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Introduction

This first collection of articles from the Stata Technical Bulletin and the Stata Jour-
nal brings together updated user-written commands for meta-analysis, which has been
defined as a statistical analysis that combines or integrates the results of several indepen-
dent studies considered by the analyst to be combinable (Huque 1988). The statistician
Karl Pearson is commonly credited with performing the first meta-analysis more than a
century ago (Pearson 1904)—the term “meta-analysis” was first used by Glass (1976).
The rapid increase over the last three decades in the number of meta-analyses reported in
the social and medical literature has been accompanied by extensive research on the un-
derlying statistical methods. It is therefore surprising that the major statistical software
packages have been slow to provide meta-analytic routines (Sterne, Egger, and Sutton
2001).

During the mid-1990s, Stata users recognized that the ease with which new com-
mands could be written and distributed, and the availability of improved graphics pro-
gramming facilities, provided an opportunity to make meta-analysis software widely
available. The first command, meta, was published in 1997 (Sharp and Sterne 1997),
while the metan command—now the main Stata meta-analysis command—was pub-
lished shortly afterward (Bradburn, Deeks, and Altman 1998). A major motivation for
writing metan was to provide independent validation of the routines programmed into
the specialist software written for the Cochrane Collaboration, an international organi-
zation dedicated to improving health care decision-making globally, through systematic
reviews of the effects of health care interventions, published in The Cochrane Library
(see www.cochrane.org). The groups responsible for the meta and metan commands
combined to produce a major update to metan that was published in 2008 (Harris et al.
2008). This update uses the most recent Stata graphics routines to provide flexible
displays combining text and figures. Further articles describe commands for cumula-
tive meta-analysis (Sterne 1998) and for meta-analysis of p-values (Tobias 1999), which
can be traced back to Fisher (1932). Between-study heterogeneity in results, which
can cause major difficulties in interpretation, can be investigated using meta-regression
(Berkey et al. 1995). The metareg command (Sharp 1998) remains one of the few
implementations of meta-regression and has been updated to take account of improve-
ments in Stata estimation facilities and recent methodological developments (Harbord
and Higgins 2008).
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Enthusiasm for meta-analysis has been tempered by a realization that flaws in the
conduct of studies (Schulz et al. 1995), and the tendency for the publication process
to favor studies with statistically significant results (Begg and Berlin 1988; Dickersin,
Min, and Meinert 1992), can lead to the results of meta-analyses mirroring overopti-
mistic results from the original studies (Egger et al. 1997). A set of Stata commands—
metafunnel, confunnel, metabias, and metatrim—address these issues both graphi-
cally (via routines to draw standard funnel plots and “contour-enhanced” funnel plots)
and statistically, by providing tests for funnel plot asymmetry, which can be used to
diagnose publication bias and other small-study effects (Sterne, Gavaghan, and Egger
2000; Sterne, Egger, and Moher 2008).

This collection also contains advanced routines that exploit Stata’s range of esti-
mation procedures. Meta-analysis of studies that estimate the accuracy of diagnostic
tests, implemented in the metandi command, is inherently bivariate, because of the
trade-off between sensitivity and specificity (Rutter and Gatsonis 2001; Reitsma et al.
2005). Meta-analyses of observational studies will often need to combine dose–response
relationships, but reports of such studies often report comparisons between three or
more categories. The method of Greenland and Longnecker (1992), implemented in the
glst command, converts categorical to dose–response comparisons and can thus be
used to derive the data needed for dose–response meta-analyses. White and colleagues
(White and Higgins 2009; White 2009) have recently provided general routines to deal
with missing data in meta-analysis, and for multivariate random-effects meta-analysis.

Finally, the appendix lists user-written meta-analysis commands that have not, so
far, been accepted for publication in the Stata Journal. For the most up-to-date infor-
mation on meta-analysis commands in Stata, readers are encouraged to check the Stata
frequently asked question on meta-analysis:

http://www.stata.com/support/faqs/stat/meta.html

Those involved in developing Stata meta-analysis commands have been delighted
by their widespread worldwide use. However, a by-product of the large number of
commands and updates to these commands now available has been that users find it
increasingly difficult to identify the most recent version of commands, the commands
most relevant to a particular purpose, and the related documentation. This collection
aims to provide a comprehensive description of the facilities for meta-analysis now avail-
able in Stata and has also stimulated the production and documentation of a number of
updates to existing commands, some of which were long overdue. I hope that this collec-
tion will be useful to the large number of Stata users already conducting meta-analyses,
as well as facilitate interest in and use of the commands by new users.

Jonathan A. C. Sterne
February 2009
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Install the software 

 

You can download all the user-written commands described in the Meta-Analysis in 

Stata: An Updated Collection from the Stata Journal from within Stata. Download the 

installation command by using the net command. At the Stata prompt, type 

      . net from http://www.stata-press.com/data/mais 

      . net install mais 

After installing this file, type spinst_mais to obtain all the user-written commands 

discussed in this collection, except for those commands listed in the appendix. 

Instructions on how to obtain those commands are given in the appendix. If there are 

any error messages after typing spinst_mais, follow the instructions at the bottom of 

the output to complete the download.  
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The second change to metabias is straightforward. A square root was inadvertently left out of the formula for the p

value of the asymmetry test that is calculated for an individual stratum when option by�� is specified. This formula has been
corrected. Users of this program should repeat any stratified analyses they performed with the original program. Please note that
unstratified analyses were not affected by this error.

The third change to metabias extends the error-trapping capability and reports previously trapped errors more accurately
and completely. A noteworthy aspect of this change is the addition of an error trap for the ci option. This trap addresses the
situation where epidemiological effect estimates and associated error measures are provided to metabias as risk (or odds) ratios
and corresponding confidence intervals. Unfortunately, if the user failed to specify option ci in the previous release, metabias
assumed that the input was in the default (theta, se theta) format and calculated incorrect results. The current release checks for
this situation by counting the number of variables on the command line. If more than two variables are specified, metabias
checks for the presence of option ci. If ci is not present, metabias assumes it was accidentally omitted, displays an appropriate
warning message, and proceeds to carry out the analysis as if ci had been specified.

Warning: The user should be aware that it remains possible to provide theta and its variance, var theta, on the command
line without specifying option var. This error, unfortunately, cannot be trapped and will result in an incorrect analysis. Though
only a limited safeguard, the program now explicitly indicates the data input option specified by the user, or alternatively, warns
that the default data input form was assumed.

The fourth change to metabias has effect only when options graph�begg� and ci are specified together. graph�begg�
requests a funnel graph. Option ci indicates that the user provided the effect estimates in their exponentiated form, exp(theta)—
usually a risk or odds ratio, and provided the variability measures as confidence intervals, (ll, ul). Since the funnel graph always
plots theta against its standard error, metabias correctly generated theta by taking the log of the effect estimate and correctly
calculated se theta from the confidence interval. The error was that the axes of the graph were titled using the variable name (or
variable label, if available) and did not acknowledge the log transform. This was both confusing and wrong and is corrected in
this release. Now when both graph�begg� and ci are specified, if the variable name for the effect estimate is RR, the y-axis is
titled “log[RR]” and the x-axis is titled “s.e. of: log[RR]”. If a variable label is provided, it replaces the variable name in these
axis titles.
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Background

When several studies are of a similar design, it often makes sense to try to combine the information from them all to gain
precision and to investigate consistencies and discrepancies between their results. In recent years there has been a considerable
growth of this type of analysis in several fields, and in medical research in particular. In medicine such studies usually relate
to controlled trials of therapy, but the same principles apply in any scientific area; for example in epidemiology, psychology,
and educational research. The essence of meta-analysis is to obtain a single estimate of the effect of interest (effect size) from
some statistic observed in each of several similar studies. All methods of meta-analysis estimate the overall effect by computing
a weighted average of the studies’ individual estimates of effect.

metan provides methods for the meta-analysis of studies with two groups. With binary data, the effect measure can be the
difference between proportions (sometimes called the risk difference or absolute risk reduction), the ratio of two proportions (risk
ratio or relative risk), or the odds ratio. With continuous data, both observed differences in means or standardized differences in
means (effect sizes) can be used. For both binary and continuous data, either fixed effects or random effects models can be fitted
(Fleiss 1993). There are also other approaches, including empirical and fully Bayesian methods. Meta-analysis can be extended
to other types of data and study designs, but these are not considered here.

As well as the primary pooling analysis, there are secondary analyses that are often performed. One common additional
analysis is to test whether there is excess heterogeneity in effects across the studies. There are also several graphs that can be
used to supplement the main analysis.
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Recently Sharp and Sterne (1997) presented a program to carry out some of the above analyses, and further programs have
been submitted to perform various diagnostics and further analyses. The differences between metan and these other programs
are discussed below.

Data structure

Consider a meta-analysis of k studies. When the studies have a binary outcome, the results of each study can be presented
in a 2� 2 table (Table 1) giving the numbers of subjects who do or do not experience the event in each of the two groups (here
called intervention and control).

Table 1. Binary data
Study i; 1� i � k Event No event
Intervention ai bi

Control ci di

If the outcome is a continuous measure, the number of subjects in each of the two groups, their mean response, and the
standard deviation of their responses are required to perform meta-analysis (Table 2).

Table 2. Continuous data
Study i; (1� i � k) Group size Mean response Standard deviation
Intervention n�i m�i sd�i

Control n�i m�i sd�i

Analysis of binary data using fixed effect models

There are two alternative fixed effect analyses. The inverse variance method (sometimes referred to as Woolf’s method)
computes an average effect by weighting each study’s log odds ratio, log relative risk, or risk difference according to the inverse
of their sampling variance, such that studies with higher precision (lower variance) are given higher weights. This method uses
large sample asymptotic sampling variances, so it may perform poorly for studies with very low or very high event rates or
small sample sizes. In other situations, the inverse variance method gives a minimum variance unbiased estimate.

The Mantel–Haenszel method uses an alternative weighting scheme originally derived for analyzing stratified case–control
studies. The method was first described for the odds ratio by Mantel and Haenszel (1959) and extended to the relative risk and
risk difference by Greenland and Robins (1985). The estimate of the variance of the overall odds ratio was described by Robins,
Greenland, and Breslow (1986). These methods are preferable to the inverse variance method as they have been shown to be
robust when data are sparse, and give similar estimates to the inverse variance method in other situations. They are the default in
the metan command. Alternative formulations of the Mantel–Haenszel methods more suited to analyzing stratified case–control
studies are available in the epitab commands.

Peto proposed an assumption free method for estimating an overall odds ratio from the results of several large clinical
trials (Yusuf, Peto, et al. 1985). The method sums across all studies the difference between the observed (O[ai]) and expected
(E[ai]) numbers of events in the intervention group (the expected number of events being estimated under the null hypothesis
of no treatment effect). The expected value of the sum of O� E under the null hypothesis is zero. The overall log odds ratio
is estimated from the ratio of the sum of the O � E and the sum of the hypergeometric variances from individual trials. This
method gives valid estimates when combining large balanced trials with small treatment effects, but has been shown to give
biased estimates in other situations (Greenland and Salvan 1990).

If a study’s 2 � 2 table contains one or more zero cells, then computational difficulties may be encountered in both the
inverse variance and the Mantel–Haenszel methods. These can be overcome by adding a standard correction of 0.5 to all cells
in the 2� 2 table, and this is the approach adopted here. However, when there are no events in one whole column of the 2� 2
table (i.e., all subjects have the same outcome regardless of group), the odds ratio and the relative risk cannot be estimated, and
the study is given zero weight in the meta-analysis. Such trials are included in the risk difference methods as they are informative
that the difference in risk is small.

Analysis of continuous data using fixed effect models

The weighted mean difference meta-analysis combines the differences between the means of intervention and control groups
(m�i � m�i) to estimate the overall mean difference (Sinclair and Bracken 1992). A prerequisite of this method is that the
response is measured in the same units using comparable devices in all studies. Studies are weighted using the inverse of the
variance of the differences in means. Normality within trial arms is assumed, and between trial variations in standard deviations
are attributed to differences in precision, and are assumed equal in both study arms.

An alternative approach is to pool standardized differences in means, calculated as the ratio of the observed difference in
means to an estimate of the standard deviation of the response. This approach is especially appropriate when studies measure
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the same concept (e.g., pain or depression) but use a variety of continuous scales. By standardization, the study results are
transformed to a common scale (standard deviation units) that facilitates pooling. There are various methods for computing the
standardized study results: Glass’s method (Glass, et al. 1981) divides the differences in means by the control group standard
deviation, whereas Cohen’s and Hedges’ methods use the same basic approach, but divide by an estimate of the standard deviation
obtained from pooling the standard deviations from both experimental and control groups (Rosenthal 1994). Hedges’ method
incorporates a small sample bias correction factor (Hedges and Olkin 1985). An inverse variance weighting method is used in all
the formulations. Normality within trial arms is assumed, and all differences in standard deviations between trials are attributed
to variations in the scale of measurement.

Test for heterogeneity

For all the above methods, the consistency or homogeneity of the study results can be assessed by considering an appropriately
weighted sum of the differences between the k individual study results and the overall estimate. The test statistic has a ��

distribution with k � 1 degrees of freedom (DerSimonian and Laird 1986).

Analysis of binary or continuous data using random effect models

An approach developed by DerSimonian and Laird (1986) can be used to perform random effect meta-analysis for all the
effect measures discussed above (except the Peto method). Such models assume that the treatment effects observed in the trials
are a random sample from a distribution of treatment effects with a variance ��. This is in contrast to the fixed effect models
which assume that the observed treatment effects are all estimates of a single treatment effect. The DerSimonian and Laird
methods incorporate an estimate of the between-study variation �� into both the study weights (which are the inverse of the sum
of the individual sampling variance and the between studies variance ��) and the standard error of the estimate of the common
effect. Where there are computational problems for binary data due to zero cells the same approach is used as for fixed effect
models.

Where there is excess variability (heterogeneity) between study results, random effect models typically produce more
conservative estimates of the significance of the treatment effect (i.e., a wider confidence interval) than fixed effect models. As
they give proportionately higher weights to smaller studies and lower weights to larger studies than fixed effect analyses, there
may also be differences between fixed and random models in the estimate of the treatment effect.

Tests of overall effect

For all analyses, the significance of the overall effect is calculated by computing a z score as the ratio of the overall effect
to its standard error and comparing it with the standard normal distribution. Alternatively, for the Mantel–Haenszel odds ratio
and Peto odds ratio method, �� tests of overall effect are available (Breslow and Day 1980).

Graphical analyses

Three plots are available in these programs. The most common graphical display to accompany a meta-analysis shows
horizontal lines for each study, depicting estimates and confidence intervals, commonly called a forest plot. The size of the
plotting symbol for the point estimate in each study is proportional to the weight that each trial contributes in the meta-analysis.
The overall estimate and confidence interval are marked by a diamond. For binary data, a L’Abbé plot (L’Abbé et al. 1987)
plots the event rates in control and experimental groups by study. For all data types a funnel plot shows the relation between the
effect size and precision of the estimate. It can be used to examine whether there is asymmetry suggesting possible publication
bias (Egger et al. 1997), which usually occurs where studies with negative results are less likely to be published than studies
with positive results.

Each trial i should be allocated one row in the dataset. There are three commands for invoking the routines; metan, funnel,
and labbe, which are detailed below.

Syntax for metan

metan varlist
�
if exp

� �
in range

� �
� options

�

This main meta-analysis routine requires either four or six variables to be declared. When four variables are specified,
analysis of binary data is performed. When six, the data are assumed continuous. Following the syntax of Tables 1 and 2, the
varlist should be either

a b c d

or

n1 m1 sd1 n2 m2 sd2
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Scaling and pooling options for metan

Options for binary data

rr pool risk ratios (the default).

or pool odds ratios.

rd pool risk differences.

fixed specifies a fixed effect model using the method of Mantel and Haenszel (the default).

fixedi specifies a fixed effect model using the inverse variance method.

peto specifies that Peto’s assumption free method is used to pool odds ratios.

random specifies a random effect model using the method of DerSimonian and Laird, with the estimate of heterogeneity being
taken from the Mantel–Haenszel model.

randomi specifies a random effect model using the method of DerSimonian and Laird, with the estimate of heterogeneity being
taken from the inverse variance fixed effect model.

cornfield computes confidence intervals for odds ratios by the Cornfield method, rather than the (default) Woolf method.

chi� displays the chi-squared statistic (instead of z) for the test of significance of the pooled effect size. This is available only
for odds ratios pooled using Peto or Mantel–Haenszel methods.

Options for continuous data

cohen pools standardized mean differences by the method of Cohen (the default).

hedges pools standardized mean differences by the method of Hedges.

glass pools standardized mean differences by the method of Glass.

nostandard pools unstandardized mean differences.

fixed specifies a fixed effect model using the inverse variance method (the default).

random specifies a random effect model using the DerSimonian and Laird method.

General output options for metan

ilevel�� specifies the significance level (e.g., 90, 95, 99) for the individual trial confidence intervals.

olevel�� specifies the significance level (e.g., 90, 95, 99) for the overall (pooled) confidence intervals.

ilevel and olevel need not be the same, and by default are equal to the significance level specified using set level.

sortby�� sorts by given variable(s).

label��namevar=variable containing name string� ��yearvar=variable containing year string�� labels the data by its name,
year, or both. However, neither variable is required. For the table display, the overall length of the label is restricted to 16
characters.

nokeep denotes that Stata is not to retain the study parameters in permanent variables (see Saved results from metan below).

notable prevents the display of the table of results.

nograph prevents the display of the graph.

Graphical display options for forest plot in metan

xlabel�� defines x-axis labels.

force�� forces the x-axis scale to be in the range specified in xlabel��.

boxsha�� controls box shading intensity, between 0 and 4. The default is 4, which produces a filled box.

boxsca�� controls box size, which by default is 1.

texts�� specifies font size for text display on graph. The default size is 1.

saving�filename� saves the forest plot to the specified file.

nowt prevents the display of study weight on the graph.

nostats prevents the display of study statistics on the graph.
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nooverall prevents the display of overall effect size on the graph (automatically enforces the nowt option).

t���� t���� b��� add titles to the graph in the usual manner.

Note that for graphs on the log scale (that is, ORs or RRs), values outside the range � 10��� 10� � are not displayed. A confidence
interval which extends beyond this will have an arrow added at the end of the range; should the effect size and confidence
interval be completely off this scale, they will be represented as an arrow.

Saved results from metan

The following results are stored in global macros:

�S � pooled effect size (ES) �S � �� test for heterogeneity
�S � standard error of ES �S � degrees of freedom (�� heterogeneity)
�S � lower confidence limit of pooled ES �S � p(�� heterogeneity)
�S � upper confidence limit of pooled ES �S �	 �� value for ES (OR only)
�S 
 z value for ES �S �� p(�� for ES) (OR only)
�S � p(Z) �S �� estimate of ��, between study variance (D&L only)

Also, the following variables are added to the dataset by default (to override this use the nokeep option):

Variable name Definition

ES Effect size (ES)
seES Standard error of ES
LCI Lower confidence limit for ES
UCI Upper confidence limit for ES
WT Study weight
SS Study sample size

Syntax for funnel

funnel
�
precision var effect size

� �
if exp

� �
in range

� �
� options

�

If the funnel command is invoked following metan with no parameters specified it will produce a standard funnel plot of
precision (1/SE) against treatment effect. Addition of the noinvert option will produce a plot of standard error against
treatment effect. The alternative sample size version of the funnel plot can be obtained by using the sample option (this
automatically selects the noinvert option). Alternative plots can be created by specifying precision var and effect size. If
the effect size is a relative risk or odds ratio, then the xlog graph option should be used to create a symmetrical plot.

Options for funnel

All options for graph are valid. Additionally, the following may be specified:

sample denotes that the y-axis is the sample size and not a standard error.

noinvert prevents the values of the precision variable from being inverted.

ysqrt represents the y-axis on a square-root scale.

overall�x� draws a dashed vertical line at the overall effect size given by x.

Syntax for labbe

labbe a b c d
�
if exp

� �
in range

� �
weight�weightvar

� �
� options

�

Options for labbe

By default, the size of the plotting symbol is proportional to the sample size of the study. If weight is specified, the plotting size
will be proportional to weightvar. All options for graph are valid. Additionally, the following two options may be used:

nowt declares that the plotted data points are to be the same size.

percent displays the event rates as percentages rather than proportions.

One note of caution: depending on the size of the studies, you may need to rescale the graph (using the psize�� graph option).

There are differences between metan and meta (Sharp and Sterne 1998). First, metan requires a more straightforward
data format than meta: meta requires calculation of the effect size and its standard error (or confidence interval) for each trial,
whilst metan calculates effect sizes from 2� 2 tables for binary data, and from means, standard deviations, and samples sizes
for continuous data. All commonly used effect sizes (including standardized effect sizes for continuous data) are available as
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options in metan. Secondly, where meta provides inverse variance, empirical Bayes and DerSimonian and Laird methods for
pooling individual studies, metan additionally provides the commonly used Mantel–Haenszel and Peto methods (but does not
provide an empirical Bayes method). There are also differences in the format and options for the forest plot.

Example 1: Interventions in smoking cessation

Silagy and Ketteridge (1997) reported a systematic review of randomized controlled trials investigating the effects of physician
advice on smoking cessation. In their review, they considered a meta-analysis of trials which have randomized individuals to
receive either a minimal smoking cessation intervention from their family doctor or no intervention. An intervention was
considered to be “minimal” if it consisted of advice provided by a physician during a single consultation lasting less than 20
minutes (possibly in combination with an information leaflet) with at most one follow-up visit. The outcome of interest was
cessation of smoking. The data are presented below:

� describe

Contains data from example��dta
obs� ��
vars� � �� Nov ���� �	�
�
size� 
		 ��
�� of memory free�

�������������������������������������������������������������������������������
�� name str�� ��s
�� year float ���g
�� a float ���g
	� r� float ���g

� c float ���g
�� r� float ���g

�������������������������������������������������������������������������������
Sorted by�

� list

name year a r� c r�
�� Slama ���� � ��	 � ���
�� Porter ���� 
 ��� 	 ��
�� Demers ���� �
 ��� 
 ���
	� Stewart ���� �� 
�	 	 ���

� Page ���� � ��	 
 ��
�� Slama ���
 	� ���� 
 ���
�� Haug ���	 �� �
	 � ���
�� Russell ���� �	 ���� � ����
�� Wilson ���� �� ��� �� ��

��� McDowell ���
 �� �
 �� ��
��� Janz ���� �� �		 �� ���
��� Wilson ���� 	� 
�� �� 
��
��� Vetter ���� �	 ��� �� ��	
�	� Higashi ���
 
� 	�� �
 	��
�
� Russell ���� 	� ��� �
 �
�
��� Jamrozik ���	 �� 
�� 
� 
	�

We start by producing the data in the format of Table 1, and pooling risk ratios by the Mantel–Haenszel fixed effect method.

� gen b�r��a

� gen d�r��c

� metan a b c d� rr label�namevar�name�yearvar�year� xlabel�����������
�����

� ���� force texts����
� t��Impact of physician advice in� t��smoking cessation�

Study � RR ��
 Conf� Interval�  Weight
�������������������������������������������������������������������������
Slama ������ � ������� ���	��� ������� �	���
�
Porter ������ � ������� ����
	
 	������ ������	
Demers ������ � � ����	� ���	��� ������

Stewart ������ � ������	 �����		 ����	�	 ������
Page ������ � ��
	��� ���
��� ������ ��
�	��
Slama ����
� � ��
	�� ��	��
� ���	��� ���			�
Haug ����	� � ������� ������
 	���	�� �������
Russell ������ � 	�
���� �����	� ������� �������
Wilson ������ � ������� ������� ����	�� 	�	����
McDowell ����
� � ������� �	����� ������� 	��	���
Janz ������ � �����
� ����
�� �����
� 
�
����
Wilson ������ � ������	 ���	��
 	�����
 ���
�	�
Vetter ������ � �����	� ���
�	� ������� ���	���
Higashi ����
� � ��
���� ���
�
� �����
� ����
��
Russell ������ � ������ ����	�� ���	��� �
����

Jamrozik ����	� � ��	��
� ����	�
 ���
��� ����	�
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�������������������������������������������������������������������������
M�H pooled RR � ������	 ��

��
 ���	�
	

�������������������������������������������������������������������������
Heterogeneity chi�squared  ���	� �d�f�  �	� p  �����
Test of RR� � z ���� p  �����

Impact of physician advice in
smoking cessat ion

Risk ratio
.1 .2 .5 1 2 5 10

Study

 % Weight

 Risk ratio

 (95% CI)

 1.02 (0.06,16.08) Slama (1990)   0.4
 1.11 (0.31,4.02) Porter (1972)   1.7
 3.00 (1.10,8.15) Demers (1990)   2.0
 1.02 (0.33,3.16) Stewart  (1982)   2.4
 0.95 (0.33,2.80) Page (1986)   2.5
 3.55 (1.41,8.94) Slama (1995)   2.8
 2.02 (0.89,4.61) Haug (1994)   3.3
 4.56 (2.12,9.81) Russel l  (1979)   3.1
 1.89 (0.96,3.72) Wi lson (1982)   4.5
 1.00 (0.47,2.14) McDowel l  (1985)   4.6
 1.72 (0.92,3.22) Janz (1987)   5.6
 2.33 (1.35,4.04) Wi lson (1990)   7.2
 1.68 (1.00,2.83) Vetter (1990)   8.1
 1.58 (1.05,2.38) Higashi (1995)  13.9
 1.06 (0.69,1.64) Russel l  (1983)  15.2
 1.42 (1.03,1.96) Jamrozik (1984)  22.6

 1.68 (1.44,1.95) Overal l  (95% CI)

Figure 1. Forest plot for Example 1.

It appears that there is a significant benefit of such minimal intervention. The nonsignificance of the test for heterogeneity
suggests that the differences between the studies are explicable by random variation, although this test has low statistical power.
The L’Abbé plot provides an alternative way of displaying the data which allows inspection of the variability in experimental
and control group event rates.

� labbe a b c d � xlabel��������������� ylabel��������������� psize�	�� t��Impact of physician
� advice in smoking cessation�� t��Proportion of patients ceasing to smoke� l��Physician
� intervention group patients� b��Control group patients�
� See Figure 2 below�

A funnel plot can be used to investigate the possibility that the studies which were included in the review were a biased
selection. The alternative command metabias (Steichen 1998) additionally gives a formal test for nonrandom inclusion of studies
in the review.

� funnel � xlog ylabel�����
��� xlabel���	�����	� xli��� overall������ b��Risk Ratio�
� See Figure 3 below�

Impact of physician advice in smoking cessation:
Proport ion of patients ceasing to smoke
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Figure 2. L’Abbé plot for Example 1. Figure 3. Funnel plot for Example 1.

Interpretation of funnel plots can be difficult, as a certain degree of asymmetry is to be expected by chance.

Example 2

D’Agostino and Weintraub (1995) reported a meta-analysis of the effects of antihistamines in common cold preparations
on the severity of sneezing and runny nose. They combined data from nine randomized trials in which participants with new
colds were randomly assigned to an active antihistamine treatment or placebo. The effect of the treatment was measured as the
change in severity of runny nose following one day’s treatment. The trials used a variety of scales for measuring severity. Due
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to this, standardized mean differences are used in the analysis. We choose to use Cohen’s method (the default) to compute the
standardized mean difference.

� use example�

� list n� mean� sd� n� mean� sd�

n� mean� sd� n� mean� sd�
�� �� ���� ���� �� ����� ���	
�� ��� �
�� ��
� ��� ��� ����
�� �� ��� ��	� �	 ���� ����
	� �� ��� ����
 �� ���
 ��		
�� �� �	�� ����
 �� ���� ����	
�� �
 ���� ����� 	� ���� ����	
�� �� ����� ����� �� ���
� �����
�� �� ����� ����� � ����� ����


� �
	 �	
 ��
� �
� ���	 ����

� metan n� mean� sd� n� mean� sd� xlabel��������������������
� t��Effect of antihistamines on cold severity�

Study � SMD �
�� Conf� Interval� � Weight
�������������������������������������������������������������������������
� � �����	� �����
�� ���	
�� ��	���

� � ����	�� ����
�
� �	�	��� �����
	
� � ����� ���	���� ��	�
�� �������
	 � ����	�� ����
��� �����
� 	����	�
� � ������� ��	����� �
	��
� ���	���
� � ������
 �������� ������� ���

��
� � �
����� ��
���� ������� ������	
� � ��
���� �������
 ��	
�� ����
��

 � ������
 ����
�
 �	����
 �������
�������������������������������������������������������������������������

I�V pooled SMD � ���	��	 �����	 �������
�������������������������������������������������������������������������
Heterogeneity chi�squared � 
��� �d�f� � �� p � �����
Test of SMD�� � z� ���� p � �����

Effect of antihistimines on cold severity

Standardised Mean dif f .
-1.5 -1 -.5 0 .5 1 1.5

Study
 % Weight

 Standardised Mean dif f .

