
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Model Results:
         estimate      se     zval    pval    ci.lb    ci.ub
intrcpt    0.3030  0.2109   1.4370  0.1507  - 0.1103   0.7163
ablat     - 0.0316  0.0062  - 5.1150  <.0001  - 0.0437  - 0.0195...

This printout is generated by the print.rma.uni function from metafor. The 
first line reports that the DerSimonian–Laird method (DL) was used to estimate the 
between- study variance (argument method in rma.uni command). The “Test of 
Moderators” shows that absolute geographic latitude is a strong modifier of the effec-
tiveness of the BCG vaccine. The intercept corresponds to the log odds ratio for the 
effectiveness of the BCG vaccine at the equator. The influence of a one- degree change 
in absolute geographic latitude is given in the line starting with ablat. The negative 
value −0.0316 translates into a stronger reduction of positive tuberculosis cases with 
increasing distance from the equator.

The “Test for Residual Heterogeneity” clearly shows that the absolute geographic 
latitude does not explain all heterogeneity between study results. This can also be seen 
in the bubble plot shown in Figure 26.5, which was generated using the command 
bubble(m.ex3.mr). Despite the remaining heterogeneity, a clear tendency of a 
stronger effect of the BCG vaccine with increasing distance from the equator is visible 
in this figure.
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FIGURE 26.5  Bubble plot for meta- regression of BCG vaccine dataset [7] using the bubble.
metareg function from R package meta.
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We get exactly the same meta- regression results using the following command based 
on rma.uni from metafor with argument mods to define covariate(s), i.e. moderator 
variable(s).

rma.uni(ai = tpos, n1i = tpos + tneg,
        ci = cpos, n2i = cpos + cneg,
        data = bcg, measure = “OR”,
        method = “DL”, mods = ablat)

Due to the remaining heterogeneity, a next analysis step could be to consider a second 
covariate in the meta- regression. In the BCG dataset, publication year is a natural can-
didate to evaluate whether the effectiveness of the BCG vaccine changed over time.

metareg(m.ex3, ablat + year.c)
Mixed- Effects Model (k = 13; tau^2 estimator: DL)

tau^2 (estimated residual heterogeneity): 0.0667 (SE = 0.0652)
...
Test for Residual Heterogeneity:
QE(df = 10) = 25.0121, p- val = 0.0053

Test of Moderators (coefficient(s) 2,3):
QM(df = 2) = 20.6855, p- val < .0001

Model Results:
 estimate se zval pval ci.lb ci.ub
intrcpt 0.2210 0.3010 0.7342 0.4628 - 0.3689 0.8108
ablat - 0.0295 0.0085 - 3.4906 0.0005 - 0.0461 - 0.0129
year.c 0.0046 0.0124 0.3694 0.7118 - 0.0197 0.0288...

As we use the covariate year.c instead of year, the intercept corresponds to the 
effect of the BCG vaccine in a study conducted at the equator in 1966 (the average 
value of year), which seems more sensible than a study conducted in the year 0 BC. 
We see that the effect of absolute geographic latitude does not change very much and 
that publication year does not seem to be an independent prognostic factor. Worryingly, 
the residual between- study heterogeneity in this analysis is even larger than in the 
meta- regression only considering absolute geographic latitude. This should serve as a 
warning not to over- fit and over- interpret the available data [8]. Based on a general rule 
of thumb, one needs 10–20 observations (studies) for each covariate in a (meta- )regres-
sion. Accordingly, the inclusion of a second covariate in the meta-   regression in the 
BCG dataset with 14 studies might seem adventurous, like entering uncharted territory. 
To assist the user in such an endeavor, R package metafor provides R functions with 
regression diagnostics [4] in order to sail around the most dangerous reefs.

26.8  EVALUATION OF BIAS IN META- ANALYSIS – TESTS 
FOR SMALL- STUDY EFFECTS AND TRIM- AND- FILL METHOD

Various sources of bias can threaten the validity of meta- analyses. This topic is dis-
cussed in detail in Chapters 4 and 5. Here, we show how to produce a funnel plot using 
R and how to conduct statistical tests for funnel plot asymmetry (otherwise known as 
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small- study effects). In addition, the trim- and- fill method [9] to adjust for small- study 
effects is applied, which, although a simple and ad hoc method, has gained popu-
larity over the last two decades. We briefly comment on more advanced (and typically 
more appropriate) statistical methods to adjust for small- study effects in an overview 
of other R packages for meta- analysis later in the chapter.

Funnel plots can be created with the funnel.meta function in R package meta 
and funnel.rma in metafor. Statistical tests for small- study effects are available in 
the metabias function in meta and the regtest and ranktest functions in meta-
for. The trim- and- fill method is implemented in R functions trimfill.meta and 
trimfill.rma.uni. Here, we will only describe R functions in meta for the sake 
of brevity.