 (95% CI)

 0.57 (-0.22,1.35) 1   2.5

 0.21 (-0.03,0.45) 2  26.0

 0.20 (-0.15,0.55) 3  12.5

 0.01 (-0.58,0.60) 4   4.4

 0.24 (-0.47,0.94) 5   3.0

 -0.17 (-0.61,0.27) 6   7.9

 0.93 (0.30,1.57) 7   3.7

 0.59 (-0.31,1.49) 8   1.9

 0.26 (0.06,0.46) 9  38.1

 0.23 (0.11,0.36) Overal l  (95% CI)

Figure 4. Forest plot for Example 2.

The patients given antihistamines appear to have a greater reduction in severity of cold symptoms in the first 24 hours of
treatment. Again the between-study differences are explicable by random variation.

Formulas

Individual study responses: binary outcomes

For study i denote the cell counts as in Table 1, and let n�i � ai � bi , n�i � ci � di (the number of participants in the
treatment and control groups respectively) and Ni � n�i � n�i (the number in the study). For the Peto method the individual
odds ratios are given by

dORi � exp f�ai � E �ai�� �vig

with its logarithm having standard error

sefln�dORi�g �
p

��vi

where E�ai� � n�i�ai � ci��Ni (the expected number of events in the exposure group) and
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vi � �n�in�i�ai � ci��bi � di����N
�

i
�Ni � ��� (the hypergeometric variance of ai).

For other methods of combining trials, the odds ratio for each study is given by

dORi � aidi�bici

the standard error of the log odds ratio being

sefln�dORi�g �
p

��ai � ��bi � ��ci � ��di

The risk ratio for each study is given by

dRRi � �ai�n�i���ci�n�i�

the standard error of the log risk ratio being

sefln�dRRi�g �
p

��ai � ��ci � ��n�i � ��n�i

The risk difference for each study is given by

dRDi � �ai�n�i�� �ci�n�i� with standard error se�dRDi� �
p
aibi�n��i � cidi�n��i

where zero cells cause problems with computation of the standard errors, 0.5 is added to all cells (ai,bi,ci,di) for that study.

Individual study responses: continuous outcomes

Denote the number of subjects, mean and standard deviation as in Table 1, and let

Ni � n�i � n�i

and

si �
p

��n�i � ��sd�
�i
� �n�i � ��sd�

�i
���Ni � ��

be the pooled standard deviation of the two groups. The weighted mean difference is given by

dWMDi � m�i �m�i with standard error se� dWMDi� �
p
sd�

�i
�n�i � sd�

�i
�n�i

There are three formulations of the standardized mean difference. The default is the measure suggested by Cohen (Cohen’s
d) which is the ratio of the mean difference to the pooled standard deviation si; i.e.,

bdi � �m�i �m�i��si with standard error se�bdi� �

q
Ni��n�in�i� � bd�i ���Ni � ��

Hedges suggested a small-sample adjustment to the mean difference (Hedges adjusted g), to give

bgi � ��m�i �m�i��si���� 	��
Ni � ��� with standard error se�bgi� �pNi��n�in�i� � bg�i ���Ni � 	��
�

Glass suggested using the control group standard deviation as the best estimate of the scaling factor to give the summary measure
(Glass’s b�), where

b�i � �m�i �m�i��sd�i� with standard error se��i� �
q
Ni��n�in�i� � b��

i
���n�i � ��

Mantel–Haenszel methods for combining trials

For each study, the effect size from each trial b�i is given weight wi in the analysis. The overall estimate of the pooled
effect, b�MH is given by

b�MH=�
P
wib�i���Pwi�

For combining odds ratios, each study’s OR is given weight

wi � bici�Ni,

and the logarithm of dORMH has standard error given by

sefln�dORMH�g �
p

�PR���R� � ��PS �QR����R� S�� � �QS���S�

where

R �
P
aidi�Ni S �

P
bici�Ni

PR �
P

�ai � di�aidi�N
�

i
PS �

P
�ai � di�bici�N

�

i

QR �
P

�bi � ci�aidi�N
�

i
QS �

P
�bi � ci�bici�N

�

i
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For combining risk ratios, each study’s RR is given weight

wi � �n�ici��Ni

and the logarithm of dRRMH has standard error given by

sefln�dRRMH�g �
p
P��R� S�

where

P �
P

�n�in�i�ai � ci�� aiciNi��N
�

i
R �

P
ain�i�Ni S �

P
cin�i�Ni

For risk differences, each study’s RD has the weight

wi � n�in�i�Ni

and dRDMH has standard error given by

sefdRDMHg �
p

�P�Q��

where

P �
P

�aibin
�

�i
� cidin

�

�i
��n�in�iN

�

i
� Q �

P
n�in�i�Ni

The heterogeneity statistic is given by

Q �
P
wi�b�i � b�MH��

where � is the log odds ratio, log relative risk or risk difference. Under the null hypothesis that there are no differences in
treatment effect between trials, this follows a �� distribution on k � 1 degrees of freedom.

Inverse variance methods for combining trials

Here, when considering odds ratios or risk ratios, we define the effect size �i to be the natural logarithm of the trial’s OR
or RR; otherwise, we consider the summary statistic (RD, SMD or WMD) itself. The individual effect sizes are weighted
according to the reciprocal of their variance (calculated as the square of the standard errors given in the individual study section
above) giving

wi � ��se�b�i��
These are combined to give a pooled estimate

b�IV � �
P
wib�i���Pwi�

with

sefb�IV g � ��
pP

wi

The heterogeneity statistic is given by a similar formula as for the Mantel–Haenszel method, using the inverse variance
form of the weights, wi

Q �
P
wi�b�i � b�IV ��

Peto’s assumption free method for combining trials

Here, the overall odds ratio is given by

dORPeto � expf
P
wi ln�dORi��

P
wig

where the odds ratio dORi is calculated using the approximate method described in the individual trial section, and the weights,
wi are equal to the hypergeometric variances, vi.

The logarithm of the odds ratio has standard error

sefln�dORPeto�g � ��
pP

wi

The heterogeneity statistic is given by

Q �
P
wif�lndORi�

� � �lndORPeto�
�g

DerSimonian and Laird random effect models

Under the random effect model, the assumption of a common treatment effect is relaxed, and the effect sizes are assumed
to have a distribution
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�i � N��� ���

The estimate of �� is given by

b�� � maxf�Q� �k � �����
P

wi � �
P
�w�

i
��
P

wi��� �g

The estimate of the combined effect for heterogeneity may be taken as either the Mantel–Haenszel or the inverse variance
estimate. Again, for odds ratios and risk ratios, the effect size is taken as the natural logarithm of the OR and RR. Each study’s
effect size is given weight

wi � ���se�b�i�� � b���
The pooled effect size is given by

b�DL � �
P

wib�i���Pwi�

and

sefb�DLg � ��
pP

wi

Note that in the case where the heterogeneity statistic Q is less than or equal to its degrees of freedom �k� 1�, the estimate
of the between trial variation, b��� is zero, and the weights reduce to those given by the inverse variance method.

Confidence intervals

The 1���1� ��	 confidence interval for b� is given by

b� � se�b��
�1� ��2�� to b� � se�b��
�1� ��2�

where b� is the log odds ratio, log relative risk, risk difference, mean difference or standardized mean difference, and 
 is the
standard normal distribution function. The Cornfield confidence intervals for odds ratios are calculated as explained in the Stata
manual for the epitab command.

Test statistics

In all cases, the test statistic is given by

z � b��se�b��
where the odds ratio or risk ratio is again considered on the log scale.

For odds ratios pooled by method of Mantel and Haenszel or Peto, an alternative test statistic is available, which is the ��

test of the observed and expected events rate in the exposure group. The expectation and the variance of ai are as given earlier
in the Peto odds ratio section. The test statistic is

�� � f
P
�ai � E�ai��g

��
P

var�ai�

on one degree of freedom. Note that in the case of odds ratios pooled by method of Peto, the two test statistics are identical;
the �� test statistic is simply the square of the z score.
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sg85 Moving summaries

Nicholas J. Cox, University of Durham, UK, FAX (011) 44-91-374-2456, n.j.cox@durham.ac.uk

Syntax

movsumm varname
�
if exp

� �
in range

� �
weight

�
� gen�newvar� result�#��

window�#� end mid f binomial j oweight�string� g wrap
�

fweights and aweights are allowed.

Description

movsumm produces a new variable containing moving summaries of varname for overlapping windows of specified length.
varname will usually (but not necessarily) be a time series with regularly spaced values. Possible summaries are those produced
by summarize and saved in result��.

It is the user’s responsibility to place observations in the appropriate sort order first.

Options

gen�newvar� specifies newvar as the name for the new variable. It is in fact a required option.

result�#� specifies which result�� from summarize is to be used. It is in fact a required option. See the table below. Note
the typographical error in the Stata 5.0 manual entry [R] summarize: result���� contains the 50th percentile (median).

# meaning # meaning

1 number of observations 10 50th percentile (median)
2 sum of weight 11 75th percentile
3 mean 12 90th percentile
4 variance 13 95th percentile
5 minimum 14 skewness
6 maximum 15 kurtosis
7 5th percentile 16 1st percentile
8 10th percentile 17 99th percentile
9 25th percentile 18 sum of variable

window�#� specifies the length of the window, which should be an integer at least 2. The default is 3. By default, results for
odd-length windows are placed in the middle of the window and results for even-length windows are placed at the end of
the window. The defaults can be overridden by end or mid.

end forces results to be placed at the end of the window.

mid forces results to be placed in the middle of the window, or in the case of windows of even length just after it: in the 2nd
of 2, the 3rd of 4, the 4th of 6, and so on.
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Abstract. This article describes updates of the meta-analysis command metan

and options that have been added since the command’s original publication (Brad-
burn, Deeks, and Altman, metan – an alternative meta-analysis command, Stata
Technical Bulletin Reprints, vol. 8, pp. 86–100). These include version 9 graphics
with flexible display options, the ability to meta-analyze precalculated effect esti-
mates, and the ability to analyze subgroups by using the by() option. Changes to
the output, saved variables, and saved results are also described.
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1 Introduction

Meta-analysis is a two-stage process involving the estimation of an appropriate summary
statistic for each of a set of studies followed by the calculation of a weighted average of
these statistics across the studies (Deeks, Altman, and Bradburn 2001). Odds ratios,
risk ratios, and risk differences may be calculated from binary data, or a difference
in means obtained from continuous data. Alternatively, precalculated effect estimates
and their standard errors from each study may be pooled, for example, adjusted log-
odds ratios from observational studies. The summary statistics from each study can
be combined by using a variety of meta-analytic methods, which are classified as fixed-
effect models in which studies are weighted according to the amount of information
they contain; or random-effects models, which incorporate an estimate of between-study
variation (heterogeneity) in the weighting. A meta-analysis will customarily include a
forest plot, in which results from each study are displayed as a square and a horizontal
line, representing the intervention effect estimate together with its confidence interval.
The area of the square reflects the weight that the study contributes to the meta-

c© 2008 StataCorp LP sbe24 2
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analysis. The combined-effect estimate and its confidence interval are represented by a
diamond.

Here we present updates to the metan command and other previously undocumented
additions that have been made since its original publication (Bradburn, Deeks, and
Altman 1998). New features include

• Version 9 graphics

• Flexible display of tabular data in the forest plot

• Results from a second type of meta-analysis displayed in the same forest plot

• by() group processing

• Analysis of precalculated effect estimates

• Prediction intervals for the intervention effect in a new study from random-effects
analyses

There are a substantial number of options for the metan command because of the
variety of meta-analytic techniques and the need for flexible graphical displays. We
recommend that new users not try to learn everything at once but to learn the basics
and build from there as required. Clickable examples of metan are available in the help
file, and the dialog box may also be a good way to start using metan.

2 Example data

The dataset used in subsequent examples is taken from the meta-analysis published as
table 1 in Colditz et al. (1994, 699). The aim of the analysis was to quantify the efficacy
of BCG vaccine against tuberculosis, and data from 11 trials are included here. There
was considerable between-trial heterogeneity in the effect of the vaccine; it has been
suggested that this might be explained by the latitude of the region in which the trial
was conducted (Fine 1995).

Example

Details of the dataset are shown below by using describe and list commands.
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. use bcgtrial
(BCG and tuberculosis)

. describe

Contains data from bcgtrial.dta
obs: 11 BCG and tuberculosis

vars: 12 31 May 2007 17:11
size: 693 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

trial byte %8.0g Trial number
trialnam str14 %14s Trial name
authors str20 %20s Authors of trial
startyr int %8.0g Year trial started
latitude byte %8.0g Latitude of trial area
alloc byte %33.0g alloc Allocation method
tcases int %8.0g BCG vaccinated cases
tnoncases float %9.0g BCG vaccinated noncases
ccases int %8.0g Unvaccinated cases
cnoncases float %9.0g Unvaccinated noncases
ttotal long %12.0g BCG vaccinated population
ctotal long %12.0g Unvaccinated population

Sorted by: startyr authors

. list trialnam startyr tcases tnoncases ccases cnoncases, clean noobs
> abbreviate(10)

trialnam startyr tcases tnoncases ccases cnoncases
Canada 1933 6 300 29 274

Northern USA 1935 4 119 11 128
Chicago 1941 17 1699 65 1600

Georgia (Sch) 1947 5 2493 3 2338
Puerto Rico 1949 186 50448 141 27197

Georgia (Comm) 1950 27 16886 29 17825
Madanapalle 1950 33 5036 47 5761

UK 1950 62 13536 248 12619
South Africa 1965 29 7470 45 7232

Haiti 1965 8 2537 10 619
Madras 1968 505 87886 499 87892

Trial name and number identify each study, and we have information on the authors
and the year the trial started. There are also two variables relating to study charac-
teristics: the latitude of the area in which the trial was carried out, and the method
of allocating patients to the vaccine and control groups—either at random or in some
systematic way. The variables tcases, tnoncases, ccases, and cnoncases contain the
data from the 2 × 2 table from each study (the number of cases and noncases in the
vaccination group and nonvaccination group). The variables ttotal and ctotal are
the total number of individuals (the sum of the cases and noncases) in the vaccine and
control groups. Displayed below is the 2 × 2 table for the first study (Canada, 1933):

cases noncases total
treated 6 300 306
control 29 274 303
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The risk ratio (RR), log-risk ratio (log-RR), standard error of log-RR (SE log-RR),
95% confidence interval (CI) for log-RR, and 95% CI for RR may be calculated as follows
(see, for example, Kirkwood and Sterne 2003).

Risk in treated population =
tcases

ttotal
=

6
306

= 0.0196

Risk in control population =
ccases

ctotal
=

29
303

= 0.0957

RR =
Risk in treated population
Risk in control population

=
0.0196
0.0957

= 0.2049

log RR = log(RR) = −1.585

SE(log RR) =

√
1

tcases
+

1
ccases

− 1
ttotal

− 1
ctotal

=

√
1
6

+
1
29

− 1
306

− 1
303

= 0.441

95% CI for log RR = log RR ± 1.96 × SE(log RR) = −2.450 to −0.720

95% CI for RR = exp(−2.450) to exp(−0.720) = 0.086 to 0.486

3 Syntax

metan varlist
[
if
] [

in
] [

,[
binary data options | continuous data options | precalculated effect estimates options

]
measure and model options output options forest plot options

]

binary data options

or rr rd fixed random fixedi randomi peto cornfield chi2 breslow
nointeger cc(#)

continuous data options

cohen hedges glass nostandard fixed random nointeger
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precalculated effect estimates options

fixed random

measure and model options

wgt(wgtvar) second(model | estimates and description)
first(estimates and description)

output options

by(byvar) nosubgroup sgweight log eform efficacy ilevel(#)
olevel(#) sortby(varlist)
label(

[
namevar = namevar

]
,
[
yearvar = yearvar

]
) nokeep notable nograph

nosecsub

forest plot options

xlabel(#, . . . ) xtick(#, . . . ) boxsca(#) textsize(#) nobox nooverall
nowt nostats counts group1(string) group2(string) effect(string) force
lcols(varlist) rcols(varlist) astext(#) double nohet summaryonly rfdist
rflevel(#) null(#) nulloff favours(string # string) firststats(string)
secondstats(string) boxopt(marker options) diamopt(line options)
pointopt(marker options |marker label options) ciopt(line options)
olineopt(line options) classic nowarning graph options

For a full description of the syntax, see Bradburn, Deeks, and Altman (1998). We
will focus on the new options, most of which come under forest plot options ; previously
undocumented options such as by() (and related options), breslow, cc(), nointeger;
and changes to the output such as the display of the I2 statistic. Syntax will be explained
in the appropriate sections.

4 Basic use

4.1 2 × 2 data

For binary data, the input variables required by metan should contain the cells of the
2× 2 table; i.e., the number of individuals who did and did not experience the outcome
event in the treatment and control groups for each study. When analyzing 2 × 2 data
a range of methods are available. The default is the Mantel–Haenszel method (fixed).
The inverse-variance fixed-effect method (fixedi) or the Peto method for estimating
summary odds ratios (peto) may also be chosen. The DerSimonian and Laird random-
effects method may be specified with random. See Deeks, Altman, and Bradburn (2001)
for a discussion of these methods.
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4.2 Display options

Previous versions of the metan command used the syntax label(namevar = namevar,
yearvar = yearvar) to specify study information in the table and forest plot. This
syntax still functions but has been superseded by the more flexible lcols(varlist) and
rcols(varlist) options. The use of these options is described in more detail in section 5.
The option favours(string # string) allows the user to display text information about
the direction of the treatment effect, which appears under the graph (e.g., exposure
good, exposure bad). favours() replaces the option b2title(). The # is required to
split the two strings, which appear to either side of the null line.

Example

Here we use metan to derive an inverse-variance weighted (fixed effect) meta-analysis
of the BCG trial data. Risk ratios are specified as the summary statistic, and the trial
name and the year the trial started are displayed in the forest plot using lcols() (see
section 5).

. metan tcases tnoncases ccases cnoncases, rr fixedi lcols(trialnam startyr)
> xlabel(0.1, 10) favours(BCG reduces risk of TB # BCG increases risk of TB)

Study RR [95% Conf. Interval] % Weight

Canada 0.205 0.086 0.486 1.11
Northern USA 0.411 0.134 1.257 0.66
Chicago 0.254 0.149 0.431 2.96
Georgia (Sch) 1.562 0.374 6.528 0.41
Puerto Rico 0.712 0.573 0.886 17.42
Georgia (Comm) 0.983 0.582 1.659 3.03
Madanapalle 0.804 0.516 1.254 4.22
UK 0.237 0.179 0.312 10.81
South Africa 0.625 0.393 0.996 3.83
Haiti 0.198 0.078 0.499 0.97
Madras 1.012 0.895 1.145 54.58

I-V pooled RR 0.730 0.667 0.800 100.00

Heterogeneity chi-squared = 125.63 (d.f. = 10) p = 0.000
I-squared (variation in RR attributable to heterogeneity) = 92.0%

Test of RR=1 : z= 6.75 p = 0.000

The output table contains effect estimates (here, RRs), CIs, and weights for each
study, followed by the overall (combined) effect estimate. The results for the Canada
study are identical to those derived in section 2. Heterogeneity statistics relating to the
extent that RRs vary between studies are displayed, including the I2 statistic, which is a
previously undocumented addition. The I2 statistic (see section 9.1) is the percentage of
between-study heterogeneity that is attributable to variability in the true treatment ef-
fect, rather than sampling variation (Higgins and Thompson 2004, Higgins et al. 2003).
Here there is substantial between-study heterogeneity. Finally, a test of the null hy-
pothesis that the vaccine has no effect (RR=1) is displayed. There is strong evidence
against the null hypothesis, but the presence of between-study heterogeneity means that
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the fixed-effect assumption (that the true treatment effect is the same in each study) is
incorrect. The forest plot displayed by the command is shown in figure 1.

Overall  (I�squared = 92.0%, p = 0.000)

Madras

Haiti

Madanapalle

Trial

Georgia (Comm)

South Africa

UK

Puerto Rico

Chicago

Northern USA

name

Georgia (Sch)

Canada

1968

1965

1950

trial

1950

1965

1950

1949

1941

1935

started

1947

1933

Year

0.73 (0.67, 0.80)

1.01 (0.89, 1.14)

0.20 (0.08, 0.50)

0.80 (0.52, 1.25)

0.98 (0.58, 1.66)

0.63 (0.39, 1.00)

0.24 (0.18, 0.31)

0.71 (0.57, 0.89)

0.25 (0.15, 0.43)

0.41 (0.13, 1.26)

RR (95% CI)

1.56 (0.37, 6.53)

0.20 (0.09, 0.49)

100.00

54.58

0.97

4.22

%

3.03

3.83

10.81

17.42

2.96

0.66

Weight

0.41

1.11

0.73 (0.67, 0.80)

1.01 (0.89, 1.14)

0.20 (0.08, 0.50)

0.80 (0.52, 1.25)

0.98 (0.58, 1.66)

0.63 (0.39, 1.00)

0.24 (0.18, 0.31)

0.71 (0.57, 0.89)

0.25 (0.15, 0.43)

0.41 (0.13, 1.26)

RR (95% CI)

1.56 (0.37, 6.53)

0.20 (0.09, 0.49)

100.00

54.58

0.97

4.22

%

3.03

3.83

10.81

17.42

2.96

0.66

Weight

0.41

1.11

BCG reduces risk of TB  BCG increases risk of TB 
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Figure 1. Forest plot displaying an inverse-variance weighted fixed-effect meta-analysis
of the effect of BCG vaccine on incidence of tuberculosis.

4.3 Precalculated effect estimates

The metan command may also be used to meta-analyze precalculated effect estimates,
such as log-odds ratios and their standard errors or 95% CI, using syntax similar to
the alternative Stata meta-analysis command meta (Sharp and Sterne 1997). Here only
the inverse-variance fixed-effect and DerSimonian and Laird random-effects methods
are available, because other methods require the 2 × 2 cell counts or the means and
standard deviations in each group. The fixed option produces an inverse-variance
weighted analysis when precalculated effect estimates are analyzed.

When analyzing ratio measures (RRs or odds ratios), the log ratio with its standard
error or 95% CI should be used as inputs to the command. The eform option can then
be used to display the output on the ratio scale (as for the meta command).
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Example

We will illustrate this feature by generating the log-RR and its standard error in
each study from the 2 × 2 data, and then by meta-analyzing these variables.

. gen logRR = ln( (tcases/ttotal) / (ccases/ctotal) )

. gen selogRR = sqrt( 1/tcases +1/ccases -1/ttotal -1/ctotal )

. metan logRR selogRR, fixed eform nograph

Study ES [95% Conf. Interval] % Weight

(table of study results omitted)

I-V pooled ES 0.730 0.667 0.800 100.00

Heterogeneity chi-squared = 125.63 (d.f. = 10) p = 0.000
I-squared (variation in ES attributable to heterogeneity) = 92.0%

Test of ES=1 : z= 6.75 p = 0.000

The results are identical to those derived directly from the 2× 2 data in section 4.1;
we would have observed minor differences if the default Mantel–Haenszel method had
been used previously. When analyzing precalculated estimates, metan does not know
what these measures are, so the summary estimate is named “ES” (effect size) in the
output.

4.4 Specifying two analyses

metan now allows the display of a second meta-analytic estimate in the same output ta-
ble and forest plot. A typical use is to compare fixed-effect and random-effects analyses,
which can reveal the presence of small-study effects. These may result from publication
or other biases (Sterne, Gavaghan, and Egger 2000). See Poole and Greenland (1999)
for a discussion of the ways in which fixed-effect and random-effects analyses may dif-
fer. The syntax is to specify the method for the second meta-analytic estimate as
second(method), where method is any of the standard metan options.

Example

Here we use metan to analyze 2 × 2 data as in section 4.1, specifying an inverse-
variance weighted (fixed effect) model for the first method and a DerSimonian and
Laird (random effects) model for the second method:
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. metan tcases tnoncases ccases cnoncases, rr fixedi second(random)
> lcols(trialnam startyr) nograph

Study RR [95% Conf. Interval] % Weight

(table of study results omitted)

I-V pooled RR 0.730 0.667 0.800 100.00
D+L pooled RR 0.508 0.336 0.769 100.00

Heterogeneity chi-squared = 125.63 (d.f. = 10) p = 0.000
I-squared (variation in RR attributable to heterogeneity) = 92.0%

Test of RR=1 : z= 6.75 p = 0.000

The results of the second analysis are displayed in the table: a forest plot using the
second() option is derived in the next section and displayed in figure 2. The protective
effect of BCG against tuberculosis appears greater in the random-effects analysis than in
the fixed-effect analysis, although CI is wider. This reflects the greater uncertainty in the
random-effects analysis, which allows for the true effect of the vaccine to vary between
studies. Random-effects analyses give relatively greater weight to smaller studies than
fixed-effect analyses, and so these results suggest that the estimated effect of BCG was
greater in the smaller studies. It is also possible to supply a precalculated pooled-effect
estimate with second(); see section 7.2 for details.

5 Displaying data columns in graphs

The options lcols(varlist) and rcols(varlist) produce columns to the left or right of
the forest plot. String (character) or numeric variables can be displayed. If numeric
variables have value labels, these will be displayed in the graph. If the variable itself is
labeled, this will be used as the column header, allowing meaningful names to be used.
Up to four lines are used for the heading, so names can be long without taking up too
much graph width.

The first variable in lcols() is used to identify studies in the table output, and
summary statistics and study weight are always the first columns on the right of the
forest plot. These can be switched off by using the options nostats and nowt, but the
order cannot be changed.

If lengthy string variables are to be displayed, the double option may be used to
allow output to spread over two lines per study in the forest plot. The percentage of
the forest plot given to text may be adjusted using astext(#), which can be between
10 and 90 (the default is 50).

A previously undocumented option that affects columns is counts. When this option
is specified, more columns will appear on the right of the graph displaying the raw
data; either the 2 × 2 table for binary data or the sample size, mean, and standard
deviation in each group if the data are continuous. The groups may be labeled by using
group1(string) and group2(string), although the defaults Treatment and Control will
often be acceptable for the analysis of randomized controlled trials (RCTs).
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Example

We now present an example command that uses these features, as well as the
second() option. The resulting forest plot is displayed in figure 2:

. metan tcases tnoncases ccases cnoncases, rr fixedi second(random)
> lcols(trialnam authors startyr alloc latitude) counts astext(70)
> textsize(200) boxsca(80) xlabel(0.1,10) notable xsize(10) ysize(6)

I�V Overall  (I�squared = 92.0%, p = 0.000)

UK

Trial

Haiti

Madras

Chicago

Georgia (Comm)

Canada

Puerto Rico

South Africa

Madanapalle

name

Georgia (Sch)

Northern USA

D+L Overall

Hart & Sutherland

Vandeviere et al

TB Prevention Trial

Rosenthal et al

Comstock et al.

Ferguson & Simes

Comstock et al

Coetzee & Berjak

Frimont�Moller et al

Authors of trial

Comstock & Webster

Aronson

Year

1950

trial

1965

1968

1941

1950

1933

1949

1965

1950

started

1947

1935

0

Allocation

0

0

1

1

0

1

0

1

method

1

0

53

Latitude of

18

13

42

33

55

18

27

13

trial area

33

52

0.73 (0.67, 0.80)

0.24 (0.18, 0.31)

0.20 (0.08, 0.50)

1.01 (0.89, 1.14)

0.25 (0.15, 0.43)

0.98 (0.58, 1.66)

0.20 (0.09, 0.49)

0.71 (0.57, 0.89)

0.63 (0.39, 1.00)

0.80 (0.52, 1.25)

RR (95% CI)

1.56 (0.37, 6.53)

0.41 (0.13, 1.26)

0.51 (0.34, 0.77)

882/189292

62/13598

Events,

8/2545

505/88391

17/1716

27/16913

6/306

186/50634

29/7499

33/5069

Treatment

5/2498

4/123

1127/164612

248/12867

Events,

10/629

499/88391

65/1665

29/17854

29/303

141/27338
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Control
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100.00

%

10.81

Weight

0.97

54.58

2.96

3.03
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17.42
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4.22
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Figure 2. Forest plot displaying an inverse-variance weighted fixed-effect meta-analysis
of the effect of BCG vaccine on incidence of tuberculosis. Columns of data are displayed
in the plot.

Note the specification of x-axis labels and text and box sizes. The graph is also reshaped
by using the standard Stata graph options xsize() and ysize(); see section 10.2 for
more details. Box and text sizes are expressed as a percentage of standard size with the
default as 100, such that 50 will halve the size and 200 will double it.

6 by() processing

A major addition to metan is the ability to perform stratified or subgroup analyses.
These may be used to investigate the possibility that treatment effects vary between
subgroups; however, formal comparisons between subgroups are best performed by using
meta-regression; see Harbord and Higgins (2008) or Higgins and Thompson (2004). We
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may also want to display results for different groups of studies in the same plot, even
though it is inappropriate to meta-analyze across these groups.