Typically, the first step to evaluate bias in meta- analysis is to generate a funnel 
plot. A funnel plot for the first example of trials of aspirin after myocardial infarction 
can be created with the funnel.meta function. The first argument of this function is a 
meta- analysis object. Other important arguments of this function are yaxis to change 
the y- axis in the funnel plot and contour.levels to produce contour- enhanced 
funnel plots  [10]. The command funnel(m.ex1) creates the funnel plot shown in 
Figure 26.6. Despite being based on only seven studies, this plot shows some indica-
tion of funnel plot asymmetry, as the two largest studies are closest to the null effect, 
i.e. an odds ratio of 1.
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FIGURE 26.6  Funnel plot for aspirin meta- analysis [5] using the funnel.meta function from R 
package meta.
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The metabias.meta function can be used to test formally for funnel plot asymmetry, 
and provides several linear regression and rank correlation tests for funnel plot asym-
metry (argument method). This function considers recommendations for examining and 
interpreting funnel plot asymmetry in meta- analyses [11]. Regression tests are preferred 
over rank correlation tests due to their larger power. The classic Egger regression test [12] 
is used for all but binary outcomes. In this case, the Harbord test [13] is used, which is 
a modified regression test based on the efficient score, also called score function, and its 
variance. By default, a test is only conducted if the number of studies is at least ten, a 
widely recommended minimum number of studies [11].

The command metabias(m.ex1) produces an informative warning that the 
number of studies is smaller than recommended to conduct a test for funnel plot 
asymmetry. We can conduct this test using argument k.min, as mentioned in the 
warning message.

metabias(m.ex1, k.min = 5)
Linear regression test of funnel plot asymmetry

Test result: t = - 0.92, df = 5, p- value = 0.3991

Sample estimates:
    bias se.bias intercept se.intercept
 - 0.7259  0.7878   - 0.0593       0.0690

Details:
-  multiplicative residual heterogeneity variance (tau^2 = 1.7042)
-  predictor: standard error of score
-  weight:    inverse variance of score
-  reference: Harbord etal. (2006), Stat Med

The P value shows that no clear indication of funnel plot asymmetry (small- study 
effects) exists in this meta- analysis. However, this conclusion is based on a rather 
small number of studies. Therefore, in a sensitivity analysis, we apply the trim- and- 
fill method to the aspirin meta- analysis despite a nonsignificant test for funnel plot 
asymmetry.

print(trimfill(m.ex1), digits = 2)
                     OR       95%- CI %W(random)
MRC- 1 1974         0.72 [0.49; 1.06]        6.7
CDP 1976           0.68 [0.46; 1.01]        6.4
MRC- 2 1979         0.80 [0.61; 1.06]       10.7
GASP 1979          0.80 [0.49; 1.32]        4.4
PARIS 1980         0.80 [0.55; 1.15]        7.2
AMIS 1980          1.13 [0.93; 1.37]       16.5
ISIS- 2 1988        0.89 [0.83; 0.97]       27.9
Filled: PARIS 1980 1.05 [0.72; 1.51]        7.2
Filled: MRC- 1 1974 1.16 [0.79; 1.71]        6.7
Filled: CDP 1976   1.23 [0.82; 1.83]        6.4

Number of studies combined: k = 10 (with 3 added studies)

                       OR       95%- CI     z p- value
Random effects model 0.92 [0.83; 1.03] - 1.40  0.1622
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Quantifying heterogeneity:
 tau^2 = 0.0102; tau = 0.1011; I^2 = 37.4% [0.0%; 70.1%]; H = 1.26 [1.00; 1.83]
Test of heterogeneity:
     Q d.f. p- value
 14.37    9  0.1099

Details on meta- analytical method:
-  Inverse variance method
-  DerSimonian- Laird estimator for tau^2
-  Trim- and- fill method to adjust for funnel plot asymmetry

Three studies were added to the aspirin meta- analysis (see lines starting with 
“Filled:”). As the trim- and- fill method adds studies to the meta- analysis, the use of a 
fixed- effect model – which by construction has a smaller confidence interval by add-
ing studies – is not a sensible choice. Accordingly, the trimfill.meta function only 
reports results for the random- effects model. This sensitivity analysis indicates that the 
evidence for a benefit of aspirin from the seven trials may be less robust than the main 
analysis indicates: the effect is smaller and no longer statistically significant.

26.9 OTHER STATISTICAL METHODS FOR META- ANALYSIS IN R 
PACKAGES META AND METAFOR

We now give a brief overview of some additional statistical methods available in meta 
and metafor; see also the next section for further statistical methods implemented 
in metafor.

26.9.1  Handling of Zero Events in Meta- Analysis 
of Binary Outcomes

We have seen in Example 2 that studies with zero events in both groups do not con-
tribute to a meta- analysis using the Peto method, i.e. metabin in meta and rma.peto 
in metafor. This is the general meta- analysis approach for the odds ratio and risk 
ratio, which are not defined for zero events in both groups. Likewise, in meta and 
metafor, studies with zero events in both groups get 0% weight in a meta- analysis 
using the Mantel–Haenszel method. For the inverse- variance method, metabin also 
by default excludes studies with double zeros (see argument allstudies), whereas 
rma.uni includes studies with double zeros in the meta- analysis (argument drop00). 
Accordingly, this default of rma.uni should be changed in meta- analyses with double 
zero studies!

An increment of 0.5 is typically added to cells in studies with a zero in one 
group – also called a continuity correction – in order to include these studies in a meta- -
 analysis with the odds ratio or risk ratio as summary measure. This increment can be 
changed using argument incr in R function metabin and argument add in the rma 
functions. Furthermore, the user can decide whether to add the increment only to 
studies with a zero in one group (default) or to all studies – either in general, or only 
if at least one study has a zero in one group; see arguments allincr and addincr in 
metabin and to in the rma functions.
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There are subtle differences between meta and metafor in the handling of studies 
with a zero in one group in the calculation of meta- analysis estimates. For the Mantel–
Haenszel method, by default metabin – like Review Manager 5 – applies a continuity 
correction (see argument MH.exact), whereas rma.mh uses the exact Mantel–
Haenszel method (argument drop00). For the Peto method, a continuity correction 
is not necessary in studies with a zero in one group. Accordingly, R functions in meta 
and metafor do not apply a continuity correction in this situation. While this behavior 
can be changed in metafor, all arguments concerning the continuity correction are 
ignored in meta, which provides the unmodified Peto method only.

26.9.2  Advanced Methods for Meta- Analysis of Binary Outcomes

A distinctive and frequently overlooked advantage of binary endpoints is that individual 
participant data (IPD) can be extracted from a two- by- two table. Accordingly, statistical 
methods for IPD, i.e. logistic regression and GLMM, can be used in a meta- analysis of 
binary outcomes [14, 15]. These methods are implemented in the rma.glmm function 
in metafor. Again, these methods are also available in the metabin function of meta 
(argument method = "GLMM" and argument model.glmm) by calling the rma.glmm 
function internally.

26.9.3  Meta- Analysis for Outcomes Other than Binary Outcomes

In this chapter we have focused on the meta- analysis of binary outcomes. This can be 
conducted with a single function in meta and four functions in metafor. Thus, the 
meta package follows the first part of the Three Musketeers’ motto “one for all” in 
this setting, whereas the metafor package follows the second part “all for one,” as the 
various meta- analysis methods for binary outcomes (Mantel–Haenszel, Peto, inverse 
variance, GLMM) are implemented in dedicated R functions.

The Three Musketeers’ motto is reversed in meta and metafor for meta- analyses 
of other outcomes. The metafor package provides a single function for other out-
comes; see the help page of rma.uni function. On the other hand, several meta-  -
analysis functions exist in meta for specific outcome types:

• metabin – meta- analysis of binary outcomes.
• metacont – meta- analysis of continuous outcomes.
• metacor – meta- analysis of correlations.
• metacr – meta- analysis for outcomes from a Cochrane review.

(internally calls metabin, metacont, and metagen functions).
• metagen – generic inverse- variance meta- analysis.
• metainc – meta- analysis of incidence rates.
• metamean – meta- analysis of single means.
• metaprop – meta- analysis of single proportions.
• metarate – meta- analysis of single incidence rates.
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26.9.4  Estimation of the Between- Study Variance

The DerSimonian–Laird method is the most commonly used estimator for the 
between-   study variance. However, a large number of alternative estimators have 
been proposed over the last decades  [16]. These are implemented in meta- analysis 
functions in meta by the argument method.tau and in the metafor package by 
argument method (see the help pages of metagen and rma.uni).

26.9.5  Hartung–Knapp Method – Alternative Method for 
Meta- Analysis

Hartung and Knapp developed an alternative method for meta- analysis  [17, 18], 
which was extended to meta- regression by Knapp and Hartung  [19]. This method 
is referred to as the Hartung–Knapp method in R package meta (argument hakn in 
meta-   analysis functions) and Knapp–Hartung method in the metafor package imple-
menting this method in the rma.uni function for meta- analysis and meta- regression 
(argument test = “knha”).

26.9.6  Prediction Interval

A prediction interval [20] can be calculated in meta- analysis functions of the meta 
package using argument prediction. These intervals are implemented in metafor 
in R function predict.rma. Forest plots with a prediction interval can be generated 
using argument prediction in forest.meta and addcred in forest.rma (see the 
help pages for examples).

26.10 OVERVIEW OF OTHER R PACKAGES FOR META- ANALYSIS

An up- to- date summary of R packages for meta- analysis is available online for CRAN 
packages (https://cloud.r- project.org/web/views/MetaAnalysis.html). Here, we briefly 
describe a selection of R packages for more advanced meta- analysis methods.