6.1 Syntax and options for by()

nooverall specifies that the overall estimate not be displayed, for example, when it is
inappropriate to meta-analyze across groups.

sgweight requests that weights be displayed such that they sum to 100% within each
subgroup. This option is invoked automatically with nooverall.

nosubgroup specifies that studies be arranged by the subgroup specified, but estimates
for each subgroup not be displayed.

nosecsub specifies that subestimates using the method defined by second() not be
displayed.

summaryonly specifies that individual study estimates not be displayed, for example, to
produce a summary of different groups in a compact graph.

Example

Fine (1995) suggested that there is a relationship between the effect of BCG and
the latitude of the area in which the trial was conducted. Here we may want to use
meta-regression to further investigate this tendency (see Harbord and Higgins 2008).
To illustrate the by() option, we will classify the studies into three groups defined by
latitude. We define these groups as tropical (≤23.5 degrees), midlatitude (between 23.5
and 40 degrees) and northern (≥40 degrees).

. gen lat_cat = ""
(11 missing values generated)

. replace lat_cat = "Tropical, < 23.5 latitude" if latitude <= 23.5
lat_cat was str1 now str27
(4 real changes made)

. replace lat_cat = "23.5-40 latitude" if latitude > 23.5 & latitude < 40
(3 real changes made)

. replace lat_cat = "Northern, > 40 latitude" if latitude >= 40 & latitude < .
(4 real changes made)

. assert lat_cat != ""

. label var lat_cat "Latitude region"

(Continued on next page)
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. metan tcases tnoncases ccases cnoncases, rr fixedi second(random) nosecsub
> lcols(trialnam startyr latitude) astext(60) by(lat_cat) xlabel(0.1,10)
> xsize(10) ysize(8)

Study RR [95% Conf. Interval] % Weight

Northern, > 40 lat
Canada 0.205 0.086 0.486 1.11
Northern USA 0.411 0.134 1.257 0.66
Chicago 0.254 0.149 0.431 2.96
UK 0.237 0.179 0.312 10.81
Sub-total
I-V pooled RR 0.243 0.193 0.306 15.54

23.5-40 latitude
Georgia (Sch) 1.562 0.374 6.528 0.41
Georgia (Comm) 0.983 0.582 1.659 3.03
South Africa 0.625 0.393 0.996 3.83
Sub-total
I-V pooled RR 0.795 0.567 1.114 7.27

Tropical, < 23.5 l
Puerto Rico 0.712 0.573 0.886 17.42
Madanapalle 0.804 0.516 1.254 4.22
Haiti 0.198 0.078 0.499 0.97
Madras 1.012 0.895 1.145 54.58
Sub-total
I-V pooled RR 0.904 0.815 1.003 77.19

Overall
I-V pooled RR 0.730 0.667 0.800 100.00
D+L pooled RR 0.508 0.336 0.769

Test(s) of heterogeneity:
Heterogeneity degrees of

statistic freedom P I-squared**
Northern, > 40 lat 1.06 3 0.787 0.0%
23.5-40 latitude 2.51 2 0.285 20.2%
Tropical, < 23.5 l 18.42 3 0.000 83.7%
Overall 125.63 10 0.000 92.0%
Overall Test for heterogeneity between sub-groups:

103.64 2 0.000

** I-squared: the variation in RR attributable to heterogeneity)

Considerable heterogeneity observed (up to 83.7%) in one or more sub-groups,
Test for heterogeneity between sub-groups likely to be invalid

Significance test(s) of RR=1

Northern, > 40 lat z= 12.00 p = 0.000
23.5-40 latitude z= 1.33 p = 0.183
Tropical, < 23.5 l z= 1.90 p = 0.058
Overall z= 6.75 p = 0.000
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Heterogeneity between groups: p = 0.000
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Figure 3. Forest plot displaying an inverse-variance weighted fixed-effect meta-analysis
of the effect of BCG vaccine on incidence of tuberculosis. Results are stratified by latitude
region, and the overall random-effects estimate is also displayed.

The output table is now stratified by latitude group, and pooled estimates for each
group are displayed. Tests of heterogeneity and the null hypothesis are displayed for
each group and overall. With the inverse-variance method, a test of heterogeneity
between groups is also displayed; note the warning in the output that the test may be
invalid because of within-subgroup heterogeneity. Output is similar in the forest plot,
displayed in figure 3. Examining each subgroup in turn, it appears that much of the
heterogeneity is accounted for by latitude: for two of the groups there is little or no
evidence of heterogeneity. The only group to show a strong treatment effect is the ≥40
degree group.

The test for between-group heterogeneity is an issue of current debate, as it is strictly
valid only when using the fixed-effect inverse-variance method, and p-values will be too
small if there is heterogeneity within any of the subgroups. Therefore, the test is
performed only with the inverse-variance method (fixedi), and warnings will appear
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if there is evidence of within-group heterogeneity. Despite these caveats, this method
is better than other, seriously flawed, methods such as testing the significance of a
treatment effect in each group rather than testing for differences between the groups.
As explained at the start of this section, meta-regression is the best way to examine
and test for between-group differences.

7 User-defined analyses

7.1 Study weights

The wgt(wgtvar) option allows the studies to be combined by using specific weights that
are defined by the variable wgtvar . The user must ensure that the weights chosen are
meaningful. Typical uses are when analyzing precalculated effect estimates that require
weights that are not based on standard error or to assess the robustness of conclusions
by assigning alternative weights.

7.2 Pooled estimates

Pooled estimates may be derived by using another package and presented in a forest plot
by using the first() option to supply these to the metan command. Here wgt(wgtvar)
is used merely to specify box sizes in the forest plot, no heterogeneity statistics are
produced, and no values are returned. When using this feature, stratified analyses are
not allowed.

An alternative method is to provide the user-supplied meta-analytic estimate by
using the second() option. Data are analyzed by using standard methods, and the
resulting pooled estimate is displayed together with the user-defined estimate (which
need not be derived by using metan), allowing a comparison. When using this feature,
the option nosecsub is invoked, as stratification using the user-defined method is not
possible.

When these options are specified, the user must supply the pooled estimate with its
standard error or CI and a method label. The user may also supply text to be displayed
at the bottom of the forest plot, in the position normally given to heterogeneity statistics,
using firststats(string) and secondstats(string).

Example

The BCG data were analyzed by using a fully Bayesian random-effects model with
WinBUGS software (Lunn et al. 2000). This analysis used the methods described by
Warn, Thompson, and Spiegelhalter (2002) to deal with RRs. The chosen model incor-
porated a noninformative prior (mean 0, precision 0.001). The resulting RR of 0.518
(95% CI: 0.300, 0.824) is similar to that derived from a DerSimonian and Laird random-
effects analysis. However, the CI from the Bayesian analysis is wider, because it allows
for the uncertainty in estimating the between-study variance. The following syntax sup-
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plies the summary estimates in second() and compares this result with the random-
effects analysis. The resulting forest plot is displayed in figure 4.

. metan logRR selogRR, random second(-.6587 -1.205 -.1937 Bayes)
> secondstats(Noninformative prior: d~dnorm(0.0, 0.001)) eform
> notable astext(60) textsize(130) lcols(trialnam startyr latitude)
> xlabel(0.1,10)

NOTE: Weights are from random effects analysis
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Figure 4. Forest plot displaying a fully Bayesian meta-analysis of the effect of BCG

vaccine on incidence of tuberculosis. A noninformative prior has been specified, resulting
in a pooled-effect estimate similar to the random-effects analysis.

8 New analysis options

Here we discuss previously undocumented options added to metan since its original
publication.
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8.1 Dealing with zero cells

The cc(#) option allows the user to choose what value (if any) is to be added to the
cells of the 2 × 2 table for a study in which one or more of the cell counts equals zero.
Here the default is to add 0.5 to all cells of the 2× 2 table for the study (except for the
Peto method, which does not require a correction). This approach has been criticized,
and other approaches (including making no correction) may be preferable (see Sweeting,
Sutton, and Lambert [2004] for a discussion). The number declared in cc(#) must be
between zero and one and will be added to each cell. When no events are recorded and
RRs or odds ratios are to be combined the study is omitted, although for risk differences
the effect is still calculable and the study is included. If no adjustment is made in the
presence of zero cells, odds ratios and their standard errors cannot be calculated. Risk
ratios and their standard errors cannot be calculated when the number of events in
either the treatment or control group is zero.

8.2 Noninteger sample size

The nointeger option allows the number of observations in each arm (cell counts for
binary data or the number of observations for continuous data) to be noninteger. By
default, the sample size is assumed to be a whole number for both binary and continuous
data. However, it may make sense for this not to be so, for example, to use a more
flexible continuity correction with a different number added to each cell or when the
meta-analysis incorporates cluster randomized trials and the effective-sample size is less
than the total number of observations.

8.3 Breslow and Day test for heterogeneity

The breslow option can be used to perform the Breslow–Day test for heterogeneity of
the odds ratio (Breslow and Day 1980). A review article by Reis, Hirji, and Afifi (1999)
compared several different tests of heterogeneity and found this test to perform well in
comparison to other asymptotic tests.

9 New output

9.1 The I2 statistic

metan now displays the I2 statistic as well as Cochran’s Q to quantify heterogeneity,
based on the work by Higgins and Thompson (2004) and Higgins et al. (2003). Briefly,
I2 is the percentage of variation attributable to heterogeneity and is easily interpretable.
Cochran’s Q can suffer from low power when the number of studies is low or excessive
power when the number of studies is large. I2 is calculated from the results of the
meta-analysis by

I2 = 100% × (Q − df)
Q
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where Q is Cochran’s heterogeneity statistic and df is the degrees of freedom. Negative
values of I2 are set to zero so that I2 lies between 0% and 100%. A value of 0% indicates
no observed heterogeneity, and larger values show increasing heterogeneity. Although
there can be no absolute rule for when heterogeneity becomes important, Higgins et al.
(2003) tentatively suggest adjectives of low for I2 values between 25%–50%, moderate
for 50%–75%, and high for ≥75%.

9.2 Prediction interval for the random-effects distribution

The presentation of summary random-effects estimates may sometimes be misleading,
as the CI refers to the average true treatment effect, but this is assumed under the
random-effects model to vary between studies. A CI derived from a larger number of
studies exhibiting a high degree of heterogeneity could be of similar width to a CI derived
from a smaller number of more homogeneous studies, but in the first situation, we will
be much less sure of the range within which the treatment effect in a new study will
lie (Higgins and Thompson 2001). The prediction interval for the treatment effect in a
new trial may be approximated by using the formula

mean ± tdf ×
√

(se2 + τ2)

where t is the appropriate centile point (e.g., 95%) of the t distribution with k−2 degrees
of freedom, se2 is the squared standard error, and τ2 the between-study variance. This
incorporates uncertainty in the location and spread of the random-effects distribution.
The approximate prediction interval can be displayed in the forest plot, with lines
extending from the summary diamond, by using the option rfdist. With ≤2 studies,
the distribution is inestimable and effectively infinite; thus the interval is displayed with
dotted lines. When heterogeneity is estimated to be zero, the prediction interval is still
slightly wider than the summary diamond as the t statistic is always greater than the
corresponding normal deviate. The coverage (e.g., 90%, 95%, or 99%) for the interval
may be set by using the command rflevel(#).

Example

Here we display the prediction intervals corresponding to the stratified analyses
derived in section 6.1. The resulting forest plot is displayed in figure 5.

. metan tcases tnoncases ccases cnoncases, rr random rfdist
> lcols(trialnam startyr latitude) astext(60) by(lat_cat) xlabel(0.1,10)
> xsize(10) ysize(8) notable

(Continued on next page)
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NOTE: Weights are from random effects analysis
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Figure 5. Forest plot displaying a random-effects meta-analysis of the effect of BCG

vaccine on incidence of tuberculosis. Results are stratified by latitude region and the
prediction interval for a future trial is displayed for each and overall.

9.3 Vaccine efficacy

Results from the analysis of 2 × 2 data from vaccine trials may be reexpressed as the
vaccine efficacy (also known as the relative-risk reduction); defined as the proportion
of cases that would have been prevented in the placebo group had they received the
vaccination (Kirkwood and Sterne 2003). The formula is

Vaccine efficacy (VE) = 100% ×
(

1 − risk of disease in vaccinated
risk of disease in unvaccinated

)

= 100% × (1 − RR)
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In metan, data are entered in the same way as any other analysis of 2 × 2 data and
the option efficacy added. Results are displayed as odds ratios or RRs in the table
and forest plot, but another column is added to the plot showing the results reexpressed
as vaccine efficacy.

Example

The BCG data are reanalyzed here, with results also displayed in terms of vaccine
efficacy. The resulting forest plot is displayed in figure 6.

. metan tcases tnoncases ccases cnoncases, rr random efficacy
> lcols(trialnam startyr) textsize(150) notable xlabel(0.1, 10)

NOTE: Weights are from random effects analysis
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Figure 6. Forest plot displaying a random-effects meta-analysis of the effect of BCG

vaccine on incidence of tuberculosis. Results are also displayed in terms of vaccine
efficacy; estimates with a RR of greater than 1 produce a negative vaccine efficacy.
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10 More graph options

10.1 metan graph options

Previous users of metan may find that they do not like the new box style and prefer
a solid black box without the point estimate marker. The option classic changes
back to this style. There are also options available to change the boxes, diamonds,
and other lines. This is achieved by using options that change the standard graph
commands that metan uses. For instance, the vertical line representing the overall effect
may be changed using olineopt(), which can take standard Stata line options such
as lwidth(), lcolor(), and lpattern(). Boxes are weighted markers and not much
can be changed, although shape and color may be modified by using marker options
in the boxopt() option, such as msymbol() and mcolor(), or we can dispense with
the boxes entirely by using the option nobox. The point estimate markers have more
flexibility and may also be modified by using marker options in the pointopt() option;
for instance, labels may by attached to them by using mlabel(). The CIs and diamonds
may be changed by using line options in the options ciopt() and diamopt(). For more
details, see the metan help file and the Stata Graphics Reference Manual ([G] graph).

Example

Here many aspects of the graph are changed and a raw data variable is defined (as
in counts) and attached to the point estimates in the graph. The resulting graph is not
shown here, but a similar application is shown in section 10.3.

. gen counts = string(tcases) + "/" + string(tcases+tnoncases) + "," +
> string(ccases) + "/" + string(ccases+cnoncases)

. metan tcases tnoncases ccases cnoncases, rr fixedi second(random) nosecsub
> notable olineopt(lwidth(thick) lcolor(navy) lpattern(dot))
> boxopt(msymbol(triangle) mcolor(dkgreen))
> pointopt(mlabel(counts) mlabsize(tiny) mlabposition(5))

10.2 Overall graph options

Any graph options that come under the overall , note, and caption sections of Stata’s
graph twoway command may be added to a metan command, and the x axis (and y axis
if required) may have a title added. The options aspect() or xsize() and ysize()
may be used to specify different aspect ratios (e.g., portrait). The default aspect ratio
of a Stata graph is around 0.7 (height/width), and metan tries to stick to this shape;
although graphs that are more naturally displayed as long or wide will be reshaped to
some degree. Use of the above options will control this more precisely.

Finally, the use of schemes is also supported. As colors of boxes and so on are
defined within metan, these will not always give the desired result but may produce
some interesting effects. Try, for example, using the scheme economist. More on
schemes can be found in [G] schemes intro.
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10.3 Notes on graph building

It can be useful to declare local or global macros that contain portions of code that are
frequently used. For example, if the forest plot always has triangular “boxes” in forest
green, contains the same columns of data, and so on, global macros may be declared
for these bits of code. These can then be reused for a series of meta-analyses to specify
the look and contents of the graphs. These could also be declared in an ado-file so that
they are ready to use in every Stata session. This idea is similar to using Stata graph
schemes.

Example

Macros are defined to control various aspects of the graph and then used in the
metan command. The resulting forest plot is displayed in figure 7.

. global metamethod rr fixedi second(random) nosecsub

. global metacolumns lcols(trialnam startyr latitude) astext(60)

. global metastyle boxopt(mcolor(forest_green) msymbol(triangle))
> pointopt(msymbol(smtriangle) mcolor(gold) msize(tiny)
> mlabel(counts) mlabsize(tiny) mlabposition(2) mlabcolor(brown))
> diamopt(lcolor(black) lwidth(medthick)) graphregion(fcolor(gs10)) boxsca(80)

. global metaopts favours(decreases TB # increases TB)
> xlabel(0.1, 0.2, 0.5, 2, 5, 10) notable

. metan tcases tnoncases ccases cnoncases,
> $metamethod $metacolumns $metastyle $metaopts by(lat_cat) xsize(10) ysize(8)

(Continued on next page)
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Heterogeneity between groups: p = 0.000
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Figure 7. Forest plot displaying an inverse-variance weighted fixed-effect meta-analysis
of the effect of BCG vaccine on incidence of tuberculosis. Results are stratified by latitude
region, and the overall random-effects estimate is also displayed. Various options have
been used to change the display of the graph.

11 Variables and results produced by metan

11.1 Variables generated

When odds ratios (OR) or RRs are combined from 2× 2 data and the log option is not
used, the SE log-OR or log-RR is saved in a variable named selogES, to make clear
that it is the SE log-OR or RR and not on the same scale. If the log option is used, the
standard error is named seES, as it is on the same scale as the estimate itself. In both
cases, the estimate is called ES.

It is possible to calculate the standard error of ORs and RRs by the delta method;
this is what Stata does, for example, with the results reported by the logistic command.
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However, the distribution of ratios is in general highly skewed, and for this reason,
metan does not attempt to record the standard error of either the OR or RR.

Absolute measures (risk differences or mean differences) are symmetric and may be
assumed to be normally distributed via the central limit theorem. Here metan stores
these quantities in ES and their standard errors in seES. The derived variables incor-
porate the correction for zero cells (see section 8.1).

ES Effect size (ES)
seES Standard error of ES

selogES Standard error of log ES

LCI Lower confidence limit for ES

UCI Upper confidence limit for ES

WT Study percentage weight
SS Study sample size

11.2 Saved results (macros)

As with many Stata commands, macros are left behind containing the results of the
analysis. If two methods are specified by using the option second(), some of these
are repeated; for example, r(ES) and r(ES 2) give the pooled-effects estimates for
each method. Subgroup statistics when using the by() option are not saved; if these
are required for storage, it is recommended that a program be written that analyzes
subgroups separately (perhaps using the nograph and notable options).

(Continued on next page)
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Name Second Description

r(ES) r(ES 2) pooled-effect size (if the log option is
specified with or or rr, this is the pooled
log-OR or log-RR)

r(seES) r(seES 2) standard error of pooled-effect size with
symmetrical CI, i.e., mean
differences, risk difference, log-OR, and
log-RR using log option

r(selogES) r(selogES 2) standard error of log-OR or log-RR

when ORs or RRs are
combined without the log option

r(ci low) r(ci low 2) lower CI of pooled-effect size
r(ci upp) r(ci upp 2) upper CI of pooled-effect size
r(z) Z-value of effect size
r(p z) p-value for significance of effect size
r(het) chi-squared test for heterogeneity
r(df) degrees of freedom (number

of informative studies minus 1)
r(p het) p-value for significance of

test for heterogeneity
r(i sq) the I2 statistic
r(tau2) estimated between-study variance

(random-effects analyses only)
r(chi2) chi-squared test for significance of odds

ratio (fixed-effect OR only)
r(p chi2) p-value for the above test
r(rger) overall event rate, group 1

(if binary data are combined)
r(cger) overall event rate, group 2 (see above)
r(measure) effect measure (e.g., RR, SMD)
r(method 1) r(method 2) analysis method (e.g., M-H, D+L)
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sbe22 Cumulative meta-analysis

Jonathan Sterne, United Medical and Dental Schools, UK, j.sterne@umds.ac.uk

Meta-analysis is used to combine the results of several studies, and the Stata command meta (Sharp and Sterne 1997 and
sbe16.1 in this issue) can be used to perform meta-analyses and graph the results. In cumulative meta-analysis (Lau et al. 1992),
the pooled estimate of the treatment effect is updated each time the results of a new study are published. This makes it possible
to track the accumulation of evidence on the effect of a particular treatment.

The command metacum performs cumulative meta-analysis (using fixed- or random-effects models) and, optionally, graphs
the results.

Syntax

metacum
�

theta j exp(theta)
� �

se theta j var theta j ll ul
�
cl
�� �

if exp
� �

in range
�

�
� var ci effect�fjr� eform level�#� id�strvar� graph

cline fmult�#� csize�#� ltrunc�#� rtrunc�#� graph options
�

In common with the commands meta (Sharp and Sterne 1998) and metabias (Steichen 1988), the user provides the effect
estimate as theta (i.e., a log risk ratio, log odds ratio, or other measure of effect). Likewise, the user supplies a measure of
theta’s variability (i.e., its standard error, se theta, or its variance, var theta). Alternatively, the user provides exp(theta) (e.g. a
risk ratio or odds ratio) and its confidence interval, (ll, ul).

Required input variables

These are the same as for the new version of meta described in sbe16.1 in this issue.

Options for displaying results

var means the user has specified a variable containing the variance of the effect estimate. If this option is not included, the
command assumes the standard error has been specified.

ci means the user has specified the lower and upper confidence limits of the effect estimate, which is assumed to be on the
ratio scale (e.g. odds ratio or risk ratio).

effect�f jr� must be included. This specifies whether fixed (f ) or random (r) effects estimates are to be used in the output and
graph.

eform requests that the output be exponentiated. This is useful for effect measures such as log odds ratios which are derived
from generalized linear models. If the eform and graph options are used, then the graph output is exponentiated, with a
log scale for the x-axis.

level�#� specifies the confidence level, in percent, for confidence intervals. The default is level���� or as set by set level.

id�strvar� is a character variable which is used to label the studies. If the data contains a labeled numeric variable, then the
decode command can be used to create a character variable.

Options for graphing results

graph requests a graph.

cline asks that a vertical dotted line be drawn through the combined estimate.

fmult�#� is a number greater than zero which can be used to scale the font size for the study labels. The font size is automatically
reduced if the maximum label length is greater than 8, or the number of studies is greater than 20. However it may be
possible to increase it somewhat over the default size.

csize�#� gives the size of the circles used in the graph (default 180).

ltrunc�#� truncates the left side of the graph at the number #. This is used to truncate very wide confidence intervals. However
# must be less than each of the individual study estimates.

rtrunc�#� truncates the right side of the graph at #, and must be greater than each of the individual study estimates.

graph options are any options allowed with graph, twoway other than ylabel��, symbol��, xlog, ytick, and gap.
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Background

The command metacum provides an alternative means of presenting the results of a meta-analysis, where instead of the
individual study effects and combined estimate, the cumulative evidence up to and including each trial can be printed and/or
graphed. The technique was suggested by Lau et al. (1992).

Example

The first trial of streptokinase treatment following myocardial infarction was reported in 1959. A further 21 trials were
conducted between that time and 1986, when the ISIS-2 multicenter trial (on over 17,000 patients in whom over 1800 deaths
were reported) demonstrated conclusively that the treatment reduced the chances of subsequent death.

Lau et al. (1992) pointed out that a meta-analysis of trials performed up to 1977 provided strong evidence that the treatment
worked. Despite this, it was another 15 years until the treatment became routinely used.

Dataset strepto�dta contains the results of 22 trials of streptokinase conducted between 1959 and 1986.

� use strepto� clear
�Streptokinase after MI�

� describe

Contains data from strepto�dta
obs� �� Streptokinase after MI
vars� �
size� �	


�������������������������������������������������������������������������������
�� trial byte 
��g Trial number
�� trialnam str�� ��s Trial name
	� year int 
��g Year of publication
�� pop� int ����g Treated population
�� deaths� int ����g Treated deaths
�� pop� int ����g Control population
�� deaths� int ����g Control deaths

�������������������������������������������������������������������������������
Sorted by� trial

� list trialnam year pop� deaths� pop� deaths�� noobs

trialnam year pop� deaths� pop� deaths�
Fletcher ���� �� � �� �

Dewar ���	 �� � �� �
�st European ���� 
	 �� 
� ��
Heikinheimo ���� ��� �� ��� ��

Italian ���� ��� �� ��� �

�nd European ���� 	�	 �� 	�� ��
�nd Frankfurt ���	 ��� �	 ��� ��

�st Australian ���	 ��� �� ��	 	�
NHLBI SMIT ���� �	 � �� 	

Valere ���� �� �� �� �
Frank ���� �� � �	 �

UK Collab ���� 	�� �
 ��	 ��
Klein ���� �� � � �

Austrian ���� 	�� 	� 	�� ��
Lasierra ���� �	 � �� 	
N German ���� ��� �	 �	� ��
Witchitz ���� 	� � �� �

�nd Australian ���� ��� �� ��
 	�
	rd European ���� ��� �� ��� ��

ISAM ��
� 
�� �� 

� �	
GISSI�� ��
� �
�� ��
 �
�� ��

ISIS�� ��

 
��� ��� 
��� ����

Before doing our meta-analysis, we calculate the log odds ratio for each study, and its corresponding variance. We also
create a string variable containing the trial name and year of publication:

� gen logor�log��deaths���pop��deaths������deaths���pop��deaths�����

� gen varlogor����deaths�������pop��deaths�������deaths�������pop��deaths���

� gen str� yc�string�year�

� gen str�� trnamy�trialnam�� ���yc����

� meta logor varlogor� var eform graph�f� id�trnamy� xlab�������������� ltr�����
� rtr���� cline xline��� print b���Odds ratio�� fmult�����
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Meta�analysis �exponential form�

� Pooled ��� CI Asymptotic No	 of
Method � Est Lower Upper z
value p
value studies
������������������������������������������������������������
Fixed � �	� �	�� �	��� �	�� �	��� ��
Random � �	�� �	��� �	��� ��	��� �	���

Test for heterogeneity� Q� ��	��� on �� degrees of freedom �p� �	����
Moment�based estimate of between studies variance � �	��

� Weights Study ��� CI
Study � Fixed Random Est Lower Upper
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Figure 1: Streptokinase meta-analysis

It can be seen from the fixed-effects weights, and the graphical display, that the results are dominated by the two large
trials reported in 1986. We now do a cumulative meta-analysis:

	 metacum logor varlogor� var effect�f� graph eform id�trnamy� xlab�	��	������
� ltr��	�� cline xline��� b���Odds ratio�� fmult��	��

Cumulative fixed�effects meta�analysis of �� studies �exponential form�
�����������������������������������������������������������������������

Cumulative ��� CI
Trial estimate Lower Upper z P value
Fletcher ������ �	��� �	��� �	�� ��	��� �	���
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�nd European ����� �	��� �	��� �	��� ��	�� �	���
�nd Frankfurt ����� �	�� �	��� �	��� ��	��� �	���
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Figure 2: Streptokinase cumulative meta-analysis

By the end of 1977 there was clear evidence that streptokinase treatment prevented death following myocardial infarction.
The point estimate of the pooled treatment effect was virtually identical in 1977 (odds ratio=0.771) and after the results of the
large trials in 1986 (odds ratio=0.774).

Note

The command meta (Sharp and Sterne 1998) should be installed before running metacum.
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sbe23 Meta-analysis regression

Stephen Sharp, London School of Hygiene and Tropical Medicine, stephen.sharp@lshtm.ac.uk

The command metareg extends a random effects meta-analysis to estimate the extent to which one or more covariates,
with values defined for each study in the analysis, explain heterogeneity in the treatment effects. Such analysis is sometimes
termed “meta-regression” (Lau et al. 1998). Examples of such study-level covariates might be average duration of follow-up,
some measure of study quality, or, as described in this article, a measure of the geographical location of each study. metareg
fits models with two additive components of variance, one representing the variance within units, the other the variance between
units, and therefore is applicable both to the meta-analysis situation, where each unit is one study, and to other situations such
as multi-center trials, where each unit is one center. Here metareg is explained in the meta-analysis context.
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Figure 2. The result of using backward deletion.

With a backward deletion method, the rate ratio adjusted for all variables (Adj� all) is presented first. Then, epiconf deletes
the nominal variable sex first because deleting it makes the least change-in-estimate (0.9%). The most important confounder
(age) in terms of change in estimate is the last covariate to be deleted. If we take 10% as a cut-point of importance, we need
adjust for age and smoking. The adjusted rate ratio is 1.78 with 95% confidence interval (1.08, 2.93), while if we take 20% as a
cut-point of importance, we need only adjust for age. The adjusted rate ratio is 1.98 with a 95% confidence interval (1.21, 3.23).
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sbe28 Meta-analysis of p-values

Aurelio Tobias, Statistical Consultant, Madrid, Spain, bledatobias@ctv.es

Fisher’s work on combining of p-values (Fisher 1932) has been suggested as the origin of meta-analysis (Jones 1995).
However, combination of p-values presents serious disadvantages, relative to combining estimates. For example, when p-values
are testing different null hypotheses, they do not consider the direction of the association combining opposing effects, they
cannot quantify the magnitude of the association, nor study heterogeneity between studies. Combination of p-values may be the
only available option if nonparametric analyses of individual studies have been performed or if little information apart from the
p-value is available about the result of a particular study (Jones 1995).