26.10.1  Bias in Meta- Analysis

Tests for funnel plot asymmetry (small- study effects) and the trim- and- fill method 
have been described in this chapter. More advanced methods to evaluate bias in meta- -
 analysis are available, with metasens [21] providing the Copas selection model and 
the limit meta- analysis and selectMeta [22] providing various selection models, e.g. 
the parametric model by Iyengar and Greenhouse. Rosenthal’s fail- safe N method is 
also available in R (metafor, MAc [23], MAd [24]), although its use is not generally 
recommended.

https://cloud.r-project.org/web/views/MetaAnalysis.html
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26.10.2  Network Meta- Analysis

Many network meta- analysis methods are based on a Bayesian approach using the 
Markov Chain Monte Carlo (MCMC) method [25]. Typically, these Bayesian analyses 
are conducted in WinBUGS, OpenBUGS, or JAGS. A number of interfaces from R to 
WinBUGS and similar MCMC software exist, such as the R2WinBUGS package [26]. 
Van Valkenhoef et al. have published the gemtc package [27] using BUGS or JAGS 
that conducts network meta- analyses based on a Bayesian hierarchical model. Another 
Bayesian approach is implemented in the pcnetmeta package [28] using JAGS.

Over the last couple of years, R packages for meta- analysis using frequentist 
methods have been published. The netmeta package  [29] is a user- friendly imple-
mentation of the methods by Rücker [30] and Krahn et al. [31]. Distinctive features of 
netmeta are a function to produce a net- heat plot [31] and a function for ranking of 
treatments in a network meta- analysis [32]. The netmeta package and its application 
are described in the Use- R! book on meta- analysis with R [1]. Methods for network 
meta- analysis are also available in the rma.mv function of metafor.

26.10.3  Multivariate and Diagnostic Test Accuracy Meta- Analysis

Methods for multivariate meta- analysis are provided by several R packages. For 
example, metafor with the rma.mv function and mvmeta  [33] provide fixed- effect 
and random- effects models with various methods to estimate the between- study covari-
ance matrix. Both packages also provide functions for multivariate meta-   regression. 
The xmeta package  [34] makes available multivariate meta- analysis methods and 
tests and adjustment methods for bias in multivariate meta- analysis.

Diagnostic test accuracy (DTA) meta- analysis modeling sensitivities and specific-
ities is a special bivariate case of multivariate meta- analysis. Accordingly, R packages 
for multivariate meta- analysis can be used in principle for basic analyses. However, it is 
more convenient to use R packages specifically developed for DTA meta- analysis, which 
also provide common plots like received operating characteristic (ROC) or summary 
ROC curves. The mada package [35] provides both univariate methods and the bivariate 
meta- analysis model by Reitsma [36]. The meta4diag [37] package implements Bayes-
ian methods for DTA meta- analysis.

R packages mvmeta and mada are described in the Use- R! book on meta- analysis 
with R [1].
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Comprehensive Meta- Analysis 
Software
Michael Borenstein

Comprehensive Meta- Analysis (CMA) is a computer program for meta- analysis that 
was developed with funding from the National Institutes of Health in the United 
States. The program was initially released in 2000 and has been updated on a regular 
basis since then. As of this writing, the most recent major update was in 2021, and new 
releases are scheduled for the next few years.

CMA features a spreadsheet view and a menu- driven interface. As such, it allows 
a researcher to enter data and perform a simple analysis in a matter of minutes. At the 
same time, it offers a wide array of advanced features, including the ability to plot the 
distribution of true effects, to compare the effect size in subgroups of studies, to run 
meta- regression, to estimate the potential impact of publication bias, and to produce 
high- resolution plots. The program is designed to work with studies that compare an 
outcome in two groups, or that estimate an outcome in one group. It is not intended for 
network meta- analyses nor for meta- analyses of diagnostic test accuracy.

27.1 MOTIVATING EXAMPLE

To illustrate the program, we will use a meta- analysis of 17 studies that assessed the 
utility of St. John’s wort (Hypericum perforatum) for treating depression. In each study, 
patients who suffered from depression were randomly assigned to either Hypericum 
or placebo, and researchers recorded the number of patients that responded in each 
group, based on improvements in the Hamilton Rating Scale for Depression (HRSD). 
An odds ratio greater than 1.0 indicates that St. John’s wort was helpful. An odds ratio 
of 2.0, for example, would indicate that treatment doubled the odds that a patient 
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would improve. The original analysis was performed by Linde et al. [1, 2]. Here, we 
use the subset of 17 placebo- controlled trials that provided data for all moderators, as 
discussed by Viechtbauer [3]. Our goal in this chapter is to provide a sense of the look 
and feel of the program. For the reader who would like to carry out the analyses, a 
video of this analysis and a PDF with step- by- step instructions are available at http://
www.Meta- Analysis.com. This chapter is not intended to provide any medical advice.  
For that, one should consult the original papers.

27.2 DATA ENTRY

Figure 27.1 shows the data- entry screen. For each study, we enter the study name into 
column A and the summary data into the columns labeled B. The program computes the 
odds ratio, log odds ratio, standard error, and variance for each study, and displays these in 
the columns labeled C. We have also entered data for a series of moderator variables in the  
columns labeled D, including the type of depression diagnosed (Dx), the baseline HRSD 
scores (Baseline), and the dose of the Hypericum extract (Dose). Dose is computed as daily  
dose (in mg) times study duration.

In this example, the user has elected to enter the events and sample size for each 
group and has chosen to display the odds ratio. However, the user may elect to enter 
data in more than 100 formats and to display any number of effect- size indices. The data 
may be entered directly into CMA or copied from another program such as Excel™.