Fisher’s method

This method (Fisher 1932) combines the probabilities of several hypotheses tests, testing the same null hypothesis

U � �2
kX
j��

ln�pj�

where the pj are the one-tailed p-values for each study, and k is the number of studies. Then U follows a �� distribution with
�k degrees of freedom. This method is not suggested to combine a large number of studies because it tends to reject the null
hypothesis routinely (Rosenthal 1984). It also tends to have problems combining studies that are statistically significant, but in
opposite directions (Rosenthal 1980).

Edgington’s methods

The first method (Edgington 1972a) is based on the sum of probabilities

p �

�
� KX
j��

pj

�
A
k�

k�
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The results obtained are similar to Fisher’s method, but it is also restricted for a small number of studies. This method presents
problems when the sum of probabilities is higher than one; in this situation the combined probability tends to be conservative
(Rosenthal 1980).

An alternative method was also suggested by Edgington (1972b), to combine more than four studies, based on the contrast
of the p-value average

p �
kX

j��

pj

�
k

in which case U � �0.5� p�
p

12 follows a normal distribution.

Syntax

The command metap works on a dataset containing the p-values for each study. The syntax is as follows:

metap pvar
�
if exp

� �
in range

� �
� e�#�

�

Options

e�#� combines the p-values using Edgington’s methods. Here, two alternatives are available; specifying a means that the additive
method based on the sum of probabilities is used, while n specifies that the normal curve method based on the contrast of
the p-value average is used. By default, Fisher’s method is used.

Example

We consider data from seven placebo-controlled studies on the effect of aspirin in preventing death after myocardial
infarction. Fleiss (1993) published an overview of these data. Let us assume that each study included in the meta-analysis is
testing the same null hypothesis H� � � � � versus the alternative H� � � � �. If the estimate of the log odds ratio and its
standard error is available, then one-tailed p-values can easily be generated using the normprob function:

� generate pvar�normprob��logrr�logse�
� list studyid logrr logse pvar� noobs
studyid logrr logse pvar
MCR�� 	�
�� 	���� �	������
CDP 	�
��
 	��	� �	������

MRC�� 	���� 	���
� �	�����
GASP 	���� 	����� ��	��
PARIS 	����� 	����� ����	���
AMIS �	���� 	�	�� �������

ISIS�� 	����� 	�	
�� �		�	���

In this situation, all methods to combine p-values produce similar results:

� metap pvar

Meta�analysis of p�values
������������������������������������������������������������
Method � chi� p�value studies

������������������������������������������������������������
Fisher � 
��
��
� �			
���
 �

������������������������������������������������������������

� metap pvar� e�a�

Meta�analysis of p�values
������������������������������������������������������������
Method � � p�value studies

������������������������������������������������������������
Edgington� additive� � �		������ �

������������������������������������������������������������

� metap pvar� e�n�

Meta�analysis of p�values
������������������������������������������������������������
Method � Z p�value studies
������������������������������������������������������������
Edgington� Normal � �����	��� �		�
���
 �
������������������������������������������������������������
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These figures agree with the result obtained using the meta command introduced in Sharp and Sterne (1998) on a fixed
effects (z � 3.289, p � 0.001) and random effects (z � 2.093, p � 0.036) models, respectively. However, the combination of
p-values presents the serious limitations described previously.

Individual or frequency records

As for other meta-analysis commands, metap works on data contained in frequency records, one for each study or trial.

Saved results

metap saves the following results:

S � Method used to combine the p-values
S � number of studies
S � Statistic used to obtain the combined probability
S � Values of the statistic described in S �

S � Combined probability
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sg64.1 Update to pwcorrs

Fred Wolfe, Arthritis Research Center, Wichita, KS, fwolfe@southwind.net

This update corrects a problem in pwcorrs, see Wolfe (1997). When the option vars�� was not specified and bonferroni

or sidak was specified, the program reported p-values of 0.0000 instead of the correct values.

Reference
Wolfe, F. 1997. sg64: pwcorrs: An enhanced correlation display. Stata Technical Bulletin 35: 22–25. Reprinted in Stata Technical Bulletin Reprints,

vol. 6, pp. 163–167.

sg81.1 Multivariable fractional polynomials: update

Patrick Royston, Imperial College School of Medicine, UK, proyston@rpms.ac.uk
Gareth Ambler, Imperial College School of Medicine, UK, gambler@rpms.ac.uk

Introduction

Multivariable fractional polynomials (FPs) were introduced by Royston & Altman (1994) and implemented in a command
mfracpol for Stata 5 by Royston and Ambler (1998). The model selection procedure in the Stata 5 version was essentially
the backward elimination algorithm described by Royston and Altman (1994) with modifications described by Sauerbrei and
Royston (1999) (see the technical note below). An application of multivariable FPs in modeling prognostic and diagnostic factors
in breast cancer is given by Sauerbrei and Royston (1999) (see our example below).

Briefly, fractional polynomial models are especially useful when one wishes to preserve the continuous nature of the predictor
variables in a regression model, but suspects that some or all the relationships may be nonlinear. Using a backfitting algorithm,
mfracpol finds a fractional polynomial transformation for each continuous predictor, fixing the current functional forms of the
other predictor variables. The algorithm terminates when the functional forms of the predictors do not change.

Commands stfracp and stmfracp implementing respectively univariate and multivariable FPs for the survival (st) data
format were presented by Royston (1998).
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Abstract. We present a revised version of the metareg command, which performs
meta-analysis regression (meta-regression) on study-level summary data. The ma-
jor revisions involve improvements to the estimation methods and the addition of
an option to use a permutation test to estimate p-values, including an adjustment
for multiple testing. We have also made additions to the output, added an option
to produce a graph, and included support for the predict command. Stata 8.0 or
above is required.

Keywords: sbe23 1, metareg, meta-regression, meta-analysis, permutation test,
multiple testing

1 Introduction

Meta-analysis regression, or meta-regression, is an extension to standard meta-analysis
that investigates the extent to which statistical heterogeneity between results of multiple
studies can be related to one or more characteristics of the studies (Thompson and
Higgins 2002). Like meta-analysis, meta-regression is usually conducted on study-level
summary data, because individual observations from all studies (often referred to as
individual patient data in medical applications) are frequently not available.

Sharp (1998) introduced the metareg command to perform meta-regression on study-
level summary data. In this article, we present a substantially updated and largely
rewritten version of metareg. The planning and interpretation of meta-regression stud-
ies raises substantial statistical issues discussed at length elsewhere (Davey Smith, Eg-
ger, and Phillips 1997; Higgins et al. 2002; Thompson and Higgins 2002, 2005). In this
article, we will concentrate on the rationale for and the implementation and interpreta-
tion of the following new features of metareg:

• An improved algorithm for the estimation of the between-study variance, τ2, by
residual (restricted) maximum likelihood (REML)

• A modification to the calculation of standard errors, p-values, and confidence
intervals for coefficients suggested by Knapp and Hartung (2003)

• Various enhancements to the output

• An option to produce a graph of the fitted model with a single covariate

c© 2008 StataCorp LP sbe23 1
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• An option to calculate permutation-based p-values, including an adjustment for
multiple testing based on the work of Higgins and Thompson (2004)

• Support for many of Stata’s postestimation commands, including predict

We begin with a brief outline in section 2 of the statistical basis of meta-analysis
and meta-regression, and we continue with a summary in section 3 of the relationship of
metareg to other Stata commands. Section 4 introduces two example datasets that we
use to illustrate the discussion of new features in section 5, which constitutes the main
body of the article and has subsections corresponding to each of the new features listed
above. The final two sections are reference material: Section 6 gives the Stata syntax
and full list of options for metareg and predict after metareg, and lists the results
saved by the command. Finally, section 7 gives details of the methods and formulas
used.

2 Basis of meta-regression

In this section, we outline the statistical basis of random- and fixed-effects meta-
regression and their relation to random- and fixed-effects meta-analysis. We will use
mathematical formulas for brevity and precision. Less mathematically inclined read-
ers or those who are already familiar with the principles of meta-analysis and meta-
regression can skip this section.

We assume that study i of a total of n studies provides an estimate, yi, of the effect
of interest, such as a log odds-ratio, log risk-ratio, or difference in means. Each study
also provides a standard error for this estimate, σi, which we assume is known, as is
common in meta-analysis (although in practice, it will have been estimated from the
data in that study). Let us start from the simplest model:

• Fixed-effects meta-analysis assumes that there is a single true effect size, θ, so
that

yi ∼ N(θ, σ2
i )

or equivalently,
yi = θ + εi, where εi ∼ N(0, σ2

i )

• Random-effects meta-analysis allows the true effects, θi, to vary between studies
by assuming that they have a normal distribution around a mean effect, θ:

yi | θi ∼ N(θi, σ
2
i ), where θi ∼ N(θ, τ2)

So
yi ∼ N(θ, σ2

i + τ2)

or equivalently,

yi = θ + ui + εi, where ui ∼ N(0, τ2) and εi ∼ N(0, σ2
i )

Here τ2 is the between-study variance and must be estimated from the data.
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• Fixed-effects meta-regression extends fixed-effects meta-analysis by replacing the
mean, θ, with a linear predictor, xiβ:

yi ∼ N(θi, σ
2
i ), where θi = xiβ

or equivalently,
yi = xiβ + εi, where εi ∼ N(0, σ2

i )

Here β is a k × 1 vector of coefficients (including a constant if fitted), and xi is a
1 × k vector of covariate values in study i (including a 1 if a constant is fit).

• Random-effects meta-regression allows for such residual heterogeneity (between-
study variance not explained by the covariates) by assuming that the true effects
follow a normal distribution around the linear predictor:

yi | θi ∼ N(θi, σ
2
i ), where θi ∼ N(xiβ, τ2)

so
yi ∼ N(xiβ, σ2

i + τ2)

or equivalently,

yi = xiβ + ui + εi, where ui ∼ N(0, τ2) and εi ∼ N(0, σ2
i )

Random-effects meta-regression can be considered either an extension to fixed-
effects meta-regression that allows for residual heterogeneity or an extension to
random-effects meta-analysis that includes study-level covariates.

Table 1 summarizes the relationships between these models and gives the corresponding
Stata commands, which are summarized in the next section.

(Continued on next page)



496 Meta-regression in Stata

Table 1. Summary of metareg and related Stata commands

No covariates With covariate(s)

Fixed-effects fixed-effects meta-analysis fixed-effects meta-regression
model (not recommended)

metan with fixedi, peto, vwls
or no options

Random-effects random-effects meta-analysis random-effects meta-regression
model (mixed-effects meta-regression)

metan with random or metareg
randomi options

3 Relation to other Stata commands

Both fixed- and random-effects meta-analysis are available in the user-written package
metan (Harris et al. 2008). Random-effects meta-analysis can also be performed with
metareg by not including any covariates (the method-of-moments estimate for between-
study variance must be specified to produce identical results to the metan command).
metan can also be used to generate the variables required by metareg containing the
effect estimate and its standard error for each study from data in various other forms
(Harris et al. 2008).

Fixed-effects meta-regression can be fit by weighted least squares by using the official
Stata command vwls (see [R] vwls) with the weights 1/σ2

i . Fixed-effects meta-regression
is not usually recommended, however, because it assumes that all the heterogeneity can
be explained by the covariates, and it leads to excessive type I errors when there is resid-
ual, or unexplained, heterogeneity (Higgins and Thompson 2004; Thompson and Sharp
1999).

Random-effects meta-regression is closely related to the seldom-used “between-
effects” model available in the official Stata command xtreg (see [XT] xtreg), with
studies corresponding to units. Whereas meta-regression assumes that the within-study
data have been summarized by an effect estimate, yi, and its standard error, σi, for
each study, xtreg requires data on individual observations, e.g., individual patient data.
Meta-regression is often used on binary outcomes summarized by log odds-ratios or log
risk-ratios and their standard errors, whereas xtreg is appropriate only for continuous
outcomes. xtreg also uses different estimators from those available in metareg, which
are outlined in section 5.1.
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4 Background to examples

Our first example is from a meta-analysis of 28 randomized controlled trials of cholester-
ol-lowering interventions for reducing risk of ischemic heart disease (IHD). The outcome
event was death from IHD or nonfatal myocardial infarction. These data are taken from
table 1 of Thompson and Sharp (1999). Data from 25 of these trials were also published
in Thompson (1993). The measure of effect size is the odds ratio, but statistical analysis
is conducted on its natural logarithm, the log odds-ratio, because this has a sampling
distribution more closely approximated by a normal distribution. The interventions are
varied, with 18 trials of several different drugs, 9 trials of dietary interventions, and 1
trial of a surgical intervention. The eligibility criteria also differed—19 studies recruited
only participants without known IHD on entry, 6 recruited only those with IHD, and 3
included those with or without IHD. The reduction in cholesterol varied among trials,
as quantified by the difference in mean serum cholesterol concentrations between the
treated and control subjects at the end of each trial. Interest focuses on estimating the
odds ratio for any given degree of cholesterol reduction (e.g., 1 mmol/L), assuming that
any effect on IHD is mediated through the reduction in serum cholesterol. The Stata
dataset is named cholesterol.dta.

The second example is drawn from a systematic review of 10 randomized controlled
trials of exercise as an intervention in the management of depression (Lawlor and Hopker
2001). Here the outcome, severity of depression, was measured on one of two numerical
scales, and the measure of effect size was the standardized mean difference. There was
considerable between-study heterogeneity in the results of the trials, and the authors
considered eight study-level covariates that might explain this heterogeneity. We will fo-
cus on the five covariates selected by Higgins and Thompson (2004). The Stata dataset
is named xrcise4deprsn.dta.

5 New and enhanced features

We now give details of each of the new and enhanced features available in this revision
of metareg, as listed in section 1. Sections 5.1–5.3 are relevant to all uses of metareg.
When there is a single continuous covariate, the fitted model can be presented graph-
ically, as shown in section 5.4. Section 5.5 explores a permutation-based approach to
calculating p-values, suggested by Higgins and Thompson (2004), who recommended its
use when there are few studies and as a way of adjusting for multiple testing when there
is more than one covariate of interest. Section 5.6 is intended for more advanced users
only; it describes the postestimation facilities available after a metareg model has been
fit, and it assumes some familiarity with random-effects models, as well as with Stata’s
graphics commands and postestimation tools.

5.1 Algorithm for REML estimation of τ 2

All algorithms for random-effects meta-regression first estimate the between-study vari-
ance, τ2, and then estimate the coefficients, β, by weighted least squares by using the
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weights 1/(σ2
i + τ2), where σ2

i is the standard error of the estimated effect in study
i. The default algorithm in metareg is REML, as advocated by Thompson and Sharp
(1999).

The algorithm for REML estimation has been improved in this update of metareg.
The original version used an iterative algorithm (Morris 1983) that was not guaranteed
to converge and was only an approximation when the within-study standard errors var-
ied. The original version of metareg sometimes misleadingly reported an estimate of
τ̂2 = 0 when the algorithm was in fact diverging (for example, with the cholesterol
data). This revised version of metareg instead directly maximizes the residual (re-
stricted) log likelihood by using Stata’s robust and well-tested ml command, avoiding
the approximations and convergence problems of the previous method.

We decided not to implement the standard maximum likelihood (ML) estimator in
this updated version of metareg. (To ensure all do-files written for the original version
of metareg continue to work, however, the code of the original program is included in
this package so that a request for the ML estimator can be handled by calling the original
code.) Both REML and ML are iterative methods. Unlike REML, however, ML does not
account for the degrees of freedom used in estimating the fixed effects. This can make
a particular difference in meta-regression because the number of observations (studies)
is often small. As a result, the ML estimate of τ2 is often biased downward, leading to
underestimated standard errors and anticonservative inference (Thompson and Sharp
1999; Sidik and Jonkman 2007).

Further details of the methods for the estimation of τ2 are given in section 7.1.

5.2 Knapp–Hartung variance estimator and associated t test

Knapp and Hartung (2003) introduced a novel estimator for the variances of the ef-
fect estimates in meta-regression. Their variance estimator amounts to calculating a
quadratic form, q, and multiplying the usual variance estimates by q if q > 1. This
estimator should be used with a t distribution when calculating p-values and confidence
intervals. They found this procedure to have much more appropriate false-positive rates
than the standard approach, a finding confirmed by Higgins and Thompson (2004) in
more extensive simulations.

We therefore recommend this variance estimator and have made it the default in
metareg. It is particularly suitable for estimation of standard errors and confidence
intervals. However, it can be unreasonably conservative (false-positive rates below the
nominal level) when the number of studies is particularly small, further reducing the
already limited power. When there are few studies, the permutation test detailed in
section 5.5 below has the potential to provide a better, though more computationally
intensive, method for calculating p-values.
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5.3 Enhancements to the output

The following additions have been made to the output of metareg that is displayed
above the coefficient table:

• A measure of the percentage of the residual variation that is attributable to
between-study heterogeneity (I2

res)

• The proportion of between-study variance explained by the covariates (a type of
adjusted R2 statistic)

• An overall test of all the covariates in the random-effects model

The iteration log is no longer displayed by default.

We will illustrate these additions by using the output of metareg in the simplest
situation where a single continuous covariate is fit, using the cholesterol data as an
example:

. use cholesterol
(Serum cholesterol reduction & IHD)

. metareg logor cholreduc, wsse(selogor)

Meta-regression Number of obs = 28
REML estimate of between-study variance tau2 = .0097
% residual variation attributable to heterogeneity I-squared_res = 31.34%
Proportion of between-study variance explained Adj R-squared = 69.02%
With Knapp-Hartung modification

logor Coef. Std. Err. t P>|t| [95% Conf. Interval]

cholreduc -.5056849 .1834858 -2.76 0.011 -.8828453 -.1285244
_cons .1467225 .1374629 1.07 0.296 -.1358367 .4292816

Residual heterogeneity of the fixed-effects model

The residual heterogeneity statistic is the weighted sum of squares of the residuals from
the fixed-effects meta-regression model and is a generalization of Cochran’s Q from meta-
analysis to meta-regression. To distinguish it from the total heterogeneity statistic Q
that would be obtained from ordinary meta-analysis, i.e., without fitting any covariates,
we will denote it by Qres (Lipsey and Wilson [2001] denote the same statistic by QE).
A test of the null hypothesis of no residual (unexplained) heterogeneity can be obtained
by comparing Qres to a χ2 distribution with n − k degrees of freedom. However, it
is often more useful to quantify heterogeneity than to test for it (Higgins et al. 2003):
The proportion of residual between-study variation due to heterogeneity, as opposed to
sampling variability, is calculated as I2

res = max[0, {Qres − (n − k)}/Qres], an obvious
extension to the I2 measure in meta-analysis (Higgins et al. 2003).

From the value of I2
res in the output above, 31% of the residual variation is due to

heterogeneity, with the other 69% attributable to within-study sampling variability.
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Adjusted R2

The proportion of between-study variance explained by the covariates can be calculated
by comparing the estimated between-study variance, τ̂2, with its value when no covari-
ates are fit, τ̂2

0 . Adjusted R2 is the relative reduction in the between-study variance,
R2

adj = (τ̂2
0 − τ̂2)/τ̂2

0 . It is possible for this to be negative if the covariates explain less of
the heterogeneity than would be expected by chance, but the same is true for adjusted
R2 in ordinary linear regression. It may be more common in meta-regression because
the number of studies is often small.

In the above example, 69% of the between-study variance is explained by the covari-
ate cholreduc, and the remaining between-study variance appears small at 0.0097. (It
is coincidence that the figure of 69% also appears in the preceding subsection.)

Joint test for all covariates

When more than one covariate is fit, metareg reports a test of the null hypothesis that
the coefficients of the covariates are all zero, obtained from a multiparameter Wald
test by using Stata’s test command (see [R] test). The test statistic is compared to
the appropriate F distribution if the default Knapp–Hartung adjustment is used. If
metareg’s z option is used to specify the use of conventional variance estimates and
tests for the effect estimates, a χ2 distribution is used for the joint test. To simplify
the output, this test is not displayed when only a single covariate is fit because it would
give an identical p-value to the one displayed for the covariate in the regression table.

This gives one way of controlling the risk of false-positive findings when performing
meta-regression with multiple covariates: we can use the overall model p-value to assess
if there is evidence for an association of any of the covariates with the outcome. However,
when a small p-value indicates that there is such evidence, it becomes harder to decide
which, and how many, of the covariates there is good evidence for. Another method of
dealing with this multiplicity issue that may help overcome this problem, though at the
expense of longer computation time, is given in section 5.5 below.
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Example

We illustrate this joint test by using all five covariates available in the data on
exercise for depression:

. use xrcise4deprsn
(Exercise for depression)

. metareg smd abstract-phd, wsse(sesmd)

Meta-regression Number of obs = 10
REML estimate of between-study variance tau2 = 0
% residual variation attributable to heterogeneity I-squared_res = 0.00%
Proportion of between-study variance explained Adj R-squared = 100.00%
Simultaneous test for all covariates Model F(5,4) = 6.57
With Knapp-Hartung modification Prob > F = 0.0460

smd Coef. Std. Err. t P>|t| [95% Conf. Interval]

abstract -1.33993 .3892562 -3.44 0.026 -2.420678 -.2591814
duration .1567629 .0616404 2.54 0.064 -.0143784 .3279041

itt .4611682 .3883635 1.19 0.301 -.6171018 1.539438
alloc -.4063866 .3503447 -1.16 0.311 -1.379099 .5663263

phd -.0138045 .440595 -0.03 0.977 -1.237092 1.209483
_cons -2.07241 .5683944 -3.65 0.022 -3.650526 -.4942942

Here τ̂2 is zero, and it follows that I2
res = 0% and R2

adj = 100%. The joint test for
all five covariates gives a p-value of 0.046, indicating some evidence for an association
of at least one of the covariates with the size of the treatment effect.

5.4 Graph of the fitted model

When a single continuous covariate is fit, one common way to present the fitted model,
sometimes referred to as a “bubble plot”, is to graph the fitted regression line together
with circles representing the estimates from each study, sized according to the precision
of each estimate (the inverse of its within-study variance, σ2

i ). The graph option to
metareg gives an easy way to produce such a plot, as illustrated in figure 1 for the
cholesterol data.

. use cholesterol
(Serum cholesterol reduction & IHD)

. metareg logor cholreduc, wsse(selogor) graph

(output omitted )

(Continued on next page)
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Figure 1. “Bubble plot” with fitted meta-regression line

An additional option, randomsize, is provided for those who prefer the size of the
circles to depend on the weight of the study in the fitted random-effects meta-regression
model (the inverse of its total variance, σ2

i + τ̂2). This makes only a slight difference
to the example above because the estimated between-study variance, τ̂2, is small; in
general, though, it will give circles that vary less in size.

Those wishing to further customize the plot can use the predict command to gen-
erate fitted values followed by a graph twoway command (see section 5.6).

5.5 Permutation test

Higgins and Thompson (2004) proposed using a permutation test approach to calcu-
lating p-values in meta-regression. Permutation tests provide a nonparametric way of
simulating data under the null hypothesis (see, e.g., Manly [2006]). Calculation of exact
permutation p-values would be feasible when there are few studies by enumeration of
all possible permutations, but for simplicity, we have implemented a permutation test
based on Monte Carlo simulation, i.e., based on random permutations.

The algorithm is similar to other applications of permutation methods, and it is
implemented with Stata’s permute command (see [R] permute). The covariates are
randomly reallocated to the outcomes many times, and a t statistic is calculated each
time. The true p-value for the relationship between a given covariate and the response is
computed by counting the number of times these t statistics are greater than or equal to
the observed t statistic. When multiple covariates are included in the meta-regression,
the covariate values for a given study are kept together to preserve and account for
their correlation structure. In meta-regression, unlike other regressions, the outcome
consists of both the effect size and its standard error, and these must be kept together.
This small complication makes it impossible to use permute on metareg directly from
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the command line when there are multiple covariates, so we have written a permute()
option for metareg. This option also implements the following extension, which adjusts
p-values for multiple tests when there are several covariates.

Multiplicity adjustment

When several covariates are used in meta-regression, either in several separate univari-
able meta-regressions or in one multiple meta-regression, there is an increased chance
of at least one false-positive finding (type I error). The statistics obtained from the
random permutations can be used to adjust for such multiple testing by comparing the
observed t statistic for every covariate with the largest t statistic for any covariate in
each random permutation. The proportion of times that the former equals or exceeds
the latter gives the probability of observing a t statistic for any covariate as extreme
or more extreme than that observed for a particular covariate, under the complete null
hypothesis that all the regression coefficients are zero.

The number of random permutations must be specified—there is deliberately no
default. We suggest that a small number (e.g., 100) be specified initially to check that
the command is working as expected. The number should then be increased to at least
1,000, but 5,000 or 20,000 permutations may be necessary for sufficient precision (Manly
2006; Westfall and Young 1993). Because the permute() option uses Stata’s random-
number generator, the set seed command should be used first if replicability of results
is desired. When the permute() option is specified, the defaults are to use the method-
of-moments estimate of τ2 for reasons of speed and to not use the Knapp–Hartung
modification to the standard errors.

By default, permute() performs multivariable meta-regression; i.e., all the covariates
are entered into a single model in each permutation.

Example

We illustrate the use of the permute() option by using the data on exercise for
depression.

(Continued on next page)
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. use xrcise4deprsn
(Exercise for depression)

. set seed 15160401

. metareg smd abstract-phd, wsse(sesmd) permute(20000)

Monte Carlo permutation test for meta-regression

Moment-based estimate of between-study variance
Without Knapp & Hartung modification to standard errors

P-values unadjusted and adjusted for multiple testing

Number of obs = 10
Permutations = 20000

P
smd Unadjusted Adjusted

abstract 0.023 0.089
duration 0.056 0.201

itt 0.311 0.721
alloc 0.313 0.736
phd 0.978 1.000

largest Monte Carlo SE(P) = 0.0033

WARNING:
Monte Carlo methods use random numbers, so results may differ between runs.
Ensure you specify enough permutations to obtain the desired precision.

The first column of the results table gives permutation p-values without an adjust-
ment for multiplicity. The results are in good agreement with the p-values obtained in
section 5.3 without using the permutation option but with the Knapp–Hartung modifi-
cation. The second column gives p-values adjusted for multiplicity. We see that all the
p-values are increased. After adjusting for multiple testing, there remains some weak
evidence that results of studies published as an abstract differ on average from results
of studies published as a full article. The adjusted p-value of 0.089 gives the probability
under the complete null hypothesis (that all regression coefficients are zero) of a t statis-
tic for any of the five covariates as extreme or more extreme as that observed for the
covariate abstract. As Higgins and Thompson (2004) suggest, this can be interpreted
as describing the degree of “surprise” one might have about the observed result for this
covariate, considering that five covariates are being examined. This is less conservative
than the Bonferroni adjusted p-value of 0.0235 × 5 = 0.1175.

The output also gives the largest Monte Carlo standard error of the calculated p-
values as an indication of the degree of precision obtained by the specified number of
random permutations. Standard errors and “exact” confidence intervals for each of
the p-values can be obtained by using the detail suboption. (These can always be
calculated afterward by using the cii command if this option was not specified.)

Technical note

Higgins and Thompson (2004) originally proposed a slightly different permutation-
based multiplicity adjustment: it compared the ith largest t statistic observed (for the
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“ith most significant” covariate) with the ith largest t statistic in each random per-
mutation. This adjustment was implemented in a revised version of metareg released
previously on the Statistical Software Components archive. This adjustment has been
found to be hard to interpret in practice, however, because for the second most signifi-
cant covariate it effectively gives a joint test of the two covariates with the largest two
observed t statistics (and similarly for third and subsequent covariates if more than two
covariates are supplied). The resulting multiplicity-adjusted p-value can turn out to be
either larger or smaller than the unadjusted p-value, which can appear counter-intuitive.

For this release of metareg, we have therefore chosen to implement a different
permutation-based algorithm for multiplicity adjustment based on the one-step
“maxT” method of Westfall and Young (1993). This adjustment compares the t statis-
tic for every covariate with the largest t statistic in each random permutation. The
resulting multiplicity-adjusted p-values are always as large as or (usually) larger than
the unadjusted p-values. This procedure ensures weak control of the familywise error
rate, defined as the probability that at least one null hypothesis is rejected when all
the null hypotheses are true (Shaffer 1995). It does not guarantee strong control of the
familywise error rate, however; i.e., when one or more null hypotheses are false, it does
not guarantee control of the proportion of the remaining true null hypotheses that are
incorrectly rejected, though such strong control should be achieved asymptotically as
the number of studies increases (Westfall and Young 1993; Shaffer 1995).

The false discovery rate (Benjamini and Hochberg 1995) and related procedures
(Newson and the ALSPAC Study Team 2003; Storey, Taylor, and Siegmund 2004; Wa-
cholder et al. 2004) have been suggested as an alternative method of multiplicity ad-
justment, but we have chosen not to implement such procedures in metareg. Such
procedures are always either step-up or (more rarely) step-down algorithms. Although
stepwise algorithms are suitable for hypothesis testing and often give greater power,
the resulting adjusted p-values cannot be interpreted as giving the strength of evidence
against the null hypothesis, the interpretation increasingly advocated in medicine and
epidemiology (Sterne and Davey Smith 2001). In particular, stepwise methods may as-
sign equal adjusted p-values to covariates with different unadjusted p-values.

Suboptions to permute()

The permute() option can also be used to perform a set of single-variable meta-
regressions at each permutation by adding the univariable suboption. This suboption
reports permutation-based p-values for fitting a separate model for each covariate rather
than including all the covariates in a multiple regression model. With several covariates,
the execution time may be considerably longer than for multivariable meta-regression.

Example

We add the univariable suboption to the previous example but reduce the number
of permutations to cut down the computation time:
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. metareg smd abstract-phd, wsse(sesmd) permute(5000, univariable)

Monte Carlo permutation test for single covariate meta-regressions

Moment-based estimate of between-study variance
Without Knapp & Hartung modification to standard errors

P-values unadjusted and adjusted for multiple testing

Number of obs = 10
Permutations = 5000

P
smd Unadjusted Adjusted

abstract 0.021 0.043
duration 0.030 0.115

itt 0.384 0.946
alloc 0.330 0.861
phd 0.715 0.999

largest Monte Carlo SE(P) = 0.0069

WARNING:
Monte Carlo methods use random numbers, so results may differ between runs.
Ensure you specify enough permutations to obtain the desired precision.

In these results, unlike those from the previous example, each covariate is fit in a
separate model and so is not adjusted for the other covariates. The p-values do not
differ greatly in this example, however.

There is also a joint() suboption that requests a permutation p-value for a joint test
of the variables specified. This can be particularly useful if a set of indicator variables
is used to model a categorical covariate.

A joint test of covariates can be obtained without using a permutation approach by
instead using the test or testparm (see [R] test) command after metareg.

A p-value for the joint test is not included in the multiplicity-adjustment procedure
because the two are neither technically nor philosophically compatible.

Example

We return to the cholesterol data, in which the ihdentry variable is a categorical
covariate with three categories indicating whether the study included participants with
known IHD on entry to the study, without known IHD, or both:

. use cholesterol
(Serum cholesterol reduction & IHD)

. tab ihdentry, gen(ihd)

Ischaemic heart
disease on entry Freq. Percent Cum.

Without known IHD 6 21.43 21.43
With IHD 19 67.86 89.29

With or without IHD 3 10.71 100.00

Total 28 100.00
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. metareg logor cholreduc ihd2 ihd3, wsse(selogor)
> permute(5000, joint(ihd2 ihd3))

Monte Carlo permutation test for meta-regression

Moment-based estimate of between-study variance
Without Knapp & Hartung modification to standard errors
joint1 : ihd2 ihd3

P-values unadjusted and adjusted for multiple testing

Number of obs = 28
Permutations = 5000

P
logor Unadjusted Adjusted

cholreduc 0.009 0.028
ihd2 0.611 0.933
ihd3 0.907 0.999

joint1 0.883

largest Monte Carlo SE(P) = 0.0069

WARNING:
Monte Carlo methods use random numbers, so results may differ between runs.
Ensure you specify enough permutations to obtain the desired precision.

The p-value of 0.883 for the joint test of ihd2 and ihd3 indicates that there is very
little evidence that the log odds-ratio differs among these three categories of studies,
after adjusting for the degree of cholesterol reduction achieved in each study.

5.6 Postestimation tools for metareg

metareg is programmed as a Stata estimation command and so supports most of Stata’s
postestimation commands (except when the permute() option is used). (One deliberate
exception is lrtest, which is not appropriate after metareg because the REML log
likelihood cannot be used to compare models with different fixed effects, while the
method of moments does not give a likelihood.)

Several quantities can be obtained by using predict after metareg, including fitted
values and predicted random effects (empirical Bayes estimates). These can be useful
for producing graphs of the fitted model and for model checking. Details of the syntax
and options are given in sections 6.4 and 6.5, and section 7.4 contains the formulas used.

We now illustrate the use of some of the quantities available from predict in a
graph. Using the exercise for depression data, we conduct a meta-regression of the
standardized mean difference on the single covariate duration that describes the duration
of follow-up in each study. Figure 2 shows the fitted line and the estimates from the
separate studies that would be produced by the graph option to metareg, and it also
includes the empirical Bayes estimates and shaded bands showing both confidence and
prediction intervals (we would not recommend including all these features on a single
graph in practice). It was produced by the following commands:
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. use xrcise4deprsn, clear
(Exercise for depression)

. metareg smd duration, wsse(sesmd)

Meta-regression Number of obs = 10
REML estimate of between-study variance tau2 = .2019
% residual variation attributable to heterogeneity I-squared_res = 55.83%
Proportion of between-study variance explained Adj R-squared = 55.16%
With Knapp-Hartung modification

smd Coef. Std. Err. t P>|t| [95% Conf. Interval]

duration .2097633 .0802611 2.61 0.031 .0246808 .3948457
_cons -2.907511 .7339255 -3.96 0.004 -4.599946 -1.215076

. predict fit
(option xb assumed; fitted values)

. predict stdp, stdp

. predict stdf, stdf

. predict xbu, xbu

. local t = invttail(e(df_r)-1, 0.025)

. gen confl = fit - `t´*stdp

. gen confu = fit + `t´*stdp

. gen predl = fit - `t´*stdf

. gen predu = fit + `t´*stdf

. sort duration

. twoway rarea predl predu duration || rarea confl confu duration
> || line fit duration
> || scatter smd duration [aw=1/sesmd^2], msymbol(Oh)
> || scatter xbu duration, msymbol(t)
> ||, legend(label(1 "Prediction interval") label(2 "Confidence interval")
> cols(1))
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Figure 2. Confidence and prediction intervals and empirical Bayes estimates

The stdp option to predict gives the standard error of the fitted values exclud-
ing the random effects, commonly referred to as the standard error of the prediction.
This standard error is used to draw a pointwise confidence interval, shown in light gray
in figure 2, around the fitted line, illustrating our uncertainty about the position of
the line. The stdf option to predict gives the standard deviation of the predicted
distribution of the true value of the outcome in a future study with a given value
of the covariate(s), commonly referred to as the standard error of the forecast. This
standard error is used to draw a prediction interval, shown in dark gray in figure 2,
around the fitted line, illustrating our uncertainty about the true effect we would pre-
dict in a future study with a known duration of follow-up. The prediction band will
be wider than the confidence band unless τ2 = 0. The use of a t distribution in gener-
ating the intervals is an approximation, and opinions differ over the most appropriate
degrees of freedom; we use n − k − 1 here to be consistent with the n − 2 used by
Higgins, Thompson, and Spiegelhalter (Forthcoming) for confidence and prediction in-
tervals in meta-analysis, where k = 1. The xbu option to predict gives the empirical
Bayes estimates (predictions including random effects), shown as triangles in figure 2.
These are our best estimates of the true effect in each study, assuming the fitted model
is correct. If I2

res is small, the empirical Bayes estimates will tend to lie well inside the
prediction interval; if τ2 = 0, implying I2

res = 0, they will all lie on the fitted line.

The statistics available from predict can also be useful for model checking and
checking for outliers and influential studies. This checking is best done graphically.
One possibility is a normal probability plot of the standardized predicted random ef-
fects (equivalently, standardized empirical Bayes residuals, or standardized shrunken
residuals; see figure 3). This probability plot can be used to check the assumption of
normality of the random effects, although because this assumption has been used in
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generating the predictions, only gross deviations are likely to be detected. Perhaps
more usefully, the probability plot can be used to detect outliers:

. use cholesterol, clear
(Serum cholesterol reduction & IHD)

. qui metareg logor cholreduc, wsse(selogor)

. capture drop usta

. predict usta, ustandard

. qnorm usta, mlabel(id)
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Figure 3. Normal probability plot of standardized shrunken residuals

Figure 3 suggests that the assumption of normal random effects is adequate, and
there are no notable outliers because the largest standardized shrunken residual is only
slightly over 2.

Other plots useful for model checking and identifying influential points in conven-
tional linear regression may also be useful for meta-regression, for example, leverage–
residual (L–R) plots, or plots of residuals versus either fitted values or a predictor; see
[R] regress postestimation for further details of these and other plots (the various
plot commands given there will not work after metareg, but it should be fairly straight-
forward to use predict followed by the appropriate graph twoway command to produce
similar plots).

6 Syntax, options, and saved results

6.1 Syntax

The syntax of metareg has been revised somewhat from that of the original version
(Sharp 1998). The original syntax should continue to work, but it is not documented
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here. ML estimation of τ2 is not supported by the updated metareg program, but if the
old bsest(ml) option is used, the new program simply calls the original version, which
is incorporated within the updated metareg.ado file.

metareg depvar
[
indepvars

] [
if
] [

in
]
wsse(varname)

[
, eform graph

randomsize noconstant mm reml eb knapphartung z tau2test level(#)

permute(#
[
, univariable detail joint(varlist1

[
| varlist2 . . .

]
)
]
) log

maximize options
]

by can be used with metareg; see [D] by.

6.2 Options

wsse(varname) specifies the variable containing σi, the standard error of depvar, within
each study. All values of varname must be greater than zero. wsse() is required.

eform indicates to output the exponentiated form of the coefficients and to suppress
reporting of the constant. This option may be useful when depvar is the logarithm
of a ratio measure, such as a log odds-ratio or a log risk-ratio.

graph requests a line graph of fitted values plotted against the first covariate in in-
depvars, together with the estimates from each study represented by circles. By
default, the circle sizes depend on the precision of each estimate (the inverse of its
within-study variance), which is the weight given to each study in the fixed-effects
model.

randomsize is for use with the graph option. It specifies that the size of the circles will
depend on the weights in the random-effects model rather than the precision of each
estimate. These random-effects weights depend on the estimate of τ2.

The remaining options will mainly be of interest to more advanced users:

noconstant suppresses the constant term (intercept). This is rarely appropriate in
meta-regression. Note: It might seem tempting to use the noconstant option in the
cholesterol example to force the regression line through the origin, on the reasoning
that an intervention that has no effect on cholesterol should have no effect on the
odds of IHD. We would advise against using this option, however, both here and in
most other circumstances. Using it here involves the assumption that the effect of
the intervention on IHD is mediated entirely by cholesterol reduction. It also would
not allow for measurement error in cholesterol reduction, which, through attenuation
by errors (regression dilution bias), could lead to a nonzero intercept even when a
zero intercept would be expected.

The mm, reml, and eb options are alternatives that specify the method of estimation of
the additive (between-study) component of variance τ2:
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mm specifies the use of method of moments to estimate the additive (between-study)
component of variance τ2; this is a generalization of the DerSimonian and Laird
(1986) method commonly used for random-effects meta-analysis. For speed, this is
the default when the permute() option is specified, because it is the only noniterative
method.

reml specifies the use of REML to estimate the additive (between-study) component
of variance τ2. This is the default unless the permute() option is specified. This
revised version uses Stata’s ML facilities to maximize the REML log likelihood. It
will therefore not give identical results to the previous version of metareg, which
used an approximate iterative method.

eb specifies the use of the “empirical Bayes” method to estimate τ2 (Morris 1983).

knapphartung makes a modification to the variance of the estimated coefficients sug-
gested by Knapp and Hartung (2003) and supported by Higgins and Thompson
(2004), accompanied by the use of a t distribution in place of the standard normal
distribution when calculating p-values and confidence intervals. This is the default
unless the permute() option is specified.

z requests that the knapphartung modification not be applied and that the standard
normal distribution be used to calculate p-values and confidence intervals. This is
the default when the permute() option is specified with a fixed-effects model.

tau2test adds to the output two tests of τ2 = 0. The first is based on the residual
heterogeneity statistic, Qres. The second (not available if the mm option is also
specified) is a likelihood-ratio test based on the REML log likelihood. These are
two tests of the same null hypothesis (the fixed-effects model with τ2 = 0), but
the alternative hypotheses are different, as are the distributions of the test statistics
under the null, so close agreement of the two tests is not guaranteed. Both tests are
typically of little interest because it is more helpful to quantify heterogeneity than
to test for it (see section 5.3).

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.7 Specifying the width
of confidence intervals.

permute(. . .) calculates p-values by using a Monte Carlo permutation test. See sec-
tion 6.3 below for more information about this option.

log requests the display of the iteration log during estimation of τ2. This is ignored if
the mm option is specified, because this uses a noniterative method.

maximize options are ignored unless estimation of τ2 is by REML. These options control
the maximization process; see [R] maximize. They are ignored if the mm option is
specified. You should never need to specify them; they are supported only in case
problems in the REML estimation of τ2 are ever reported or suspected.
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6.3 Option for permutation test

The permute() option calculates p-values by using a Monte Carlo permutation test, as
recommended by Higgins and Thompson (2004). To address multiple testing, permute()
also calculates p-values for the most- to least-significant covariates, as the same authors
also recommend.

The syntax of permute() is

permute(#
[
, univariable detail joint(varlist1

[
| varlist2 . . .

]
)
]
)

where # is required and specifies the number of random permutations to perform.
Larger values give more precise p-values but take longer.

There are three suboptions:

univariable indicates that p-values should be calculated for a series of single covariate
meta-regressions of each covariate in varlist separately, instead of a multiple meta-
regression of all covariates in varlist simultaneously.

detail requests lengthier output in the format given by [R] permute.

joint(varlist1
[
| varlist2 . . .

]
) specifies that a permutation p-value should also be

computed for a joint test of the variables in each varlist.

The eform, level(), and z options have no effect when the permute() option is
specified.

6.4 Syntax of predict

The syntax of predict (see [R] predict) following metareg is

predict
[
type

]
newvar

[
if
] [

in
] [

, statistic
]

statistic description

xb fitted values; the default
stdp standard error of the prediction
stdf standard error of the forecast
u predicted random effects
ustandard standardized predicted random effects
xbu prediction including random effects
stdxbu standard error of xbu
hat leverage (diagonal elements of hat matrix)

These statistics are available both in and out of sample; type predict . . . if
e(sample) . . . if wanted only for the estimation sample.
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6.5 Options for predict

xb, the default, calculates the linear prediction, xib, that is, the fitted values excluding
the random effects.

stdp calculates the standard error of the prediction (the standard error of the fitted
values excluding the random effects).

stdf calculates the standard error of the forecast. This gives the standard deviation
of the predicted distribution of the true value of depvar in a future study, with the
covariates given by varlist. stdf2 = stdp2 + τ̂2.

u calculates the predicted random effects, ui. These are the best linear unbiased predic-
tions of the random effects, also known as the empirical Bayes (or posterior mean)
estimates of the random effects, or as shrunken residuals.

ustandard calculates the standardized predicted random effects, i.e., the predicted ran-
dom effects, ui, divided by their (unconditional) standard errors. These may be
useful for diagnostics and model checking.

xbu calculates the prediction including the random effects, xib + ui, also known as the
empirical Bayes estimates of the effects for each study.

stdxbu calculates the standard error of the prediction including random effects.

hat calculates the leverages (the diagonal elements of the projection hat matrix).

6.6 Saved results

When the permute() option is not specified, metareg saves the following in e():

Scalars
e(N) number of observations e(tau2) estimate of τ2

e(df m) model degrees of freedom e(Q) Cochran’s Q
e(df Q) degrees of freedom for test e(I2) I-squared

of Q = 0 e(q KH) Knapp–Hartung variance
e(df r) residual degrees of freedom modification factor

(if t tests used) e(remll c) REML log likelihood,
e(remll) REML log likelihood comparison model
e(chi2 c) χ2 for comparison test e(tau2 0) τ2, constant-only model
e(F) model F statistic e(chi2) model χ2

Macros
e(cmd) metareg e(depvar) name of dependent variable
e(predict) program used to implement

predict
e(method) REML, Method of moments, or

Empirical Bayes
e(wsse) name of wsse() variable e(properties) b V

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of

estimators

Functions
e(sample) marks estimation sample
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metareg, permute() saves the following in r():

Scalars
r(N) number of observations

Matrices
r(b) observed t statistics, Tobs r(p) observed proportions
r(c) count when |T | ≥ |Tobs | r(reps) number of nonmissing results

7 Methods and formulas

The residual heterogeneity statistic, Qres, is the residual weighted sum of squares from
the fixed-effects model and is the same as the goodness-of-fit statistic computed by
vwls:

Qres =
∑

i

(
yi − xiβ̂

σi

)2

The proportion of residual variation due to heterogeneity is

I2 = max
{

Qres − (n − k)
Qres

, 0
}

The proportion of the between-study variance explained by the covariates (adjusted
R-squared) is R2

a = (τ̂2
0 −τ̂2)/τ̂2

0 , where τ̂2 and τ̂2
0 are the estimates of the between-study

variance in models with and without the covariates, respectively.

7.1 Estimation of τ 2

Several different algorithms have been proposed for estimation of the between-study
variance, τ2, in meta-analysis (Sidik and Jonkman 2007) and meta-regression (Thomp-
son and Sharp 1999). Three algorithms are available in this version of metareg. In each
case, if the estimated value of τ2 is negative, it is set to zero.

Method of moments is the only noniterative method, so it has the advantages of
speed and robustness. It is the natural extension of the DerSimonian and Laird (1986)
estimate commonly used in random-effects meta-analysis. The method-of-moments es-
timate of τ2 is obtained by equating the observed value of Qres to its expected value
under the random-effects model, giving (DuMouchel and Harris 1983, eq. 3.12)

τ̂2
MM =

Qres − (n + k)∑
i{1/σ2

i (1 − hi)}

Here hi is the ith diagonal element of the hat matrix X(X′V−1
0 X)−1XV−1

0 , where
V0 = diag(σ2

1 , σ2
2 , . . . , σ2

n).

The iterative methods below use τ̂2
MM as a starting value (this is a change from the

original version of metareg (Sharp 1998), which used zero as a starting value).
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REML estimation of τ2 is based on maximization of the residual (or restricted) log
likelihood,

LR(τ2) = −1
2

∑
i

{
log(σ2

i + τ2) +
(yi − xiβ̂)2

σ2
i + τ2

}
− 1

2
log |X′V−1X |

where V = diag(σ2
1 + τ2, σ2

2 + τ2, . . . , σ2
n + τ2) and β̂ = (X′V−1X)−1X′V−1y (Harville

1977). This log likelihood is maximized by Stata’s ml command, using the d0 method,
which calculates all derivatives numerically.

The “empirical Bayes” estimator of τ2 is so named because of its introduction in an
article on empirical Bayes inference by Morris (1983), although as he states, any approx-
imately unbiased estimate of τ2 could be used in such a setting. Thompson and Sharp
(1999) found it to give substantially larger estimates of τ2 than other methods. Oth-
ers suggest it performs well in simulations based on 2 × 2 tables (Berkey et al. 1995;
Sidik and Jonkman 2007), although this may be due to overestimation of the within-
study standard errors in small studies by the conventional (Woolf) estimate rather
than the properties of the empirical Bayes method itself (Sutton and Higgins 2008). It
can also be considered to be a method-of-moments estimator, formed by equating the
weighted sum of squares of the residuals from the random-effects model to its expected
value (Knapp and Hartung 2003). It is found by iterating the following equation (Morris
1983; Berkey et al. 1995):

τ̂2
EB =

n/(n − k)
∑

i

{
(yi − xiβ̂)2/(σ2

i + τ̂2
EB) − σ2

i

}
∑

i(σ
2
i + τ̂2

EB)−1

At each iteration, β̂ must be reestimated using a weighted least-squares regression of y
on X with the weights 1/(σ2

i + τ̂2
EB).

7.2 Estimation of β

Once τ2 has been estimated by one of the methods above, the estimated coefficients, β̂,
are obtained by a weighted least-squares regression of y on X with the weights 1/(σ2

i +
τ̂2). The conventional estimate of the variance–covariance matrix of the coefficients is
(X′V̂−1X)−1, where V̂ = diag(σ2

1 + τ̂2, σ2
2 + τ̂2, . . . , σ2

n + τ̂2).

7.3 Knapp–Hartung variance modification

Knapp and Hartung (2003) proposed multiplying the conventional estimate of the vari-
ance of the coefficients given above by max(q, 1), where the Knapp–Hartung variance
modification factor is

q =
1

n − k

∑
i

(yi − xiβ̂)2

σ2
i + τ̂2

With the “empirical Bayes” estimator of τ̂2, q = 1, so this modification has no effect
(Knapp and Hartung 2003).
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7.4 Methods and formulas for predict

The standard error of the prediction (stdp) is spi
=
√

xi(X′V̂−1X)−1x′
i.

The leverages, or diagonal elements of the projection matrix (hat), are

hi = s2
pi

/(σ2
i + τ2)

The standard error of the forecast (stdf) is sfi
=
√

s2
pi

+ τ2.

Denote the previously estimated coefficient vector by b, and let λi = τ̂2/(σ2
i + τ̂2)

denote the empirical Bayes shrinkage factor for the ith observation.

The predicted random effects (u) are ui = λi(yi − xib).

The standardized predicted random effects (ustandard) are

usj
= (yi − xib)

/√
σ2

i + τ2 − s2
pi

The prediction including random effects (xbu), or empirical Bayes estimate, is

xib + ui = λiyi + (1 − λi)xib

The standard error of the prediction including random effects (stdxbu) is√
λ2

i (σ
2
i + τ2) + (1 − λ2

i )s2
pi
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Figure 2: Streptokinase cumulative meta-analysis

By the end of 1977 there was clear evidence that streptokinase treatment prevented death following myocardial infarction.
The point estimate of the pooled treatment effect was virtually identical in 1977 (odds ratio=0.771) and after the results of the
large trials in 1986 (odds ratio=0.774).

Note

The command meta (Sharp and Sterne 1998) should be installed before running metacum.
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sbe23 Meta-analysis regression

Stephen Sharp, London School of Hygiene and Tropical Medicine, stephen.sharp@lshtm.ac.uk

The command metareg extends a random effects meta-analysis to estimate the extent to which one or more covariates,
with values defined for each study in the analysis, explain heterogeneity in the treatment effects. Such analysis is sometimes
termed “meta-regression” (Lau et al. 1998). Examples of such study-level covariates might be average duration of follow-up,
some measure of study quality, or, as described in this article, a measure of the geographical location of each study. metareg
fits models with two additive components of variance, one representing the variance within units, the other the variance between
units, and therefore is applicable both to the meta-analysis situation, where each unit is one study, and to other situations such
as multi-center trials, where each unit is one center. Here metareg is explained in the meta-analysis context.
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Background

Suppose yi represents the treatment effect measured in study i (k independent studies, i � 1� � � � � k), such as a log odds
ratio or a difference in means, vi is the (within-study) variance of yi, and xi�� � � � � xip are measured study-level covariates. A
weighted normal errors regression model is

Y � N�X�� V �

where Y � �y�� � � � � yk�
T is the k � 1 vector of treatment effects, with ith element yi, X is a k � �p� 1� design matrix with

ith row �1� xi�� � � � � xip�, � � ���� � � � � �p�
T is a �p� 1�� 1 vector of parameters, and V is a k� k diagonal variance matrix,

with ith diagonal element vi.

The parameters of this model can be estimated in Stata using regress with analytic weights wi � 1�vi. However, vi
represents the variance of the treatment effect within study i, so this model does not take into account any possible residual
heterogeneity in the treatment effects between studies. One approach to incorporating residual heterogeneity is to include an
additive between-study variance component ��, so the ith diagonal element of the variance matrix V becomes vi � ��.

The parameters of the model can then be estimated using a weighted regression with weights equal to 1�vi � ��, but ��

must be explicitly estimated in order to carry out the regression. metareg allows four alternative methods for estimation of ��,
three of them are iterative, while one is noniterative and an extension of the moment estimator proposed for random effects
meta-analysis without covariates (DerSimonian and Laird 1986).

Method-of-moments estimator

Maximum-likelihood estimates of the � parameters are first obtained by weighted regression assuming b�� � �, and then a
moment estimator of �� is calculated using the residual sum of squares from the model,

RSS �
kX

i��

wi�yi � byi��
as follows:

b��mm �
RSS � �k � �p� 1��Pk

i�� wi � tr�V ��X�X �V ��X���X �V ���

where b��mm � � if RSS � k � �p� �� (DuMouchel and Harris 1983).

A weighted regression is then carried out with new weights w�i � 1�b�� � vi to provide a new estimate of �. The formula
for b��mm in the case of no covariate reduces to the standard moment estimator (DerSimonian and Laird 1986).

Iterative procedures

Three other methods for estimating �� have been proposed, and require an iterative procedure.

Starting with b�� � �, a regression using weights w�i � 1�vi gives initial estimates of �. The fitted values byi from this
model can then be used in one of three formulas for estimation of ��, given below:

b��ml �

Pk

i�� w
��

i ��yi � byi�� � vi�Pk

i�� w
��

i

maximum likelihood (Pocock et al. 1981)

b��reml �

Pk

i�� w
��

i

�
k

k � �p� ��
�yi � byi�� � vi

�
Pk

i�� w
��

i

restricted maximum likelihood (Berkey et al. 1995)

b��eb �
Pk

i�� w
�

i

�
k

k � �p� ��
�yi � byi�� � vi

�
Pk

i�� w
�

i

empirical Bayes (Berkey et al. 1995)

In each case, if the estimated value b�� is negative, it is set to zero.

Using the estimate b��, new weights w�i � 1�b�� � vi (or 1�vi if b� is zero) are then calculated, and hence new estimates of
�, fitted values byi, and thence b��. The procedure continues until the difference between successive estimates of �� is less than
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a prespecified number (such as 1���). The standard errors of the final estimates of � are calculated forcing the scale parameter
to be 1, since the weights are equal to the reciprocal variances.

Syntax

metareg has the usual syntax for a regression command, with the additional requirement that the user specify a variable
containing either the within-study standard error or variance.

metareg y varlist
�
if exp

� �
in range

�
�
�
wsse�varname� j wsvar�varname� j wsse�varname� wsvar�varname

�
�
bsest�

�
reml j ml j eb j mm

�
� toleran�#� level�#� noiter

�

The command supplies estimated parameters, standard errors, Z statistics, p values and confidence intervals, in the usual
regression output format. The estimated value of �� is also given.

Options

wsse�varname� is a variable in the dataset which contains the within-studies standard error
p
vi. Either this or the wsvar option

below (or both) must be specified.

wsvar�varname� is a variable in the dataset which contains the within-studies variance vi. Either this or the wsse option above
(or both) must be specified.

Note: if both the above options are specified, the program will check that the variance is the square of the standard error for
each study.

bsest�
�
reml j ml j eb j mm�� specifies the method for estimating ��. The default is reml (restricted maximum likelihood),

with the alternatives being ml (maximum likelihood), eb (empirical Bayes), and mm (method of moments).

toleran�#� specifies the difference between values of b�� at successive iterations required for convergence. If # is n, the process
will not converge until successive values of b�� differ by less than ��

�n. The default is 4.

level�#� specifies the confidence level, in percent, for confidence intervals. The default is level���� or as set by set level.

noiter requests that the log of the iterations in the reml, ml, or eb procedures be suppressed from the output.

Example

BCG is a vaccine widely used to give protection against tuberculosis. Colditz et al. (1994) performed a meta-analysis of all
published trials which randomized subjects to either BCG vaccine or placebo, and then had similar surveillance procedures to
monitor the outcome, diagnosis of tuberculosis.

The data in bcg�dta are as reported by Berkey et al. (1995). Having read the file into Stata, the log odds ratio of tuberculosis
comparing BCG with placebo, and its standard error can be calculated for each study.

� use bcg� clear
�BCG and tuberculosis�

� describe

Contains data from bcg�dta
obs� �� BCG and tuberculosis
vars� �
size� �	�

















































































�� trial str� �s trial identity number
�� lat byte ���g absolute latitude from Equator
�� nt float ���g total vaccinated patients
�� nc float ���g total unvaccinated patients
	� rt int ���g tuberculosis in vaccinated
�� rc int ���g tuberculosis in unvaccinated

















































































Sorted by�

� list� noobs

trial lat nt nc rt rc
� �� ��� �� � ��
� 		 ��� ��� � �
� �� ��� ��� � ��
� 	� ��	� ����� �� ���
	 �� 	�� 	��� �� ��
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� �� ���� ���� ��� ��	
� �
 	��� �	
 � ��
� �� ���
� ���
� ��� �



 	� ��

 �	�� 	
 ��

�� �	 ���� ���� �� ��
�� �� ����� 	���� ��� ���
�	 �� 	�
� 	��� � �
�� �� ��
�� ����� 	� 	


� gen logor�logrt�nt�rt���rc�nc�rc���

� gen selogor�sqrt��rc����nc�rc�����rt����nt�rt���

Note: if either rt or rc were 0, a standard approach would be to add 0.5 to each of rt, rc, nt�rt, and nc�rc for that
study (Cox and Snell 1989).