To run the analysis, we click Run Analyses on the toolbar.

27.3 BASIC ANALYSIS

Figure 27.2 shows the basic analysis screen. A tab at the bottom (E) may be used to 
switch between fixed- effect and random- effects meta- analyses. The fixed- effect model 
is appropriate when all studies come from the same population and are identical in all 

FIGURE 27.1  Data- entry screen. Source: Biostat, Inc.

http://www.Meta-Analysis.com
http://www.Meta-Analysis.com
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material respects. The random- effects model is appropriate when these conditions are 
not met [4] (Chapter 9). In this example, where studies were performed in different 
populations, we have selected the random- effects model.

In the toolbar (F) we have selected “Odds ratio” as the effect- size index. Using this 
toolbar, we could switch to the risk ratio, the risk difference, the standardized mean 
difference, and an array of other effect- size indices.

27.3.1  What is the average effect size?

The program (G) displays the combined effect size as 2.402 and the confidence interval 
as 1.699–3.396. Since this is a random- effects meta- analysis, this tells us that the average 
odds ratio in the universe of comparable studies is estimated as 2.402, and probably 
falls in the range of 1.699 to 3.396. The Z value of 4.960 and the corresponding P value 
of <0.001 test the null hypothesis that the average odds ratio in the universe of studies 
is precisely 1.0. We can reject the null, and conclude that the true average odds ratio is 
greater than 1.0 – that the treatment is helpful. At the right (H) the program displays 
the relative weight assigned to each study when computing the combined effect size.

27.3.2  How much does the effect size vary?

The average effect size represents a substantial clinical improvement. But to understand 
the potential utility of this intervention, we need also to know how much the effect 
size varies across populations. Is the intervention consistently effective, or is the impact 
trivial in some populations and exceptional in others? Is the intervention always bene-
ficial, or is it sometimes harmful?

FIGURE 27.2  Basic analysis screen. Source: Biostat, Inc.
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To address these questions, we can click a tool on the menu bar (I) in Figure 27.2 
and display the tables shown in Figure 27.3. The statistics at the left of Figure 27.3 (J) 
are the same as those in Figure 27.2 and address the average effect size. The statistics at 
the right of Figure 27.3 (K) address the variation in effect size across studies, as follows.

We can test the null hypothesis that all studies share a common effect size, and 
that the variance in observed effects is due entirely to sampling error (see Chapter 9). 
The test statistic Q is 55.6116 with 16 degrees of freedom and a corresponding P value 
of <0.001. We conclude that the herbal remedy’s effect is stronger in some populations 
than in others. However, the important question is not whether the effect size varies at 
all, but rather how much it varies [5, 6]. We turn to that now.

To get a general sense of the dispersion we can start with the forest plot (right of 
center in Figure 27.2), where the observed odds ratios vary from roughly 0.75 to 7.50. 
However, only some of this dispersion reflects variation in true effects (the variation 
that we care about), while the rest reflects variance due to sampling error. The I2 sta-
tistic is the ratio of VTRUE to VOBSERVED, and as such it provides some context for under-
standing the forest plot. When I2 is low, the variance in the forest plot is mostly due 
to sampling error. When I2 is high, the variance in the forest plot provides a reason-
able estimate for the variance of true effects. Here, I2 is around 75%, so the forest plot 
provides a reasonable estimate of how the true effect size varies across populations. 
(There is a common belief that I2 tells us how much the effect size varies, but this belief 
is incorrect. As above, I2 is a proportion, not an absolute value. The correct interpreta-
tion is the one presented in Chapter 9 and in [6, 7].)

The program displays T2, the variance of true effects (0.3462), and T, the standard 
deviation of true effects (0.5884). When the effect size is a ratio (as it is here) these 
statistics will always be displayed in log units (this is true for all programs).

While most reports of meta- analyses tend to highlight the statistics outlined above, 
none of these statistics directly addresses the question “What is the expected range of 
true effects for populations similar to those in the analysis?” To address this question, 
the program (at the bottom of Figure 27.4) reports: “The true effect size in 95% of all 
comparable populations falls in the interval 0.65 to 8.90.” This is called the 95% pre-
diction interval. If we were asked to predict the true effect size for any one population 
(selected at random from all populations comparable to those in the analysis), we would 
predict that the odds ratio for that population would fall in the interval 0.65–8.90. And 

FIGURE 27.3  Average effect size (left), variation in effect size (right). Source: Biostat, Inc.
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if our assumptions are correct (including the assumption that the effects are normally 
distributed in log units), our prediction would be correct 95% of the time.

The program also plots the distribution of true effects as shown in Figure 27.4. 
The endpoints of this plot (0.65 and 8.90) correspond to the prediction interval, but 
the plot itself yields additional information about the distribution. It shows that the 
treatment will be harmful in only a small minority of cases. Additionally, while the 
treatment will be helpful in the vast majority of cases, the extent of this impact varies 
widely. In most cases the odds ratio falls in the range of 1.0–5.0, but there are some 
cases where the treatment increases the odds of improvement more than eightfold. As 
mentioned, the distribution is assumed to be symmetric in log units. It appears to be 
skewed because the plot uses the odds ratio rather than the log odds ratio on the x- axis.

27.4 HIGH- RESOLUTION PLOT

We can click the menu button labeled “Hi- resolution plot” to create the plot displayed 
in Figure 27.5. Menus allow the user to extensively customize the plot and then export 
a copy directly to Microsoft Word™ or PowerPoint™.

27.5 SUBGROUP ANALYSIS

At this point we have established that St. John’s wort is more effective in some popula-
tions than in others, and we might want to identify factors associated with the magni-
tude of the effect. One possible factor is the nature of the population. Specifically, some 
studies enrolled patients with major depression only, while others enrolled patients 
with major or minor depression. We want to compute the odds ratio separately for 
each subgroup of studies, and then to compare the two values.

0.00 1.00 2.00 3.00 4.00 5.00

Odds ratio

The mean effect size is 2.40 with a 95% confidence interval of 1.70 to 3.40
The true effect size in 95% of all comparable populations falls in the interval 0.65 to 8.90

Distribution of True Effects

6.00 7.00 8.00 9.00

FIGURE 27.4  Plot of true effects and prediction interval.
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We return to the analysis screen and use the “Computational options” menu to 
“Group by > Dx.” The result is displayed in Figure 27.6.

First, we assess the mean effect of treatment for each subgroup of studies. For 
studies that enrolled patients with major depression only (L), the combined odds ratio 
is 1.969 with a 95% confidence interval of 1.375–2.819, a Z value of 3.697, and a P value 
of <0.001. For studies that enrolled patients with major or minor depression (M), the 
combined odds ratio is 4.207 with a 95% confidence interval of 2.218–7.978, a Z value 
of 4.400, and a P value of <0.001. Thus, we can conclude that Hypericum is more effec-
tive than placebo in each subgroup.

Next, we want to compare the effect size in the two subgroups. That is, we want 
to ask if the treatment is more effective in studies that include patients with major or 
minor depression than in studies that include patients with major depression only. 
Again, a button on the menu bar (N) allows us to switch between the plot in Figure 27.6 
and the details in Figure 27.7.

The screen in Figure 27.7 shows two sets of analyses. The section at the top is labeled 
“Fixed- effect analysis.” We would use this section if all studies within a subgroup shared 
a common true effect size. The section at the bottom is labeled “Mixed- effects analysis,” 
which allows that the true effect size may vary across studies within subgroups. In our 
example, the studies within each subgroup are sampled from different populations of 
patients, and so we will be using the latter section.

The combined odds ratio for the Major Only subgroup is 1.969  with a 95% 
confidence interval of 1.375–2.819, while the combined odds ratio for the Major or 
Minor subgroup is 4.207 with a 95% confidence interval of 2.218–7.978 (O). To test 
the difference between the two effect sizes we may use a Q test. The Q value for this 
difference is 4.113 with 1 degree of freedom and a P value of 0.043 (P). We conclude 
that the treatment is more effective in the subgroup of populations we have called 
“Major or Minor” as compared with those we have called “Major Only.”

FIGURE 27.5  High- resolution forest plot.
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FIGURE 27.7  Impact of treatment as a function of subgroup (Major Only vs. Major or Minor). 
Source: Biostat, Inc.

FIGURE 27.6  Impact of treatment as a function of subgroup (Major Only vs. Major or Minor). 
Source: Biostat, Inc.

It is important to recognize that (with rare exceptions) subgroup comparisons in 
a meta- analysis are observational by nature and cannot prove a causal relationship. In 
this example, it is possible that Hypericum is more effective in the “Major or Minor” 
studies because the extract is more effective with these kinds of patients, which would 
be a causal relationship. But it is also possible that Hypericum was more effective in 
the “Major or Minor” studies for other reasons. For example, it is possible that the 
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“Major or Minor” studies employed a different dosing schedule than the “Major Only” 
studies, and it is the dosing schedule (rather than the diagnosis) that was responsible 
for the larger effect in these studies.

27.6 META- REGRESSION

In a primary study, we may use regression analysis to study the relationship between 
covariates and outcome. Similarly, in a meta- analysis we may use regression to study 
the relationship between covariates and effect size. In this case, the procedure is com-
monly called meta- regression (see Chapter 10). In a primary study the unit of analysis 
is the individual, with covariates and outcome measured for each individual. In a meta- 
analysis, the unit of analysis is the study, with covariates and outcome measured for 
each study. However, with some modifications, the full arsenal of procedures that fall 
under the heading of “regression” in primary studies is also available in meta- analysis.

In the current example, we want to see if Hypericum’s effect is related to the level 
of depression at study entry (Baseline) and/or the mean dose employed in the study 
(Dose). On the main analysis screen (Figure 27.6) we select “Meta- regression 2” on the 
“Analyses” menu. We define a regression with these two covariates, and the program dis-
plays the results in Figure 27.8. The results based on the random- effects model are shown 

FIGURE 27.8  Results for regression, random effects. Source: Biostat, Inc.
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here. The user may also choose to use a fixed- effect model, though this is generally not 
recommended (see Chapter 9).