A meta-analysis of the data can now be performed using the meta command described by Sharpe and Sterne (1997 and
updated in sbe16.1).

� meta logor selogor� eform graphr� idtrial� cline xlab���������� xline��
� boxsh�� b	�Odds ratio � log scale��

Meta�analysis exponential form�

� Pooled 
�� CI Asymptotic No� of
Method � Est Lower Upper z�value p�value studies
������������������������������������������������������������
Fixed � ����� ���
� ����	 ������
 ����� ��
Random � ����� ���	� ���
� ������ �����

Test for heterogeneity� Q� ������� on �	 degrees of freedom p� ������
Moment estimate of between�studies variance � �����

Odds ratio - log scale
.5 1 1.5
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Figure 1: A meta-analysis of the BCG and Tuberculosis data

Both the graph and the statistical test indicate substantial heterogeneity between the trials, with an estimated between-studies
variance of 0.366. The random effects combined estimate of 0.474, indicating a strong protective effect of BCG against tuberculosis,
should not be reported without some discussion of the possible reasons for the differences between the studies (Thompson 1994).

One possible explanation for the differences in treatment effects could be that the studies were conducted at different
latitudes from the equator. Berkey et al. (1995) speculated that absolute latitude, or distance of each study from the equator, may
serve as a surrogate for the presence of environmental mycobacteria which provide a certain level of natural immunity against
tuberculosis. By sorting on absolute latitude, the graph obtained using meta shows the studies in order of increasing latitude
going down the page.

� sort lat

� meta logor selogor� eform graphr� idtrial� cline xlab���������� xline��
� boxsh�� b	�Odds ratio � log scale��

(output omitted )
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Odds ratio - log scale
.5 1 1.5

Combined
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Figure 2: Same as Figure 1 but sorted by latitude

The graph now suggests that BCG vaccination is more effective at higher absolute latitudes. This can be investigated further
using the metareg command, with a REML estimate of the between-studies variance �

�.

� metareg logor lat� wsse�selogor� bs�reml� noiter

Meta�analysis regression No of studies � ��
tau	
 method reml
tau	
 estimate � ��
��

Successive values of tau	
 differ by less than ��	� � convergence achieved
������������������������������������������������������������������������������

� Coef� Std� Err� z P��z� ���� Conf� Interval�
������������������������������������������������������������������������������

lat � ����
���� �����
 ����� ����� �����
� ���

���
�cons � ��
�
�� �������� ����� ���� ���
���� ��������

������������������������������������������������������������������������������

This analysis shows that after allowing for additive residual heterogeneity, there is a significant negative association between
the log odds ratio and absolute latitude, i.e., the higher the absolute latitude, the lower the odds ratio, and hence the greater the
benefit of BCG vaccination. The following plot of log odds ratio against absolute latitude includes the fitted regression line from
the model above. The size of the circles in the plot is inversely proportional to the variance of the log odds ratio, so larger
circles correspond to larger studies.

� gen invvlor�selogor	�


� gen fit����
������
�lat

� gr logor fit lat �fw�invvlor�� s�oi� c��l� xlab������
�������������
� ylab������������������������� l���Odds ratio �log scale���
� b
��Distance from Equator �degrees of latitude���
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Figure 3

(Note: the axes on this graph have been modified using the STAGE software)

Here a restricted maximum-likelihood method was used to estimate �
�; the other three methods are used in turn below:

� metareg logor lat� wsse�selogor� bs�ml� noiter
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Meta�analysis regression No of studies � ��
tau�� method ml
tau�� estimate � �		�


Successive values of tau�� differ by less than �	��� � convergence achieved
������������������������������������������������������������������������������

� Coef� Std� Err� z P�z� ���� Conf� Interval�
������������������������������������������������������������������������������

lat � ��	��
��
 �		����
 ������ 	�			 ��	���
�
 ��	������
�cons � ��
��	�� ��	����� ����� 	�			 ���
��	� ��

�	��

������������������������������������������������������������������������������

� metareg logor lat� wsse�selogor� bs�eb� noiter

Meta�analysis regression No of studies � ��
tau�� method eb
tau�� estimate � ���
�

Successive values of tau�� differ by less than �	��� � convergence achieved
������������������������������������������������������������������������������

� Coef� Std� Err� z P�z� ���� Conf� Interval�
������������������������������������������������������������������������������

lat � ��	�	�
�� �		�			� ������ 	�		� ��	����	� ��	������
�cons � �������� �������� 	���� 	���
 ����	���� ��
		���

������������������������������������������������������������������������������

� metareg logor lat� bs�mm� wsse�selogor� noiter
Warning� mm is a non�iterative method� noiter option ignored

Meta�analysis regression No of studies � ��
tau�� method mm
tau�� estimate � �	��	

������������������������������������������������������������������������������
� Coef� Std� Err� z P�z� ���� Conf� Interval�

������������������������������������������������������������������������������
lat � ��	���
�� �		��
�� ������ 	�			 ��	���
	� ��	���
��

�cons � ��	�	�� ���	�
�� ����
 	���� ����	�
�
 �
�����

������������������������������������������������������������������������������

The estimated value of �� using a method-of-moments estimator is 0.048, compared with 0.366 before adjusting for latitude,
so absolute latitude has explained almost all of the variation between the studies.

The analyses above show that the estimate of the effect of latitude is similar using all four methods. However, the
estimated values of �

� differ considerably, with the estimate from the empirical Bayes method being largest. The restricted
maximum-likelihood method corrects the bias in the maximum-likelihood estimate of ��. The basis for using the empirical Bayes
method is less clear (Morris 1983), so this method should be used with caution. The moment-based method extends the usual
random-effects meta-analysis; below metareg is used to fit a model with no covariate:

� metareg logor� bs�mm� wsse�selogor�

Meta�analysis regression No of studies � ��
tau�� method mm
tau�� estimate � �����

������������������������������������������������������������������������������
� Coef� Std� Err� z P�z� ���� Conf� Interval�

������������������������������������������������������������������������������
�cons � ��
�
���� �������� �����
 	�			 ��������� ���
	����

������������������������������������������������������������������������������

Now the estimate of �
� is identical to that obtained earlier from meta, and the constant parameter is the log of the random

effects pooled estimate given by meta.

The paper by Thompson and Sharp (1998) contains a fuller discussion both of the differences between the four methods
of estimation, and other methods for explaining heterogeneity. Copies are available on request from the author.

Saved results

metareg saves the following results in the S macros:

S � k, number of studies
S � ��

�, estimate of between-studies variance
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sg42.2 Displaying predicted probabilities from probit or logit regression

Mead Over, World Bank, FAX: 202-522-3230

Syntax

probpred yvar xvar
�
if exp

�
� from�#� to�#�

�
inc�#�

adjust�covlist� one�varlist� zero�varlist� logit

level�#� poly�#� nomodel nolist noplot graph options
�

Description

probpred is an extension of the logpred program of Garrett (1995). It first estimates a probit or logit regression of a
dichotomous (or binary) dependent variable on a set of independent variables. The purpose of probpred is to compute and graph
the estimated relationship between the predicted probability from this regression and one of the independent variables, holding
the others constant. By default, both probpred and logpred display the regression estimates and a graph and listing of the
requested predictions and the forecast interval. probpred contains four additional options not included in the original logpred
program: logit, one, zero, and level. The default is to estimate a probit regression using the Stata command dprobit, but
the logit option instead estimates a logit model using the logistic command. The one and zero options allow the user to
specify that some of the covariates listed in option adjust are to be set equal to one or zero instead of to their means. The
level option allows forecast intervals to be set to confidence levels determined by the user rather than only to 95% confidence
levels.

Options

from�#� specifies the lowest value of xvar for which a prediction is to be calculated. This option is required.

to�#� specifies the highest value of xvar for which a prediction is to be calculated. This option is required.

inc�#� specifies the increment between adjacent values of xvar. The default increment is 1.

adjust�covlist� specifies the other covariates in the model all of which are set to their sample means in computing the predicted
values unless the one or zero options are specified as described below.

one�varlist� specifies a subset of covlist to be set to one instead of to their mean values in the data.

zero�varlist� specifies a subset of covlist to be set to zero instead of to their mean values in the data.

logit specifies that a logit model will be used. The default is probit.
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Funnel plots in meta-analysis
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Abstract. Funnel plots are a visual tool for investigating publication and other
bias in meta-analysis. They are simple scatterplots of the treatment effects esti-
mated from individual studies (horizontal axis) against a measure of study size
(vertical axis). The name “funnel plot” is based on the precision in the estima-
tion of the underlying treatment effect increasing as the sample size of component
studies increases. Therefore, in the absence of bias, results from small studies
will scatter widely at the bottom of the graph, with the spread narrowing among
larger studies. Publication bias (the association of publication probability with
the statistical significance of study results) may lead to asymmetrical funnel plots.
It is, however, important to realize that publication bias is only one of a number of
possible causes of funnel-plot asymmetry—funnel plots should be seen as a generic
means of examining small study effects (the tendency for the smaller studies in
a meta-analysis to show larger treatment effects) rather than a tool to diagnose
specific types of bias. This article introduces the metafunnel command, which
produces funnel plots in Stata. In accordance with published recommendations,
standard error is used as the measure of study size. Treatment effects expressed
as ratio measures (for example risk ratios or odds ratios) may be plotted on a log
scale.

Keywords: st0061, metafunnel, funnel plots, meta-analysis, publication bias, small-
study effects

1 Introduction
The substantial recent interest in meta-analysis (the statistical methods that are used
to combine results from a number of different studies) is reflected in a number of user-
written commands that do meta-analysis in Stata. Meta-analyses should be based on
systematic reviews of relevant literature. A systematic review is a systematic assembly,
critical appraisal, and synthesis of all relevant studies on a specific topic. The main
feature that distinguishes systematic from narrative reviews is a methods section that
clearly states the question to be addressed and the methods and criteria to be employed
for identifying and selecting relevant studies and extracting and analyzing information
(Egger, Davey Smith, and Altman 2001).

While systematic reviews and meta-analyses have the potential to produce precise
estimates of treatment effects that reflect all of the relevant literature, they are not
immune to bias. Publication bias—the association of publication probability with the
statistical significance of study results—is well documented as a problem in the medical
research literature (Stern and Simes 1997). Further, it has been demonstrated that ran-
domized controlled trials for which concealment of treatment allocation is not adequate,

c© 2004 StataCorp LP st0061
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or which are not double blind, produce estimated treatment effects that appear more
beneficial (Schulz et al. 1995).

2 Funnel plots

Funnel plots are simple scatterplots of the treatment effects estimated from individual
studies against a measure of study size. The name “funnel plot” is based on the precision
in the estimation of the underlying treatment effect increasing as the sample size of
component studies increases. Results from small studies will therefore scatter widely
at the bottom of the graph, with the spread narrowing among larger studies. In the
absence of bias, the plot will resemble a symmetrical, inverted funnel, as shown in the
top graph of figure 1.

If there is bias, for example, because smaller studies showing no statistically signif-
icant effects (open circles in figure 1) remain unpublished, then such publication bias
will lead to an asymmetrical appearance of the funnel plot with a gap in the right bot-
tom side of the graph (middle graph of figure 1). In this situation, the combined effect
from meta-analysis will overestimate the treatment’s effect. The more pronounced the
asymmetry, the more likely it is that the amount of bias will be substantial.

It is important to realize that publication bias is only one of a number of possible ex-
planations for funnel-plot asymmetry; these are discussed in more detail in section 2.3.
For example, trials of lower quality yield exaggerated estimates of treatment effects
(Schulz et al. 1995). Smaller studies are, on average, conducted and analyzed with less
methodological rigor than larger studies (Egger et al. 2003), so asymmetry may also
result from the overestimation of treatment effects in smaller studies of lower method-
ological quality (bottom graph of figure 1). Unfortunately, funnel-plot asymmetry has
often been equated with publication bias without consideration of its other possible
explanations; for example, the help file for the metabias command in Stata (written in
1998) refers only to publication bias.

(Continued on next page)
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Figure 1: Hypothetical funnel plots: (top) symmetrical plot in the absence of bias (open
circles indicate smaller studies showing no beneficial effects); (middle) asymmetrical
plot in the presence of publication bias (smaller studies showing no beneficial effects are
missing); (bottom) asymmetrical plot in the presence of bias due to low methodological
quality of smaller studies (open circles indicate small studies of inadequate quality whose
results are biased towards larger beneficial effects).
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Although it is conventional to plot treatment effects on the horizontal axis and the
measure of study size on the vertical axis, it is certainly not an error to plot the axes
the other way around. Indeed, such a choice is arguably more consistent with standard
statistical practice in that the variable on the vertical axis is usually hypothesized to
depend on the variable on the horizontal axis. Such funnel plots can be plotted in Stata
using the metabias command (Steichen 1998; Steichen, Egger, and Sterne 1998).

2.1 Choice of axis in funnel plots

The majority of endpoints in randomized trials of medical treatments are binary, with
treatment effects most commonly expressed as ratio measures (odds ratio, risk ratio, or
hazard ratio). (This may not be true of trials in other disciplines, such as psychology
or social research.) The use of ratio measures is justified by empirical evidence that
there is less between-trial heterogeneity in treatment effects based on ratio measures
than difference measures (Deeks and Altman 2001; Engels et al. 2000). As is generally
the case in meta-analysis, the log of the ratio measure and its standard error are used
in funnel plots.

Sterne and Egger (2001) consider choice of axis in funnel plots of meta-analyses
with binary outcomes. Although sample size or functions of sample size have often
been used as the vertical axis, this is problematic because the precision of a treatment
effect estimate is determined by both the sample size and by the number of events.
Thus, studies with very different sample sizes may have the same standard error and
precision and vice versa. Therefore, the shape of plots using sample size on the vertical
axis is not predictable except that, in the absence of bias, it should be symmetric.
After considering various possible choices of vertical axis, Sterne and Egger conclude
that standard error of the treatment effect estimate is likely to be preferable in many
situations. Funnel plots may also be drawn using precision (= 1/(standard error)) on
the vertical axis using the funnel2 command distributed as part of the metaggr package
(Bradburn, Deeks, and Altman 1998). Such plots tend to emphasize differences between
the largest study and the others.

2.2 Example

The trials of magnesium therapy following myocardial infarction (heart attack) are a
well-known example in which the results of a meta-analysis, which appeared to provide
clear evidence that magnesium therapy reduced mortality, were contradicted by subse-
quent larger trials that found no evidence that magnesium influenced mortality. Figure 2
is a funnel plot based on the results of 15 trials of the effect of magnesium on mortality
following myocardial infarction. Because the smaller trials produced smaller odds ra-
tios (more substantial reductions in mortality associated with magnesium therapy), the
funnel plot is clearly asymmetric.
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Figure 2: Funnel plot, using data from 15 trials of magnesium therapy following my-
ocardial infarction.

The horizontal axis of figure 2 (treatment odds ratio) is drawn on a log scale, so that
(for example) odds ratios of 2 and 0.5 are the same distance from the null value of 1
(no treatment effect). This is equivalent to plotting the log-odds ratio on the horizontal
axis. The standard error of the log OR is plotted on the vertical axis. Note that the
largest studies have the smallest standard errors, so to place the largest studies at the
top of the graph, the vertical axis must be reversed (standard error 0 at the top).

The solid vertical line represents the summary estimate of the treatment effect, de-
rived using fixed-effect meta-analysis. This is close to 1 because the estimated treatment
odds ratios in the largest studies were close to 1. For the purposes of displaying the
center of the plot in the absence of bias, calculation of the summary log-odds ratio using
fixed rather than random-effects meta-analysis is preferable because the random-effects
estimate gives greater relative weight to smaller studies and will, therefore, be more
affected if publication bias is present (Poole and Greenland 1999).

Interpretation of funnel plots is facilitated by inclusion of diagonal lines representing
the 95% confidence limits around the summary treatment effect, i.e., [ summary effect
estimate − (1.96 × standard error)] and [ summary effect estimate + (1.96 × standard
error)] for each standard error on the vertical axis. These show the expected distribution
of studies in the absence of heterogeneity or of selection biases: in the absence of
heterogeneity, 95% of the studies should lie within the funnel defined by these straight
lines. Because these lines are not strict 95% limits, they are referred to as “pseudo 95%
confidence limits”.

2.3 Sources of funnel-plot asymmetry

Funnel plots were first proposed as a means of detecting a specific form of bias—
publication bias. However as explained earlier (see the bottom graph of figure 1),
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the exaggeration of treatment effects in small studies of low quality provides a plausi-
ble alternative mechanism for funnel-plot asymmetry. Egger et al. (1997) list different
possible reasons for funnel-plot asymmetry, which are summarized in table 1.

Table 1: Potential sources of asymmetry in funnel plots

1. Selection biases
Publication bias

Location biases
Language bias
Citation bias
Multiple publication bias

2. True heterogeneity
Size of effect differs according to study size:

Intensity of intervention
Differences in underlying risk

3. Data irregularities
Poor methodological design of small studies
Inadequate analysis
Fraud

4. Artifact
Heterogeneity due to poor choice of effect measure

5. Chance

In addition to selective publication of studies according to their results, other pos-
sible biases affecting the selection of studies for inclusion in meta-analyses include the
propensity for the results to affect the language of publication (Jüni et al. 2002); the
possibility that results affect the frequency with which a study is cited and, hence, its
probability of inclusion in a meta-analysis, and the multiple publication of studies with
demonstrating an effect of the intervention (Tramer et al. 1997).

It is important to realize that funnel-plot asymmetry need not result from bias. The
studies displayed in a funnel plot may not always estimate the same underlying effect
of the same intervention, and such heterogeneity in results may lead to asymmetry in
funnel plots if the true treatment effect is larger in the smaller studies. For example, if a
combined outcome is considered, then substantial benefit may be seen only in subjects
at high risk for the component of the combined outcome which is affected by the inter-
vention (Davey Smith and Egger 1994; Glasziou and Irwig 1995). Some interventions
may have been implemented less thoroughly in larger studies, thus explaining the more
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positive results in smaller studies. For example, an asymmetrical funnel plot was found
in a meta-analysis of trials examining the effect of inpatient comprehensive geriatric as-
sessment programs on mortality. An experienced consultant geriatrician was more likely
to be actively involved in the smaller trials and this may explain the larger treatment
effects observed in these trials (Egger et al. 1997; Stuck et al. 1993).

The way in which data irregularities such as low methodological quality of smaller
studies may result in funnel-plot asymmetry was described earlier. Poor choice of effect
measure may also result in funnel-plot asymmetry; for example, it has been shown that
meta-analyses in which intervention effects are measured as risk differences are more
heterogeneous than those in which intervention effects are measured as risk ratios or
odds ratios (Deeks and Altman 2001; Engels et al. 2000). The inappropriate use of risk
differences may also result in funnel-plot asymmetry—if the effect of intervention is
homogeneous on the risk ratio scale, then the risk difference will be smaller in studies
that have low event rates.

2.4 Tests for funnel-plot asymmetry

It is, of course, possible that an asymmetrical funnel plot arises merely by the play of
chance. Statistical tests for funnel-plot asymmetry have been proposed by Begg and
Mazumdar (1994) and by Egger et al. (1997). These are available in the Stata command
metabias (Steichen 1998; Steichen, Egger, and Sterne 1998). The test proposed by
Egger et al. (1997) is algebraically identical to a test that there is no linear association
between the treatment effect and its standard error and, hence, that there is no straight-
line association in the funnel plot of treatment effect against its standard error (see
Sterne, Gavaghan, and Egger [2000] for details). The corresponding fitted line may
be added to the funnel plot using the egger option of the metafunnel command—see
section 5 below.

2.5 Small-study effects

Funnel-plot asymmetry thus raises the possibility of bias, but it is not proof of bias. It
is important to note, however, that asymmetry (unless produced by chance alone) will
always lead us to question the interpretation of the overall estimate of effect when studies
are combined in a meta-analysis; for example, if the study size predicts the treatment
effect, what treatment effect will apply if the treatment is adopted in routine practice?
Sterne, Egger, and Davey Smith (2001) and Sterne, Gavaghan, and Egger (2000) have
suggested that the funnel plot should be seen as a generic means of examining “small-
study effects” (the tendency for the smaller studies in a meta-analysis to show larger
treatment effects) rather than as a tool to diagnose specific types of bias.

When funnel-plot asymmetry is found, its possible causes should be carefully consid-
ered. For example, how comprehensive was the literature search that located the trials
included in the meta-analysis? Does reported trial quality differ between larger and
smaller studies? Is there a plausible reason for the effect of intervention to be greater
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in smaller trials? It is possible that differences between smaller and larger trials are
accounted for by a trial characteristic; this may be investigated using the by() option
of the metafunnel command, as described in section 6 below. Explanations for hetero-
geneity may be investigated more formally using meta-regression (Thompson and Sharp
1999) to investigate associations between study characteristics and intervention effect
estimates. For example, we might investigate evidence that studies in which reported
allocation concealment is unclear or inadequate tend to result in more beneficial treat-
ment effect estimates. Meta-regression analyses may be done using the Stata command
metareg (Sharp 1998); however, it will not necessarily be possible to provide a defini-
tive explanation for funnel-plot asymmetry. In medical research, meta-analyses typically
contain 10 or fewer trials (Sterne, Gavaghan, and Egger 2000). Power to detect associa-
tions between study characteristics and intervention effect estimates will therefore often
be low, in which case it may not be possible to identify a particular study characteristic
as the cause of the heterogeneity.

3 Syntax

metafunnel
{

theta
{

se | var} | exp(theta) { ll ul
[
cl
] } } [

if exp
] [

in range
]

[
, by(by var)

[
var | ci ] nolines forcenull reverse eform egger

graph options
]

4 Description

metafunnel plots funnel plots. The syntax for metafunnel is based on the same frame-
work as for the meta, metabias, metacum, and metatrim commands. The user provides
the effect estimate as theta (e.g., the log-odds ratio) and a measure of theta’s variability
(i.e., its standard error or its variance). Alternatively, the user provides exp(theta) (e.g.,
an odds ratio), its confidence interval, and, optionally, the confidence level.

5 Options

by(by var) displays subgroups according to the value of by var. The legend displays
the value labels for the levels of by var if these are present; otherwise, it displays the
value of each level of by var.

var and ci indicate the meaning of the input variables in the same way as for the other
meta-analysis commands listed above. The help file for meta gives a full explanation.

nolines specifies that pseudo 95% confidence interval lines not be included in the plot.
The default is to include them.

forcenull forces the vertical line at the center of the funnel to be plotted at the null
treatment effect of zero (1 when the treatment effect is exponentiated). The default
is for the line to be plotted at the value of the fixed-effect summary estimate.
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reverse inverts the funnel plot so that larger studies are displayed at the bottom of
the plot with smaller studies at the top. This may also be achieved by specifying
noreverse as part of the yscale(axis description) graphics option.

eform exponentiates the treatment effect theta and displays the horizontal axis (treat-
ment effect) on a log scale. As discussed in section 2.2, this is useful for displaying
ratio measures, such as odds ratios and risk ratios.

egger adds the fitted line corresponding to the regression test for funnel-plot asymmetry
proposed by Egger et al. (1997) and implemented in metabias (see section 2.4). This
option may not be combined with the by() option.

graph options are any options allowed by the twoway scatter command that can be
used to change the appearance of the points and add labels. If option egger is
specified, the look of the fitted line can be changed using the options clstyle,
clpattern, clwidth, and clcolor explained under connect options in Stata’s built-
in help system and the graphics manual.

6 Examples

Listing the data for the 15 magnesium trials produces the following output:

. list trial trialnam year dead1 alive1 dead0 alive0, noobs

trial trialnam year dead1 alive1 dead0 alive0

1 Morton 1984 1 39 2 34
2 Rasmussen 1986 9 126 23 112
3 Smith 1986 2 198 7 193
4 Abraham 1987 1 47 1 45
5 Feldstedt 1988 10 140 8 140

6 Schechter 1989 1 58 9 47
7 Ceremuzynski 1989 1 24 3 20
8 Singh 1990 6 70 11 64
9 Pereira 1990 1 26 7 20
10 Schechter 1 1991 2 87 12 68

11 Golf 1991 5 18 13 20
12 Thogersen 1991 4 126 8 114
13 LIMIT-2 1992 90 1069 118 1039
14 Schechter 2 1995 4 103 17 91
15 ISIS-4 1995 2216 26795 2103 26936

To use the metafunnel command, we first need to derive the treatment effect and
its standard error for each trial. Here, we will express the treatment effects as log-odds
ratios.

. generate or = (dead1/alive1)/(dead0/alive0)

. generate logor = log(or)

. generate selogor = sqrt((1/dead1)+(1/alive1)+(1/dead0)+(1/alive0))
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A funnel plot can then be drawn using the following syntax, which includes the
regression line corresponding to the regression test for funnel-plot asymmetry proposed
by Egger et al. (1997):

. metafunnel logor selogor, xtitle(Log odds ratio) ytitle(Standard error of log OR)
> egger
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Figure 3: Funnel plot, using data from 15 trials of magnesium therapy following my-
ocardial infarction, with log-odds ratios displayed on the horizontal axis.

By default, the subtitle “Funnel plot with pseudo 95% confidence limits” is displayed.
(“Funnel plot” is displayed if the nolines options is specified.) This may be changed
using the graphics option subtitle(tinfo).

Note that the log-odds ratio and its standard error may be derived automatically
using the metan command. (The latest version of this command may be installed by
typing ssc install metaaggr.pkg, replace in the Stata Command window.) Typing

. metan dead1 alive1 dead0 alive0, or

produces a meta-analysis of the effect of magnesium and creates variables ES, containing
the odds ratio in each study, and selogES, containing the standard error of the log-odds
ratio. Thus, we may derive the log-odds ratio by typing

. genenerate log_ES = log(_ES)

The list output below shows that variables log ES selogES are identical to variables
logor and selogor derived earlier.
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. list trial trialnam year logor selogor _ES log_ES _selogES, noobs

trial trialnam year logor selogor _ES log_ES _selogES

1 Morton 1984 -.8303483 1.247018 .4358974 -.8303483 1.247018
2 Rasmussen 1986 -1.056053 .4140706 .3478261 -1.056053 .4140706
3 Smith 1986 -1.27834 .8081392 .2784993 -1.27834 .8081392
4 Abraham 1987 -.0434851 1.42951 .9574468 -.0434851 1.42951
5 Feldstedt 1988 .2231435 .4891684 1.25 .2231435 .4891684

6 Schechter 1989 -2.40752 1.072208 .0900383 -2.40752 1.072208
7 Ceremuzynski 1989 -1.280934 1.193734 .2777778 -1.280934 1.193734
8 Singh 1990 -.695748 .5361776 .4987013 -.695748 .5361776
9 Pereira 1990 -2.208274 1.109648 .1098901 -2.208274 1.109648
10 Schechter 1 1991 -2.03816 .7807263 .1302682 -2.03816 .7807263

11 Golf 1991 -.8501509 .6184486 .4273504 -.8501509 .6184486
12 Thogersen 1991 -.7932307 .6258662 .452381 -.7932307 .6258662
13 LIMIT-2 1992 -.2993398 .1465729 .7413074 -.2993398 .1465729
14 Schechter 2 1995 -1.570789 .5740395 .2078812 -1.570789 .5740395
15 ISIS-4 1995 .0575872 .0316421 1.059278 .0575872 .0316421

The following command was used to produce figure 2 (see section 2.2), in which the
horizontal axis is the treatment odds ratio, displayed on a log scale:

. metafunnel logor selogor, xlab(.05 .1 .25 .5 1 2 4 8 16)
> xscale(log) xtitle(Odds ratio) eform subtitle( )
> ytitle(Standard error of log OR)

When the eform option is used, the label of the horizontal axis (treatment ef-
fect, theta) is changed accordingly, unless there is a variable label for theta or the
xtitle(axis title) graphics option is used.

Finally, we will illustrate the use of the by() option by grouping the studies according
to whether they were published during the 1980s or the 1990s:

. generate period = year

. recode period 1980/1989=1 1990/1999=2
(period: 15 changes made)

. label define periodlab 1 "1980s" 2 "1990s"

. label values period periodlab

. tab period

period Freq. Percent Cum.