The table at the top (Q) displays the relationship between each covariate and effect 
size when all other covariates are held constant. For example, the coefficient for base-
line score is displayed as −0.1095. This is plotted in Figure 27.9, where we see that the 
treatment is more effective when baseline depression is moderate and less effective when 
baseline depression is more severe. Concretely, as the baseline depression score increases 
from 13 to 23 (points U–V on the regression line), the impact of treatment drops from 1.68 
to 0.59 in log units. These values are computed using the Eq. Y = 3.8655–0.1095 (Base-
line) – 0.0226 (Dose), which is displayed on the plot. The regression line is drawn using 
the simple mean for Dose, which is 33.59 mg. As noted, the plot is scaled in log units. The 
odds ratios corresponding to points U and V are 5.38 and 1.80, respectively.

The table (Q) provides additional details for the relationship between baseline score 
and effect size, with Dose held constant. As noted, the coefficient for Baseline is −0.1095. 
The confidence interval for the coefficient is −0.2082 to −0.0107. A test of the null 
hypothesis that baseline score is not related to effect size yields a Z value of −2.1731, and 
a corresponding P value of 0.0298.

As noted, in Figure 27.8 the table at the top (Q) displays statistics for the unique 
impact of each covariate. By contrast, the other sections displays statistics for the joint 
impact of all covariates.

In the section labeled “Test of Model” (R), we test the null hypothesis that none 
of the covariates explains any variation in effect size. The Q value for this test is 
16.8169 with 2 degrees of freedom and a corresponding P value of 0.0002. We reject the 
null hypothesis, and conclude that at least one of the covariates is related to effect size.

The section labeled “Goodness of fit” (S) addresses the residual variance. The var-
iance of true effects about the regression line (T2) is 0.0957, and the standard deviation 

FIGURE 27.9  Regression of log odds ratio on Baseline, with Dose held constant. Source: Biostat, Inc.
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of true effects about the regression line (T) is 0.3094. The I2 statistic is 40.35%, which 
tells us that some 40% of the observed variance about the regression line reflects 
variation in true effects rather than sampling error. The test for heterogeneity yields a 
Q value of 23.4706 with 14 degrees of freedom and a corresponding P value of 0.0530. 
We conclude that the model does not fully explain the variation in effects. Finally, the 
program displays R2 as 0.72, which tells us that the covariates are able to explain some 
72% of the initial variance in true effects.

The program offers a number of options for regression. It allows the user to include 
categorical covariates in the model. In this case, the program will automatically create 
a set of dummy variables to represent the covariate. It allows the user to select either 
the Z- distribution or the Knapp–Hartung adjustment  [8] for computing confidence 
intervals and P values (see Chapter 9). It allows the user to estimate T2 using either the 
method of moments [9, 10], maximum likelihood, or restricted maximum likelihood. 
It allows the user to define sets of covariates (for example the linear and curvilinear 
impact of dose) and to assess the impact of the full set with other covariates held 
constant. It allows the user to define multiple prediction models and then compare 
them with each other.

As was true for analyses that compared subgroups, the relationships explored in 
meta- regression (with rare exceptions) are observational rather than causal. In this 
example we attempted to identify the relationship between baseline score and effect 
size while controlling for dose, but there may be other confounding variables that we 
have not considered [11].

27.7 PUBLICATION BIAS

To address the potential impact of publication bias, we can select “Analyses > Publication 
bias” on the main analysis screen, to display Figure 27.10. The two plots in this figure 
show the effect size (on the x- axis) by the standard error (on the y- axis). The large studies 
appear at the top and the smaller studies appear toward the bottom.

The upper plot shows the studies that are actually included in the analysis. A 
vertical line denotes the average effect size (W). If the effects are normally distrib-
uted, we would expect half the studies to fall on either side of the line. However, as 
we move toward the smaller studies, we see a cluster of studies toward the right (X) 
and no corresponding studies at the left (Y). One possible reason for the asymmetrical 
funnel plot is that the studies toward the left were not statistically significant, and 
therefore were not published and did not find their way into the analysis. In that case, 
the combined odds ratio is based on a biased subset of all actual studies and overesti-
mates the true average effect size. (Under this model we expect less bias in the larger 
studies, since these will be statistically significant even with smaller effects.)

In some cases, the trim- and- fill method [12] may be used to remove this bias. The 
method employs an iterative procedure to identify the studies that may be missing. It 
then “creates” these studies and inserts them into the analysis. These are displayed here 
as filled circles (Z) which are the mirror image of the actual studies (AA). We can use 
all the studies (actual and imputed) to compute an adjusted estimate of the mean effect 
size. The initial estimate of the combined odds ratio (in log units) was 0.87 (AB), but the 
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adjusted value (included the imputed studies) is 0.40 (AC). In odds ratio units, the initial 
estimate was 2.40 and the adjusted estimate is 1.49 (displayed by the program on another 
screen). If the asymmetry was due to publication bias, then this adjustment yields an 
estimate of the unbiased effect size. Note that there are reasons other than publication 
bias that may explain or contribute to asymmetry in funnel plots (see Chapter 5).