1980s 7 46.67 46.67
1990s 8 53.33 100.00

Total 15 100.00

Using the latest version of the metan command (Bradburn, Deeks, and Altman
1998), we can examine the effect of magnesium separately, according to time period.
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. metan dead1 alive1 dead0 alive0, or by(period) label(namevar=trialnam)

Study OR [95% Conf. Interval] % Weight

1980s
Morton 0.436 0.038 5.022 0.09
Rasmussen 0.348 0.154 0.783 0.99
Smith 0.278 0.057 1.357 0.32
Abraham 0.957 0.058 15.773 0.05
Feldstedt 1.250 0.479 3.261 0.35
Schechter 0.090 0.011 0.736 0.42
Ceremuzynski 0.278 0.027 2.883 0.14
Sub-total
M-H pooled OR 0.437 0.267 0.714 2.36

1990s
Singh 0.499 0.174 1.426 0.47
Pereira 0.110 0.012 0.967 0.31
Schechter 1 0.130 0.028 0.602 0.57
Golf 0.427 0.127 1.436 0.39
Thogersen 0.452 0.133 1.543 0.37
LIMIT-2 0.741 0.556 0.988 5.04
Schechter 2 0.208 0.067 0.640 0.75
ISIS-4 1.059 0.996 1.127 89.74
Sub-total
M-H pooled OR 1.020 0.961 1.083 97.64

Overall
M-H pooled OR 1.007 0.948 1.068 100.00

Test(s) of heterogeneity:
Heterogeneity degrees of

statistic freedom P I-squared**

1980s 7.85 6 0.250 23.5%
1990s 30.27 7 0.000 76.9%
Overall 46.61 14 0.000 70.0%
Overall Test for heterogeneity between sub-groups :

8.50 1 0.004

** I-squared: the variation in OR attributable to heterogeneity

Significance test(s) of OR=1

1980s z= 3.31 p = 0.001
1990s z= 0.66 p = 0.511
Overall z= 0.22 p = 0.829

The by() option of the metafunnel command is used to display separate symbols
for the two time periods; the resulting funnel plot is displayed in figure 4.

. metafunnel logor selogor, xlab(.05 .1 .25 .5 1 2 4 8 16)
> xscale(log) xtitle(Odds ratio) eform subtitle( )
> ytitle(Standard error of log OR) by(period)

As demonstrated by the analysis according to time period, the larger studies were
published later. Perhaps more surprisingly, the asymmetry appears to result more from
the studies published during the 1990s than from those published during the 1980s.
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Figure 4: Funnel plot, using data from 15 trials of magnesium therapy following my-
ocardial infarction, grouped according to date of publication.
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Jüni, P., F. Holenstein, J. A. C. Sterne, C. Bartlett, and M. Egger. 2002. Direction
and impact of language bias in meta-analysis of controlled trials: empirical study.
International Journal of Epidemiology 31: 115–123.

Poole, C. and S. Greenland. 1999. Random-effects meta-analyses are not always con-
servative. American Journal of Epidemiology 150(5): 469–475.

Schulz, K. F., I. Chalmers, R. J. Hayes, and D. G. Altman. 1995. Empirical evidence
of bias. Dimensions of methodological quality associated with estimates of treatment
effects in controlled trials. Journal of the American Medical Association 273(5): 408–
412.

Sharp, S. 1998. sbe23: Meta-analysis regression. Stata Technical Bulletin 42: 16–22. In
Stata Technical Bulletin Reprints, vol. 7, 148–155. College Station, TX: Stata Press.

Steichen, T. J. 1998. sbe19: Tests for publication bias in meta-analysis. Stata Technical
Bulletin 41: 9–15. In Stata Technical Bulletin Reprints, vol. 7, 125–133. College
Station, TX: Stata Press.

Steichen, T. J., M. Egger, and J. A. C. Sterne. 1998. sbe19.1: Tests for publication
bias in meta-analysis. Stata Technical Bulletin 44: 3–4. In Stata Technical Bulletin
Reprints, vol. 8, 84–85. College Station, TX: Stata Press.

Stern, J. M. and R. J. Simes. 1997. Publication bias: evidence of delayed publication
in a cohort study of clinical research projects. British Medical Journal 315(7109):
640–645.

Sterne, J. A. C. and M. Egger. 2001. Funnel plots for detecting bias in meta-analysis:
guidelines on choice of axis. Journal of Clinical Epidemiology 54(10): 1046–1055.

Sterne, J. A. C., M. Egger, and G. Davey Smith. 2001. Investigating and dealing with
publication and other bias. In Systematic Reviews in Health Care: Meta-Analysis in
Context. 2d ed., ed. M. Egger, D. G. Altman, and G. Davey Smith, 189–208. London:
BMJ Publishing Group.



J. A. C. Sterne and R. M. Harbord 141

Sterne, J. A. C., D. Gavaghan, and M. Egger. 2000. Publication and related bias in
meta-analysis: power of statistical tests and prevalence in the literature. Journal of
Clinical Epidemiology 53(11): 1119–1129.

Stuck, A. E., A. L. Siu, G. D. Wieland, J. Adams, and L. Z. Rubenstein. 1993. Com-
prehensive geriatric assessment: a meta-analysis of controlled trials. Lancet 342:
1032–1036.

Thompson, S. G. and S. J. Sharp. 1999. Explaining heterogeneity in meta-analysis: a
comparison of methods. Statistics in Medicine 18: 2693–2708.

Tramer, M. R., D. J. Reynolds, R. A. Moore, and H. J. McQuay. 1997. Impact of
covert duplicate publication on meta-analysis: a case study. British Medical Journal
315(7109): 635–640.

About the Authors

Jonathan Sterne is a Reader in Medical Statistics and Epidemiology in the Department of
Social Medicine, University of Bristol, UK. His research interests include statistical methods
for epidemiology and health services research, causal models, meta-analysis and systematic
reviews, the epidemiology of sexually transmitted infections, and the epidemiology of asthma
and allergic diseases.

Roger Harbord is a Research Associate in Medical Statistics in the Department of Social
Medicine, University of Bristol, UK. His research interests include statistical methods for epi-
demiology and health services research, meta-analysis and systematic reviews, and genetic
epidemiology.



The Stata Journal (2008)
8, Number 2, pp. 242–254

Contour-enhanced funnel plots for
meta-analysis

Tom M. Palmer
Department of Health Sciences

University of Leicester, UK

tmp8@le.ac.uk

Jaime L. Peters
School of Mathematical Sciences

Queensland University of Technology
Brisbane, Australia

Alex J. Sutton
Department of Health Sciences

University of Leicester, UK

Santiago G. Moreno
Department of Health Sciences

University of Leicester, UK

Abstract. Funnel plots are commonly used to investigate publication and related
biases in meta-analysis. Although asymmetry in the appearance of a funnel plot
is often interpreted as being caused by publication bias, in reality the asymmetry
could be due to other factors that cause systematic differences in the results of
large and small studies, for example, confounding factors such as differential study
quality. Funnel plots can be enhanced by adding contours of statistical significance
to aid in interpreting the funnel plot. If studies appear to be missing in areas of low
statistical significance, then it is possible that the asymmetry is due to publication
bias. If studies appear to be missing in areas of high statistical significance, then
publication bias is a less likely cause of the funnel asymmetry. It is proposed
that this enhancement to funnel plots should be used routinely for meta-analyses
where it is possible that results could be suppressed on the basis of their statistical
significance.

Keywords: gr0033, confunnel, funnel plots, meta-analysis, publication bias, small-
study effects

1 Introduction

Publication bias is the phenomenon where studies with uninteresting or unfavorable
results are less likely to be published than those with more favorable results (Rothstein,
Sutton, and Borenstein 2005). If publication bias exists, then the published literature
is a biased sample of all studies, and any meta-analysis based on it will be similarly
biased.

Funnel plots are commonly used to investigate publication and related biases in
meta-analysis (Sterne, Becker, and Egger 2005). They consist of a simple scatterplot of
each study’s estimate of effect against some measure of its variability, commonly plotted
on the x and y axes, respectively (although this goes against the usual convention of
plotting the response variable on the y axis). In this way, the studies with the least
variable effect sizes appear at the top of the funnel, and the smaller, less precise studies
appear at the bottom. In the absence of publication bias, the studies will fan out in

c© 2008 StataCorp LP gr0033
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a symmetrical funnel shape around the pooled estimate, as variability due to sampling
error increases down the y axis. If publication bias is present, then the funnel will
appear asymmetric because of the systematic suppression of studies.

A complication in interpreting funnel plots is that funnel asymmetry could be due
to factors other than publication bias, such as systematic differences in the results of
large and small studies caused by confounding factors such as differential study quality;
these differences are sometimes called small-study effects (Sterne and Egger 2001). The
aim of the contour-enhanced funnel plot is to aid in disentangling these different causes
of funnel asymmetry (Peters et al. 2008).

Funnel plots in Stata were previously described by Sterne and Harbord (2004),
and there are several commands available in Stata for drawing funnel plots includ-
ing metafunnel, funnel (available with metan), and metabias. These commands are
described in more detail in a frequently asked question about the Stata commands avail-
able for meta-analysis; the frequently asked question can be found on Stata’s web site
at http://www.stata.com/support/faqs/stat/meta.html. In Stata 10, typing help meta
displays a help file with information about the user-written commands for meta-analysis
and tells which are the latest versions.

This article introduces another command for meta-analysis called confunnel, which
produces contour-enhanced funnel plots. The concept of the contour-enhanced funnel
plot is explained in the next section, followed by a description of the command syntax
and options. The use of confunnel is demonstrated on a well-known meta-analysis
example, and the use of the command is also explained in conjunction with some of the
other user-written meta-analysis commands.

2 Contour-enhanced funnel plots

There is evidence that, generally, the primary driver for the suppression of studies is
the level of statistical significance of study results, with studies that do not attain
perceived milestones of statistical significance (i.e., p < 0.05 or 0.01) being less likely
to be published (Easterbrook et al. 1991; Dickersin 1997; Ioannidis 1998). Despite this,
no method has been previously considered to identify the areas of the funnel plot that
correspond to different levels of statistical significance, to assess whether any observed
asymmetry is likely caused by publication bias.

On a contour-enhanced funnel plot, contours of statistical significance are overlaid
on the funnel plot (Peters et al. 2008). Adding contours of statistical significance in
this way facilitates the assessment of whether the areas where studies exist are areas
of statistical significance and whether the areas where studies are potentially missing
correspond to areas of low statistical significance. If studies appear to be missing in
areas of low statistical significance, then it is possible that the asymmetry is due to
publication bias. Conversely, if the area where studies are perceived to be missing are
areas of high statistical significance, then publication bias is a less likely cause of the
funnel asymmetry.
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There has been discussion as to which is the most informative scale for funnel plots
of binary outcome meta-analyses. The consensus is that using the standard error, the
variance, or their inverses is most sensible over using an alternative such as sample size
(Sterne and Egger 2001; Sterne, Becker, and Egger 2005). Using the standard error on
the y axis is easiest to interpret because, in this instance, the contours of statistical
significance are linear, which is because they are derived from the Wald statistic for
each study’s effect estimate. The confunnel command has an option to use standard
error, inverse standard error, variance, or inverse variance on the y axis.

A meta-analysis of trials investigating magnesium therapy following myocardial in-
farction is a well-known example in the literature where the presence of publication
bias is suspected (Teo et al. 1991; ISIS-4 Collaborative Group 1995; Sterne, Bradburn,
and Egger 2001). An initial meta-analysis found that magnesium therapy reduced the
risk of mortality; however, a number of larger trials were subsequently published that
found no evidence that magnesium therapy reduced the risk of mortality. A standard
funnel plot is given for this meta-analysis in figure 1, which was generated by using the
metafunnel command as shown in the following syntax:

. use magnesium

. gen logES = logor

. gen selogES = selogor

. metafunnel logES selogES
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Figure 1. metafunnel funnel plot

When the standard error is used on the y axis of a funnel plot, it is conventional to
reverse the axis so that the most precise studies are displayed at the top of the plot.

Figure 1 is compared with the equivalent funnel plot produced by confunnel, shown
in figure 2. The addition of the contours of statistical significance makes it easier to
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assess the proportion of studies published in the meta-analysis at and around statistical
significance. The syntax for the default confunnel plot, with the sj scheme, is

. confunnel logES selogES
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Figure 2. confunnel funnel plot using default options

In both figures 1 and 2, there is a strong suggestion of asymmetry in the funnel,
suggesting that studies are missing on the right-hand side of the plot, but figure 2
makes it easier to assess the statistical significance of the hypothetical missing studies.
The area where missing studies are perceived includes regions of both low and high
statistical significance (i.e., the area crosses over the contours), suggesting studies that
showed magnesium to be nonsignificantly and significantly less effective to be missing.
Therefore, publication bias cannot be accepted as the only cause of funnel asymmetry
if it is believed studies are being suppressed because of a mechanism based on two-sided
p-values.

It is important to emphasize the differences between the pseudo 95% confidence
limits produced by metafunnel on figure 1 and the contours of statistical significance
produced by confunnel on figure 2 (Peters et al. 2008). The pseudo 95% confidence
limits illustrate the expected 95% confidence interval about the pooled fixed-effects
estimate for the meta-analysis. The pseudo-confidence limits therefore help to assess the
extent of between-study heterogeneity in the meta-analysis and the asymmetry on the
funnel plot. Unlike the pseudo-confidence limits, the contours of statistical significance
are independent of the pooled estimate; therefore, if the pooled estimate is subject
to bias, then the contours of significance will not be affected. Also, when the pooled
estimate is at the null, the pseudo 95% confidence limits coincide with the two-sided
5% significance contours.
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3 The confunnel command

The confunnel command plots contour-enhanced funnel plots for study outcome mea-
sures in a meta-analysis. Contours of statistical significance from one- or two-sided
Wald tests can be plotted using shaded or dashed contour lines. Contours can be plot-
ted along any number of chosen levels of statistical significance; by default, 1%, 5%,
and 10% significance contours are plotted. As previously mentioned, confunnel has
the choice of four y axes. The command also has been designed to be flexible, allowing
the user to add extra features to the funnel plot.

3.1 Syntax

confunnel varname1 varname2
[
if
] [

in
] [

, aspectratio(string)

contours(numlist) contcolor(color) extraplot(plots)

functionlowopts(options) functionuppopts(options) legendlabels(labels)

legendopts(options) metric(se | invse | var | invvar) onesided(lower | upper)
scatteropts(options) shadedcontours solidcontours twowayopts(options)

]

The first variable, varname1 is the variable corresponding to the effect estimates, often
log odds ratios, and the second variable, varname2, is the variable corresponding to the
standard errors of the effect estimates.

3.2 Options

aspectratio(string) specifies the aspect ratio for the plot; the default is 1.

contours(numlist) specifies the significance levels of the contours to be plotted; the
default is set to 1%, 5%, and 10% significance levels.

contcolor(color) specifies the color of the contour lines if shadedcontours is not
specified.

extraplot(plots) specifies one or multiple additional plots to be overlaid on the funnel
plot.

functionlowopts(options) and functionuppopts(options) pass options to the twoway
function commands used to draw the significance contours; for example, the line
widths can be changed.

legendlabels(labels) specifies labels to appear in the legend for extra elements added
to the funnel plot.

legendopts(options) passes options to the plot legend.

metric(se | invse | var | invvar) specifies the metric of the y axis of the plot. se,
invse, var, and invvar stand for standard error, inverse standard error, variance,
and inverse variance, respectively; the default is se.
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onesided(lower | upper) can be lower or upper, for lower-tailed or upper-tailed levels
of statistical significance, respectively. If unspecified, two-sided significance levels
are used to plot the contours.

scatteropts(options) specifies any of the options documented in [G] graph twoway
scatter.

shadedcontours specifies shaded, instead of black, contour lines.

solidcontours specifies solid, instead of dashed, contour lines.

twowayopts(options) specifies options passed to the twoway plotting function.

4 Use of confunnel

The following subsections use the meta-analysis of magnesium therapy following my-
ocardial infarction.

4.1 Demonstration of some confunnel options

Figure 3 shows the use of the inverse standard error on the y axis; the syntax is as
follows:

. confunnel logES selogES, metric(invse)
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Figure 3. confunnel funnel plot using inverse standard error on the y axis

If there is strong evidence that studies are suppressed based on a one-sided (rather
than a two-sided) significance test, this can be investigated using the onesided() option,
as shown in figure 4 and in the following syntax:
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. confunnel logES selogES, onesided(lower)
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Figure 4. confunnel using lower tail one-sided significance regions

Unlike figure 2, in figure 4 (based on one-sided p-values) the area where studies
are perceived missing is within the region of low statistical significance. Under this
assumption, it is more reasonable to consider publication bias as the potential cause of
the funnel asymmetry. In this context, the one-sided assumption implies that studies
showing magnesium to be harmful are likely to be suppressed regardless of the signifi-
cance of the results. Previous methods to address publication bias have made various
assumptions about the sidedness of suppression; for example, the trim-and-fill method
is one-sided, whereas Egger’s regression test is two-sided (Duval and Tweedie 2000;
Egger et al. 1997).

Figure 5 shows using variance on the y axis, using the shaded and solid contours
options, and labeling the x axis with odds ratios on the funnel plot. The syntax is
shown here (confunnel was run prior to these commands in order to see where Stata
placed the tick marks on the x axis):

. local t1 = round(exp(-4)*100)/100

. local t2 = round(exp(-2)*100)/100

. local t3 = exp(0)

. local t4 = round(exp(2)*100)/100

. local t5 = round(exp(4)*100)/100

. confunnel logES selogES, metric(var) shadedcontours solidcontours
> twowayopts(xtitle("Odds ratios")
> `"xlabel(-4 "`t1´" -2 "`t2´" 0 "`t3´" 2 "`t4´" 4 "`t5´")"´)
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Figure 5. confunnel using variance on the y axis

4.2 Use of confunnel with metan, metabias, metamodbias,
and metatrim

The metan command for meta-analysis (Bradburn, Deeks, and Altman 1998; Harris et
al. 2008) can be used to generate the information to display the pooled fixed-effects
estimate with its pseudo 95% confidence interval (or, indeed, the pooled random-effects
estimate) on the confunnel plot; this is shown in figure 6. In this example, because
the pooled log odds ratio was very close to 0, the pseudo 95% confidence interval (for
the pooled fixed-effects estimate) almost coincided with the 5% significance contours,
which are symmetric about the null hypothesis. The syntax for figure 6 is as follows:

. capture drop logES selogES

. metan alive0 dead0 alive1 dead1, or nograph fixed

(output omitted )

. local fixedlogES = log(r(ES))

. generate logES = log(_ES)

. rename _selogES selogES

. summarize selogES, meanonly

. local semax = r(max)

. confunnel logES selogES, extraplot(function `fixedlogES´, horizontal
> lc(gs8) range(0 `semax´) || function `fixedlogES´ + x*invnormal(.025),
> horizontal range(0 `semax´) lc(gs8) || function `fixedlogES´ +
> x*invnormal(.975), horizontal range(0 `semax´) lc(gs8))
> legendlabels(`"8 "F.E. & 95% C.I.""´) contcolor(gs10)
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Figure 6. confunnel with metafunnel features using metan

Egger’s test investigating possible small-study reporting bias can be represented on
the funnel plot by using the information from the metabias command (Egger et al.
1997; Steichen 1998); this is shown in figure 7 and in the following syntax:

. metabias logES selogES, graph(egger)

(output omitted )

. matrix b = e(b)

. local bias = b[1,2]

. local slope = b[1,1]

. summarize selogES, meanonly

. local semax = r(max)

. metamodbias alive0 dead0 alive1 dead1, graph

(output omitted )

. matrix c = e(b)

. local modbias = c[1,2]

. local modslope = c[1,1]

. confunnel logES selogES, contours(5 10) extraplot(function (`bias´*x + `slope´),
> horizontal range(0 `semax´) lc(gs8) || function (`modbias´*x + `modslope´),
> horizontal range(0 `semax´) lc(gs4)) legendlabels(`"6 "Egger" 7 "Harbord""´)

Also shown on the figure is the modified Egger test using the metamodbias command
(Harbord 2003) because Egger’s test has been shown to be biased for binary outcome
meta-analyses (Harbord, Egger, and Sterne 2006). To download the metamodbias com-
mand from within Stata, type net from http://www.epi.bris.ac.uk/user/rogerh/.

The modified Egger’s test is performed on different scales from those of the axes
of the funnel plot, but when all trials have a reasonable sample size with small effect
estimates, it is not unreasonable to view it on a funnel plot.
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Figure 7. confunnel with Egger’s and Harbord’s regression tests using metabias and
metamodbias

Applying the trim-and-fill method to this meta-analysis by using the metatrim com-
mand (Steichen 2000) surprisingly resulted in no studies needing to be filled (Duval
and Tweedie 2000). In order to demonstrate confunnel displaying filled studies, a
meta-analysis of the risk of lung cancer from passive smoking is used (Hackshaw, Law,
and Wald 1997; Rothstein, Sutton, and Borenstein 2005). Applying the trim-and-fill
method, the passive smoking meta-analysis produces seven filled studies, shown in fig-
ure 8 and described with the following syntax:

. use passivesmoking, clear

. local n = _N

. metan logOR selogOR, nograph

(output omitted )

. local ES = r(ES)

. summarize selogOR, meanonly

. local semax = r(max)

. metatrim logOR selogOR, save(metatrimdata, replace)

(output omitted )

. use metatrimdata, clear

. local nfilled = _N - `n´

. metan filled fillse, nograph

(output omitted )

. local filledES = r(ES)

. confunnel filled fillse if _n > `nfilled´, contours(5 10) contcolor(gs10)
> extraplot(scatter fillse filled if _n <= `nfilled´, m(T) mc(gs8) ||
> function `ES´, horizontal lc(black) range(0 `semax´) || function `filledES´,
> horizontal lc(gs8) range(0 `semax´))
> legendlabels(`"6 "Filled" 7 "F.E." 8 "F.E. filled""´)
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Figure 8. confunnel with filled studies from metatrim. The vertical dotted line shows
the pooled log odds ratio on the original meta-analysis, while the vertical short dash–
dotted line shows the pooled estimate including the filled studies.

It is possible to consider the studies filled by trim and fill as a guide to the likely
location of missing studies. With the contours added to the funnel plot containing the
filled studies, it is possible to assess the projected significance of the missing studies to
determine if it is reasonable to assume such studies could be suppressed by publication
bias based on a p-value selection mechanism. In figure 8, trim and fill estimates that
seven studies are missing, all of which indicate those exposed to passive smoking are at
a reduced risk of lung cancer and all of which are in the region of p > 0.10. Hence, it
is plausible that publication bias is the cause of the observed asymmetry in this funnel
plot.

5 Discussion

The use of the contour-enhanced funnel plot, implemented with the confunnel com-
mand, is recommended to investigate meta-analyses where it is possible that results
could be suppressed on the basis of their statistical significance. In practice, it is sus-
pected that this could include the majority of contexts in which meta-analysis is con-
ducted, certainly in medicine and related disciplines. Exceptions do exist, for example,
where noncomparative effect sizes are combined (e.g., in a surgical case series or for
incidence or prevalence data); statistical significance will often have no meaning, and in
such cases the contours would not be relevant.

An issue with the interpretation of the contour-enhanced funnel plot is that the
significance contours can draw the analyst into thinking that the studies should be
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symmetric about the null hypothesis of the Wald test, because this is the point at
which the contours meet when standard error or variance is used on the y axis. But this
should be avoided because the studies should form a symmetric funnel shape centered
around the true underlying effect size and not the null. Because of this, it can be
helpful to plot the meta-analysis pooled estimate for the data on the funnel, although
the analyst should be aware that this too may be biased if publication bias is present.

In conclusion, funnel plots are a useful tool in the assessment of systematic differences
between the effects in smaller and larger studies in a meta-analysis, regardless of the
underlying reason for the differences. Funnel plots can be enhanced by the inclusion
of contours of statistical significance, which aid in the interpretation of whether such
differences in study estimates in a meta-analysis are most likely to be due to publication
bias or other factors.
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Abstract. This article describes an updated version of the metabias command,
which provides statistical tests for funnel plot asymmetry. In addition to the
previously implemented tests, metabias implements two new tests that are recom-
mended in the recently updated Cochrane Handbook for Systematic Reviews of
Interventions (Higgins and Green 2008). The first new test, proposed by Harbord,
Egger, and Sterne (2006, Statistics in Medicine 25: 3443–3457), is a modified ver-
sion of the commonly used test proposed by Egger et al. (1997, British Medical
Journal 315: 629–634). It regresses Z/

√
V against

√
V , where Z is the efficient

score and V is Fisher’s information (the variance of Z under the null hypothesis).
The second new test is Peters’ test, which is based on a weighted linear regression
of the intervention effect estimate on the reciprocal of the sample size. Both of
these tests maintain better control of the false-positive rate than the test proposed
by Egger at al., while retaining similar power.

Keywords: sbe19 6, metabias, meta-analysis, publication bias, small-study effects,
funnel plots

1 Introduction

Publication and related biases in meta-analysis are often examined by visually checking
for asymmetry in funnel plots. However, such visual interpretation is inherently subjec-
tive. Tests for funnel plot asymmetry (small-study effects [Sterne, Gavaghan, and Egger
2000]) examine whether the association between estimated intervention effects and a
measure of study size (such as the standard error of the intervention effect) is greater
than might be expected to occur by chance.

This update to the metabias command (Steichen 1998; Steichen, Egger, and Sterne
1998) implements two new tests for funnel plot asymmetry that are recommended in
the chapter addressing reporting biases (Sterne, Egger, and Moher 2008) in the recent
update to the Cochrane Handbook for Systematic Reviews of Interventions (Higgins

c© 2009 StataCorp LP sbe19 6
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and Green 2008). The modified version of Egger’s test (Egger et al. 1997) proposed
by Harbord, Egger, and Sterne (2006) still uses linear regression but is based on the
efficient score and its variance, Fisher’s information. The test proposed by Peters et al.
(2006) is based on a weighted linear regression of the intervention effect estimate on
the reciprocal of the sample size. These tests address mathematical problems that
can occur with the commonly used Egger test and the rank correlation test proposed
by Begg and Mazumdar (1994), which was also available in the original version of
metabias. As with other recently updated meta-analysis commands, the syntax for
metabias now corresponds to that for the main meta-analysis command, metan.

2 Syntax

metabias varlist
[
if
] [

in
]
, egger harbord peters begg

[
graph nofit or rr

level(#) graph options
]

As in the metan command, varlist corresponds to either binary data—in this order:
cases and noncases for the experimental group, then cases and noncases for the control
group (d1 h1 d0 h0)—or the intervention effect and its standard error (theta se theta).

The Harbord and Peters tests require binary data. Although the Egger test can be
used with binary data, it is recommended only for studies with continuous (numerical)
outcome variables and intervention effects measured as mean differences with the format
theta se theta.

by is allowed with metabias; see [D] by.

3 Options

egger, harbord, peters, and begg specify that the original Egger test, Harbord’s mod-
ified test, Peters’ test, or the rank correlation test proposed by Begg and Mazumdar
(1994) be reported, respectively. There is no default; one test must be chosen.

graph displays a Galbraith plot (the standard normal deviate of intervention effect
estimate against its precision) for the original Egger test or a modified Galbraith
plot of Z/

√
V versus

√
V for Harbord’s modified test. There is no corresponding

plot for the Peters or Begg tests.

nofit suppresses the fitted regression line and confidence interval around the intercept
in the Galbraith plot.

or (the default for binary data) uses odds ratios as the effect estimate of interest.

rr specifies that risk ratios rather than odds ratios be used. This option is not available
for the Peters test.
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level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.7 Specifying the width
of confidence intervals.

graph options are any of the options documented in [G] graph twoway scatter. In
particular, the options for specifying marker labels are useful.

4 Background

A funnel plot is a simple scatterplot of intervention effect estimates from individual
studies against some measure of each study’s size or precision (Light and Pillemer 1984;
Begg and Berlin 1988; Sterne and Egger 2001). It is common to plot effect estimates
on the horizontal axis and the measure of study size on the vertical axis. This is
the opposite of the usual convention for twoway plots, in which the outcome (e.g.,
intervention effect) is plotted on the vertical axis and the covariate (e.g., study size)
is plotted on the horizontal axis. The name “funnel plot” arises from the fact that
precision of the estimated intervention effect increases as the size of the study increases.
Effect estimates from small studies will therefore scatter more widely at the bottom of
the graph, with the spread narrowing among larger studies. In the absence of bias, the
plot should approximately resemble a symmetrical (inverted) funnel. The metafunnel
command (Sterne and Harbord 2004) can be used to display funnel plots, while the
confunnel command (Palmer et al. 2008) can be used to display “contour-enhanced”
funnel plots.