CMA also features other methods that are typically used to test and/or adjust for 
publication bias. These include the Egger test of the intercept, the Begg and Mazum-
dar rank correlation test, and Rosenthal’s Fail- safe N [13, 14]. The program can also 
generate a text report that explains how to interpret the results for each of the publica-
tion bias procedures.

FIGURE 27.10  Funnel plot and adjustment based on trim and fill. Source: Biostat, Inc.
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27.8 ADDITIONAL FEATURES IN COMPREHENSIVE 
META- ANALYSIS

The first step in conducting a meta- analysis is to compute an effect size and variance 
for each study. Many programs will perform this computation automatically when the 
data are in the form of 2 × 2 tables, or in the form of means and standard deviations for 
each group, but not for more complex data formats. By contrast, CMA will allow the 
user to enter data in more than 100 formats. For example, the user can enter data as 
events and N in each group; or as an odds ratio and its confidence interval; or as a log 
risk ratio and its standard error. Or, the user can enter means and standard deviations 
for two independent groups; or the pre and post scores for a pre/post study; or the P 
value from a t- test for two independent groups; and so on. Critically, the user may use 
a different format for each study. Thus, if one study reports means and standard devia-
tions for two independent groups, a second reports a P value based on two independent 
groups, and a third reports pre and post scores for a pre/post study, the user may enter 
data for each study in its own format. The program will apply the appropriate formula 
for each format to compute the effect size and its variance, and then include all the 
effects in the analysis. The program allows the user to select from an array of effect- size 
indices, including the odds ratio, risk ratio, risk difference, mean difference, standard-
ized mean difference, correlation, hazard ratio, and prevalence, among others.

In the motivating example, each study provides one row of data. CMA also allows 
for the possibility that some (or all) studies will provide more than one row of data. 
There is an option for studies to report data for two or more outcomes, based on the 
same subjects. In the analysis, we could elect to look at either outcome alone. Or, we 
could tell the program to create a synthetic outcome that incorporates both measures, 
taking into account the fact that the two outcomes are not independent of each other.

Similarly, we can enter data for an outcome recorded at two or more timepoints, 
which allows us to assess the impact at each timepoint and to see if the effect size changes 
over time. We can enter data for two or more independent subgroups within studies, and 
then run the analysis using either subgroup or study as the unit of analysis. Finally, we 
can enter data for studies that employed one control group and multiple treatment groups.

27.9 TEACHING ELEMENTS

The program incorporates a number of features intended to make the computations as 
transparent as possible. On the data- entry screen, the user enters summary data and the 
program displays the effect size and its variance. Double- click on the computed values 
and the program will show how those values were computed. On the analysis screen 
there is also a tab labeled “Calculations,” which opens a window onto the calculations.

The program is also able to generate a report that explains the meaning of the var-
ious statistics. For example, the section on heterogeneity reads as follows:

The Q  statistic provides a test of the null hypothesis that all studies in the anal-
ysis share a common effect size. If all studies shared the same true effect size, 
the expected value of Q would be equal to the degrees of freedom (the number of 
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studies minus 1). The Q- value is 55.612 with 16 degrees of freedom and P < 0.001. 
Using a criterion alpha of 0.10, we can reject the null hypothesis that the true 
effect size is the same in all these studies. The I2 statistic is 71%, which tells us that 
some 71% of the variance in observed effects reflects variance in true effects rather 
than sampling error. τ2, the variance of true effect sizes, is 0.346 in log units. T, 
the standard deviation of true effect sizes, is 0.588 in log units. If we assume that 
the true effects are normally distributed (in log units), we can estimate that the 
prediction interval is 0.648 to 8.897. The true effect size in 95% of all comparable 
populations falls in this interval.

27.10 DOCUMENTATION

A manual is installed with the program. Each module in the program features an inter-
active guide that will walk the user through that module. Additionally, the website 
offers an array of PDFs and videos that show how to enter data, run the analysis, and 
then interpret the output. In each case we also discuss how to report the data. The 
program’s algorithms are discussed in the text Introduction to Meta- Analysis, Second 
Edition [15]. Key chapters from this text may be downloaded free on the website. A 
manual for meta- regression is also available for download.

27.11 AVAILABILITY

The program’s website is http://www.Meta- Analysis.com. The program may be down-
loaded and run for free as a trial. The website lists rates for licenses. There are dis-
counts available for nonprofit institutions and for students. The program is free for 
short- term workshops in meta- analysis, and is available at a discount for semester- 
length classes in meta- analysis.

All materials relevant to this chapter can be accessed at http://www.Meta- Analysis.
com or at www.systematic-reviews3.org. This includes a PDF with step- by- step instruc-
tions for performing the analyses in this chapter, and the data file. Questions should be 
sent to Info@Meta- Analysis.com.

Another program on the website is CMA Prediction Intervals. Researchers who are 
using Revman, Stata, R, or other software for their meta- analysis can use this software 
to plot the prediction intervals and distribution of true effects, as shown in Figure 27.4.
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