Funnel plots are commonly used to assess evidence that the studies included in a
meta-analysis are affected by publication bias. If smaller studies without statistically
significant effects remain unpublished, this can lead to an asymmetrical appearance of
the funnel plot. However, the funnel plot is better seen as a generic means of display-
ing small-study effects—a tendency for the intervention effects estimated in smaller
studies to differ from those estimated in larger studies (Sterne, Gavaghan, and Egger
2000). Small-study effects may be due to reporting biases, including publication bias
and selective reporting of outcomes (Chan et al. 2004), poor methodological quality
leading to spuriously inflated effects in smaller studies, or true heterogeneity (when
the size of the intervention effect differs according to study size) (Egger et al. 1997;
Sterne, Gavaghan, and Egger 2000). Apparent small-study effects can also be artifac-
tual, because, in some circumstances, sampling variation can lead to an association
between the intervention effect and its standard error (Irwig et al. 1998). Finally, small-
study effects may be due to chance; this is addressed by statistical tests for funnel plot
asymmetry.

For outcomes measured on a continuous (numerical) scale, tests for funnel plot asym-
metry are reasonably straightforward. Using an approach proposed by Egger et al.
(1997), we can perform a linear regression of the intervention effect estimates on their
standard errors, weighting by 1/(variance of the intervention effect estimate). This
looks for a straight-line relationship between the intervention effect and its standard
error. Under the null hypothesis of no small-study effects, such a line would be vertical
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on a funnel plot. The greater the association between intervention effect and standard
error, the more the slope would move away from vertical. The weighting is important
to ensure that the regression estimates are not dominated by the smaller studies. It is
mathematically equivalent, however, to a test of zero intercept in an unweighted regres-
sion on Galbraith’s radial plot (Galbraith 1988) of the standard normal deviate, defined
as the effect estimate divided by its standard error, against the precision, defined as the
reciprocal of the standard error; and in fact, this method is used in metabias. If the
regression line on a Galbraith plot is constrained to pass through the origin, its slope
gives the summary estimate of fixed-effects meta-analysis as suggested by Galbraith.
But if the intercept is estimated, a test of the null hypothesis of zero intercept tests for
no association between the effect size and its standard error.

The Egger test has been by far the most widely used and cited approach to test-
ing for funnel plot asymmetry. Unfortunately, there are statistical problems with this
approach because the standard error of the log odds-ratio is correlated with the size
of the odds ratio due to sampling variability alone, even in the absence of small-study
effects (Irwig et al. 1998); see Deeks, Macaskill, and Irwig (2005) for an algebraic ex-
planation of this phenomenon. This can cause funnel plots that were plotted using
log odds-ratios (or odds ratios on a log scale) to appear asymmetric and can mean
that p-values from the Egger test are too small, leading to false-positive test results.
These problems are especially prone to occur when the intervention has a large effect,
when there is substantial between-study heterogeneity, when there are few events per
study, or when all studies are of similar sizes. Therefore, a number of authors have
proposed alternative tests for funnel plot asymmetry. These are reviewed in a new
chapter in the recently updated Cochrane Handbook for Systematic Reviews of Inter-
ventions (Higgins and Green 2008), which also gives guidance on testing for funnel plot
asymmetry (Sterne, Egger, and Moher 2008).

4.1 Notation

We shall be primarily concerned with meta-analysis of 2 × 2 tables, where each study
contains an intervention group and a control group, and the outcome is binary. We
shall use the notation shown in table 1 for a single 2 × 2 table, using the letter d
to denote those who experience the event of interest and h for those who do not, with
subscripts 0 and 1 to indicate the control and intervention groups, respectively. We shall
concentrate on the log odds-ratio, φ, as the measure of intervention effect, estimated
by φ = log(d1h0/d0h1). The usual estimate of the variance of the log odds-ratio is the
Woolf formula (Woolf 1955), Var(φ) = 1/d0 + 1/h0 + 1/d1 + 1/h1, the square root of
which gives the estimated standard error, SE(φ).
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Table 1. Notation for a single 2 × 2 table

Outcome

Experienced event Did not experience event
d (disease) h (healthy) Total

Group 1 (intervention) d1 h1 n1

Group 2 (control) d0 h0 n0

Total d h n

The Egger test is based on a two-sided t test of the null hypothesis of zero slope in a
linear regression of φ against SE(φ), weighted by 1/Var(φ) (Sterne, Gavaghan, and Egger
2000). This is equivalent to a two-sided t test of the null hypothesis of zero intercept in
an unweighted linear regression of φ/SE(φ) against 1/SE(φ), which are the axes used in
the Galbraith plot.

4.2 New tests for funnel plot asymmetry

Harbord’s modification to Egger’s test is based on the component statistics of the score
test, namely, the efficient score, Z, and the score variance (Fisher’s information), V .
Z is the first derivative, and V is minus the second derivative of the log likelihood
with respect to φ evaluated at φ = 0 (Whitehead and Whitehead 1991; Whitehead
1997). The intercept in a regression of Z/

√
V against

√
V is used as a measure of the

magnitude of small-study effects, with a two-sided t test of the null hypothesis of zero
intercept giving a formal test for small-study effects. This is identical to a test of nonzero
slope in a regression of Z/V against 1 =

√
V with weights V . If all marginal totals are

considered fixed, V has no sampling error and hence no correlation with Z. If, as seems
more realistic, n0 and n1 are considered fixed but d and h are not, the correlation
remains lower than that between φ and its variance as calculated by the Woolf formula,
leading to reduced false-positive rates (Harbord, Egger, and Sterne 2006).

Using standard likelihood theory (Whitehead 1997), it can also be shown that when
φ is small and n is large, φ ≈ Z/V and Var(φ) ≈ 1/V . It follows that the modified test
becomes equivalent to the original Egger test when all trials are large and have small
effect sizes. A plot of Z =

√
V against

√
V is therefore similar to Galbraith’s radial plot

of φ = SE(φ) against 1/SE(φ), as noted by Galbraith himself (Galbraith 1988).

When the parameter of interest is the log odds-ratio, φ, the efficient score is

Z = d1 − dn1/n

and the score variance evaluated at φ = 0 is

V = n0n1dh/n2(n − 1)
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The formula for V given above is obtained by using conditional likelihood, conditioning
on the marginal totals d and h in table 1. When the parameter of interest is the
log risk-ratio, it can be shown by using standard profile likelihood arguments that
Z = (d1n − dn1)/h and V = n0n1d/(nh).

The Peters test is based on a linear regression of φ on 1/n, with weights dh/n. The
slope of the regression line is used as a measure of the magnitude of small-study effects,
with a two-sided t test of the null hypothesis of zero slope giving a formal test for small-
study effects. This is a modification of Macaskill’s test (Macaskill, Walter, and Irwig
2001), with the inverse of the total sample size as the independent variable rather than
total sample size. The use of the inverse of the total sample size gives more balanced
type I error rates in the tail probability areas than where there is no transformation of
sample size (Peters et al. 2006). For balanced trials (n0 = n1), the weights dh/n are
proportional to V .

When there is little or no between-trial heterogeneity, the Harbord and Peters tests
have false-positive rates close to the nominal level while maintaining similar power to
the original linear regression test proposed by Egger et al. (1997) (Harbord, Egger, and
Sterne 2006; Peters et al. 2006; Rücker, Schwarzer, and Carpenter 2008).

5 Example

We shall use an example taken from a systematic review of randomized trials of nicotine
replacement therapies in smoking cessation (Silagy et al. 2004), restricted to the 51 trials
that used chewing gum as the method of delivery.

. use nicotinegum
(Nicotine gum for smoking cessation)

. describe

Contains data from nicotinegum.dta
obs: 51 Nicotine gum for smoking cessation
vars: 5 8 Jan 2009 12:02
size: 663 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

trialid byte %9.0g
d1 int %8.0g Intervention successes
h1 int %9.0g Intervention failures
d0 int %8.0g Control successes
h0 int %9.0g Control failures

Sorted by: trialid

A standard fixed-effects meta-analysis, with intervention effects measured as odds
ratios, suggests that there was a beneficial effect of the intervention (unusually for a
medical meta-analysis, the event of interest here, smoking cessation, is good news rather
than bad):



R. M. Harbord, R. J. Harris, and J. A. C. Sterne 203

. metan d1 h1 d0 h0, or nograph

Study | OR [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
1 | 2.253 1.277 3.972 2.18
2 | 1.850 0.989 3.460 1.98
3 | 1.039 0.708 1.524 6.96
4 | 1.416 0.599 3.350 1.21
5 | 0.977 0.497 1.919 2.33
6 | 4.773 1.910 11.932 0.70
7 | 1.761 0.796 3.893 1.26
8 | 3.159 1.138 8.768 0.69
9 | 1.533 0.771 3.048 1.83
10 | 1.385 0.888 2.160 4.55
11 | 2.949 1.009 8.615 0.61
12 | 2.293 1.239 4.245 1.92
13 | 1.234 0.490 3.106 1.12
14 | 2.624 1.026 6.708 0.87
15 | 2.035 0.783 5.289 0.82
16 | 2.822 1.329 5.994 1.13
17 | 0.869 0.461 1.636 2.82
18 | 0.887 0.326 2.408 1.10
19 | 3.404 1.689 6.861 1.18
20 | 2.170 1.101 4.279 1.59
21 | 1.412 0.572 3.487 1.08
22 | 2.029 0.800 5.148 0.97
23 | 0.955 0.294 3.098 0.77
24 | 1.250 0.472 3.311 1.00
25 | 1.847 0.461 7.397 0.41
26 | 3.327 1.371 8.077 0.76
27 | 1.434 0.843 2.441 3.16
28 | 1.333 0.428 4.155 0.72
29 | 1.235 0.931 1.638 11.86
30 | 3.142 1.776 5.558 1.84
31 | 3.522 0.853 14.543 0.28
32 | 1.168 0.704 1.937 3.81
33 | 1.511 0.835 2.735 2.45
34 | 3.824 1.150 12.713 0.39
35 | 1.165 0.405 3.349 0.85
36 | 1.345 0.349 5.188 0.50
37 | 0.483 0.042 5.624 0.26
38 | 1.713 1.212 2.421 6.33
39 | 1.393 0.572 3.389 1.09
40 | 1.844 1.204 2.822 4.30
41 | 1.460 0.775 2.751 2.18
42 | 1.269 0.776 2.075 3.84
43 | 4.110 1.564 10.799 0.59
44 | 2.082 1.504 2.881 6.57
45 | 1.714 0.523 5.621 0.57
46 | 1.294 0.749 2.236 2.98
47 | 5.313 0.701 40.255 0.20
48 | 2.703 0.509 14.357 0.25
49 | 2.124 0.928 4.858 1.07
50 | 1.760 0.549 5.643 0.58
51 | 1.460 0.679 3.140 1.49
---------------------+---------------------------------------------------
M-H pooled OR | 1.658 1.515 1.815 100.00
---------------------+---------------------------------------------------



204 Updated tests for small-study effects in meta-analyses

Heterogeneity chi-squared = 62.04 (d.f. = 50) p = 0.118
I-squared (variation in OR attributable to heterogeneity) = 19.4%

Test of OR=1 : z= 10.99 p = 0.000

The metan command automatically creates the variables ES, corresponding to the
odds ratio, and selogES, corresponding to the standard error of the log odds-ratio. We
can use these to derive variables for input to the metafunnel command:

. generate logor = log(_ES)

. generate selogor = _selogES

We now use metafunnel to draw a funnel plot with the log odds-ratio, φ, on the hor-
izontal axis and its standard error, SE(φ), on the vertical axis. The egger option draws
a line corresponding to the weighted regression of the log odds-ratio on its standard
error that is the basis of Egger’s regression test; see figure 1.

. metafunnel logor selogor, egger

0
.5

1
1.

5
s.

e.
 o

f l
og

or

�2 �1 0 1 2 3
logor

Funnel plot with pseudo 95% confidence limits

Figure 1. Funnel plot of the log odds-ratio, φ, against its standard error, SE(φ), including
the fitted regression line from the standard regression (Egger) test for small-study effects

The funnel plot appears asymmetric, with smaller studies (those with larger stan-
dard errors) tending to have larger (more beneficial) odds ratios. This may suggest
publication bias.

We use the metabias command to perform a test of small-study effects employing
the commonly used Egger test.
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. metabias d1 h1 d0 h0, egger

Note: data input format tcases tnoncases ccases cnoncases assumed.
Note: odds ratios assumed as effect estimate of interest
Note: peters or harbord tests generally recommended for binary data

Egger´s test for small-study effects:
Regress standard normal deviate of intervention
effect estimate against its standard error

Number of studies = 51 Root MSE = 1.082

Std_Eff Coef. Std. Err. t P>|t| [95% Conf. Interval]

slope .2832569 .1188368 2.38 0.021 .0444455 .5220683
bias .7045941 .3566387 1.98 0.054 -.0120982 1.421286

Test of H0: no small-study effects P = 0.054

The estimated bias coefficient is 0.705 with a standard error of 0.357, giving a p-value
of 0.054. The test thus provides weak evidence for the presence of small-study effects.

The same results can be produced by using the derived variables logor and selogor:

. metabias logor selogor, egger

(output omitted )

We now use Harbord’s modified test:

. metabias d1 h1 d0 h0, harbord graph

Note: data input format tcases tnoncases ccases cnoncases assumed.
Note: odds ratios assumed as effect estimate of interest

Harbord´s modified test for small-study effects:
Regress Z/sqrt(V) on sqrt(V) where Z is efficient score and V is score variance

Number of studies = 51 Root MSE = 1.092

Z/sqrt(V) Coef. Std. Err. t P>|t| [95% Conf. Interval]

sqrt(V) .3468707 .126528 2.74 0.009 .0926032 .6011382
bias .5273137 .3866755 1.36 0.179 -.2497398 1.304367

Test of H0: no small-study effects P = 0.179

The estimated intercept is 0.527 with a standard error of 0.387, giving a p-value
of 0.179. The modified test thus suggests little evidence for small-study effects. The
modified Galbraith plot of Z/

√
V versus

√
V is shown in figure 2.

(Continued on next page)
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Figure 2. Modified Galbraith plot of Z/
√

V versus
√

V

Finally, we will use Peters’ test for small-study effects:

. metabias d1 h1 d0 h0, peters

Note: data input format tcases tnoncases ccases cnoncases assumed.
Note: odds ratios assumed as effect estimate of interest

Peter´s test for small-study effects:
Regress intervention effect estimate on 1/Ntot, with weights SF/Ntot

Number of studies = 51 Root MSE = .3897

Std_Eff Coef. Std. Err. t P>|t| [95% Conf. Interval]

bias 26.20225 14.58572 1.80 0.079 -3.108842 55.51334
constant .4197904 .0776552 5.41 0.000 .2637364 .5758443

Test of H0: no small-study effects P = 0.079

In this example, the p-value from Peters’ test is closer to that from Egger’s test
than it is to the p-value from Harbord’s test. These differing results emphasize the
importance of selecting a test in advance; picking a test result from among several is
strongly discouraged.
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6 Saved results

For all tests, the following scalars are returned:

r(N) number of studies
r(p bias) p-value of the bias estimate

For the regression-based tests (Harbord, Peters, and Egger), the following scalars
are returned:

r(df r) degrees of freedom
r(bias) estimate of bias (the constant in the regression equation for the

Egger and Harbord tests, and the slope for the Peters test)
r(se bias) standard error of bias estimate
r(rmse) root mean squared error of fitted regression model

For Begg’s test, the following scalars are returned:

r(score) Kendall’s score (P –Q)
r(score sd) standard deviation of Kendall’s score
r(p bias ncc) p-value for Begg’s test (not continuity-corrected)

7 Discussion

We have described how to use the metabias command to perform two tests for funnel
plot asymmetry. These tests are among those recommended in the Cochrane Hand-
book for Systematic Reviews of Interventions (Higgins and Green 2008) because they
reduce the inflation of the false-positive rate (type I error) that can occur for the Egger
test, while retaining power compared with alternative tests. metabias allows only one
test to be specified. Systematic reviewers should ideally specify their chosen test in
advance of the analysis and should avoid choosing from among the results of several
tests. Although simulation studies comparing the different tests have been reported
(Harbord, Egger, and Sterne 2006; Peters et al. 2006; Rücker, Schwarzer, and Carpen-
ter 2008), no test currently has been shown to be superior in all circumstances. A fuller
discussion of these issues is available in chapter 10 (Sterne, Egger, and Moher 2008) of
the Cochrane Handbook.

Tests for funnel plot asymmetry should not be seen as a foolproof method of detecting
publication bias or other small-study effects. We recommend that tests for funnel plot
asymmetry be used only when there are at least 10 studies included in the meta-analysis.
Even then, power may be low. False-positive results may occur in the presence of
substantial between-study heterogeneity, and no test performs well when all studies are
of a similar size. Although funnel plots, and tests for funnel plot asymmetry, may alert
us to a problem that needs considering when interpreting the results of a meta-analysis,
they do not provide a solution to this problem.

(Continued on next page)
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elapse displays a string with the result. It also creates a global S elap, which is a numerical macro of the form hhmmss,
where hh is the number of hours, mm the number of minutes, and ss the number of seconds.

Examples
local st � ��S�TIME�
���
elapse ��st�� �Bob�s your uncle�
	 Bob�s your uncle took 
 minute� 

 seconds�

local oper �Maximum likelihood estimation�
elapse ��st�� ��oper��
	 Maximum likelihood estimation took � minutes� 
 seconds�

elapse �st�
	 Elapsed time was 
 hour� 
� minutes� �� seconds�

quietly elapse �st�
if �S�elap � ��� �
mat xx � startxx
�

sbe19 Tests for publication bias in meta-analysis

Thomas J. Steichen, RJRT, FAX 910-741-1430, steicht@rjrt.com

Syntax

The syntax of metabias is

metabiasftheta fse theta j var thetag j exp�theta� ll ul
�
cl
�
g

�
if exp

� �
in range

�

�
� by�by var� graph�fbegg j eggerg� level�#� fvar j cig graph options

�

where the syntax construct fa j b j � � �g means choose one and only one of fa� b� � � �g.

Description

metabias performs the Begg and Mazumdar (1994) adjusted rank correlation test for publication bias and performs the
Egger et al. (1997) regression asymmetry test for publication bias. As options, it provides a funnel graph of the data or the
regression asymmetry plot.

The Begg adjusted rank correlation test is a direct statistical analogue of the visual funnel graph. Note that both the test
and the funnel graph have low power for detecting publication bias. The Begg and Mazumdar procedure tests for publication
bias by determining if there is a significant correlation between the effect estimates and their variances. metabias carries out
this test by, first, standardizing the effect estimates to stabilize the variances and, second, performing an adjusted rank correlation
test based on Kendall’s � .

The Egger et al. regression asymmetry test and the regression asymmetry plot tend to suggest the presence of publication
bias more frequently than the Begg approach. The Egger test detects funnel plot asymmetry by determining whether the intercept
deviates significantly from zero in a regression of standardized effect estimates against their precision.

The user provides the effect estimate, theta, to metabias as a log risk ratio, log odds ratio, or other direct measure of effect.
Along with theta, the user supplies a measure of theta’s variability (i.e., its standard error, se theta, or its variance, var theta).
Alternatively, the user may provide the exponentiated form, exp(theta), (i.e., a risk ratio or odds ratio) and its confidence interval,
(ll, ul).

The funnel graph plots theta versus se theta. Guide lines to assist in visualizing the funnel are plotted at the variance-
weighted (fixed effects) meta-analytic effect estimate and at pseudo confidence interval limits about that effect estimate (i.e., at
theta � z� se theta , where z is the standard normal variate for the confidence level specified by option level��). Asymmetry
on the right of the graph (where studies with high standard error are plotted) may give evidence of publication bias.

The regression asymmetry graph plots the standardized effect estimates, theta�se theta, versus precision, 1�se theta, along
with the variance-weighted regression line and the confidence interval about the intercept. Failure of this confidence interval to
include zero indicates asymmetry in the funnel plot and may give evidence of publication bias. Guide lines at x � 0 and y � 0
are plotted to assist in visually determining if zero is in the confidence interval.

metabias will perform stratified versions of both the Begg and Mazumdar test and the Egger regression asymmetry test
when option by�by var� is specified. Variable by var indicates the categorical variable that defines the strata. The procedure
reports results for each strata and for the stratified tests. The graphs, if selected, plot only the combined unstratified data.
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Options

by�by var� requests that the stratified tests be carried out with strata defined by by var.

graph�begg� requests the Begg funnel graph showing the data, the fixed-effects (variance-weighted) meta-analytic effect, and
the pseudo confidence interval limits about the meta-analytic effect.

graph�egger� requests the Egger regression asymmetry plot showing the standardized effect estimates versus precision, the
variance-weighted regression line, and the confidence interval about the intercept.

level�� sets the confidence level, in percent, for the pseudo confidence intervals; the default is 95%.

var indicates that var theta was supplied on the command line instead of se theta. Option ci should not be specified when
option var is specified.

ci indicates that exp(theta) and its confidence interval, (ll, ul), were supplied on the command line instead of theta and se theta.
Option var should not be specified when option ci is specified.

graph options are those allowed with graph� twoway. For graph�begg�, the default graph options include connect�lll��,
symbol�iiio�, and pen������ for displaying the meta-analytic effect, the pseudo confidence interval limits (two lines),
and the data points, respectively. For graph�egger�, the default graph options include connect��ll�, symbol�oid�,
and pen����� for displaying the data points, regression line, and the confidence interval about the intercept, respectively.
Setting t�title��� blanks out the default t�title.

Input variables

The effect estimates (and a measure of their variability) can be provided to metabias in any of three ways:

1. The effect estimate and its corresponding standard error (the default method):

� metabias theta se theta ���

2. the effect estimate and its corresponding variance (note that option var must be specified):

� metabias theta var theta� var ���

3. the risk (or odds) ratio and its confidence interval (note that option ci must be specified):

� metabias exp(theta) ll ul� ci ���

where exp(theta) is the risk (or odds) ratio, ll is the lower limit and ul is the upper limit of the risk ratio’s confidence
interval.

When input method 3) is used, cl is an optional input variable that contains the confidence level of the confidence interval
defined by ll and ul:

� metabias exp(theta) ll ul cl� ci ���

If cl is not provided, metabias assumes that each confidence interval is at the 95% confidence level. cl allows the user to
provide the confidence level, by study, when the confidence intervals are not at the default level or are not all at the same level.
Values of cl can be provided with or without a decimal point. For example, 90 and .90 are equivalent and may be mixed (e.g.,
90, .95, 80, .90 etc.).

Explanation

Meta-analysis has become a popular technique for numerically synthesizing information from published studies. One of the
many concerns that must be addressed when performing a meta-analysis is whether selective publication of studies could lead
to bias in the meta-analytic conclusions. In particular, if the probability of publication depends on the results of the study—for
example, if reporting large or statistically significant findings increase the chance of publication—then the possibility of bias
exists.

An initial approach used to assess the likelihood of publication bias was the funnel graph (Light and Pillemer 1984). The
funnel graph plotted the outcome measure (effect size) of the component studies against the sample size (a measure of variability).
The approach assumed that all studies in the analysis were estimating the same effect, therefore the estimated effects should be
distributed about the unknown true effect level and their spread should be proportional to their variances. This suggested that,
when plotted, small studies should be widely spread about the average effect and the spread should narrow as sample sizes
increase. If the graph suggested a lack of symmetry about the average effect, especially if small, negative studies were absent,
then publication bias was assumed to exist.

Evaluation of a funnel graph was a very subjective process, with bias—or lack of bias—being in the eye of the beholder.
Begg and Mazumdar (1994) noted this and observed that the presence of publication bias induced a skewness in the plot
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and a correlation between the effect sizes and their variances. They proposed that a formal test for publication bias, which is
implemented in this insert, could be constructed by examining this correlation. The proposed test evaluates the significance of
the Kendall’s rank correlation between the standardized effect sizes and their variances.

Recently, Egger et al. (1997) proposed an alternative, regression-based test for detecting skewness in the funnel plot and, by
extension, for detecting publication bias in the data. This numerical measure of funnel plot asymmetry also constitutes a formal
test for publication bias and is implemented in this insert. The proposed test evaluates whether the intercept deviates significantly
from zero in a regression of standardized effect estimates against their precision. The test is motivated by the observation that,
under assumptions of a nonzero underlying effect and a lack of publication bias, 1) small studies would have both a near-zero
precision (since precision is predominantly a function of sample size) and a near-zero standardized effect (because of division
by a correspondingly large standard error), while 2) large studies would have both a large precision and a large standardized
effect (because of division by a small standard error). Therefore the standardized effects would scatter about a regression line
(approximately) through the origin that has a slope which estimates both the size and direction of the underlying effect. Under
conditions of publication bias and asymmetry in the funnel plot, the sub-sample of small studies will differ systematically from
the sub-sample of larger studies and the regression line will fail to go through the origin. The size of the intercept provides a
measure of asymmetry—the larger the deviation from zero the greater the asymmetry. The direction of the intercept provides
information on the form of the bias—a positive intercept indicates that the effect estimated from the smaller studies is greater
than the effect estimated from the larger studies. Conversely, a negative intercept indicates that the effect estimated from the
smaller studies is less than the effect estimated from the larger studies.

Begg’s test

This section paraphrases the mathematical development and discussion in the Begg and Mazumdar paper (the paper also
includes a detailed examination of the operating characteristics of this test and examples based on medical data).

Let �ti� vi�� i � 1� � � � � k� be the estimated effect sizes and sample variances from k studies in a meta-analysis. To construct
the adjusted rank correlation test, calculate the standardized effect sizes

t�i �
�ti � t�

�v�i �
���

where

t �

Pk
j�� tjv

��

jPk
j�� v

��

j

is the variance-weighted average effect size, and

v�i � vi �

�
kX

j��

v��j

�
��

is the variance of ti � t.

Correlate the standardized effect sizes, t�i , with the sample variances, vi, using Kendall’s rank correlation procedure and
examine the p value. A significant correlation is interpreted as providing strong evidence of publication bias.

In their examples, Begg and Mazumdar use the normalized Kendall rank correlation test statistic for data that have no ties,
z � �P �Q���k�k� 1��2k� 5��18����, where P is the number of pairs of studies ranked in the same order with respect to t�

and v and Q is the number of pairs ranked in the opposite order. This statistic does not apply a continuity correction. The authors
remark that the denominator should be modified if there are tied observations in either t�i or vi but, instead, apparently break
ties in their sample data by adding a small constant. The metabias procedure implemented in this insert invokes a modification
of Stata’s ktau procedure to calculate the correct statistic, whether ties exist or not, and presents the z and p values with and
without the continuity correction.

Begg and Mazumdar report that the principal determinant of the power of this test is the number of component studies in
the meta-analysis (as opposed to the sample sizes of the individual studies). Additionally, the power will increase with a wider
range in variance (sample size) and with a smaller underlying effect size. The authors state that the test is fairly powerful for
a meta-analysis of 75 component studies, only moderately powerful for one of 25 component studies, and weak when there
are few component studies. They advise that “the test must be interpreted with caution in small meta-analyses. In particular,
[publication] bias cannot be ruled out if the test is not significant.”
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A stratified test can also be constructed. Let Pl �Ql be the numerator of the unstratified test statistic for the lth subgroup
and dl be the square of the corresponding denominator (i.e., the variance of Pl � Ql). The stratified test statistic, without
continuity correction, is defined as

zs �

P
l�Pl �Ql��P

l dl

����

The metabias procedure implemented in this insert calculates the correct stratified statistic, whether ties exist or not, and
presents the zs and ps values with and without the continuity correction.

Begg and Mazumdar assume that the sampling distribution of t is normal, i.e., t � N��� vi�, where � is the common effect
size to be estimated and the vi are the variances, which depend on the sample sizes of the individual component studies. They
argue that the normality assumption is reasonable because t is “invariably a summary estimate of some parameter, and as such
will possess an asymptotic normal distribution in most circumstances.” The subsequent asymptotic-normality assumption for zs
inherently follows from this argument.

Egger’s test

This section paraphrases the method development and discussion in the Egger et al. paper. (The paper also provides an
empirical evaluation, based on only eight examples from the medical literature, of the ability of the regression asymmetry test
to correctly predict whether a meta-analysis of smaller studies will be concordant with the results of a subsequent large trial.)

Let �ti� vi�� i � 1� � � � � k� be the estimated effect sizes and sample variances from k studies in a meta-analysis. Define
the standardized effect size as t�i � ti�vi

���, the precision as s�� � 1�vi���, and the weight as wi � 1�vi. (In this form of
standardization, t� is a standard normal deviate and is designated as such in the Egger paper.) Fit t� to s�� using standard
weighted linear regression with weights w and linear equation: t� � ���s��. A significant deviation from zero of the estimated
intercept, b�, is interpreted as providing evidence of asymmetry in the funnel plot and of publication bias in the sampled data.

Egger et al. fit both weighted and unweighted regression lines and select the results of the analysis yielding the intercept
with the larger deviation from zero. This insert implements only the weighted analysis.

Egger et al. do not provide a formal analysis of coverage (i.e., nominal significance level) or power for this test, though
they do provide a number of assertions about power. First, they state that “[i]n contrast to the overall test of heterogeneity, the
test for funnel plot asymmetry assesses a specific type of heterogeneity and provides a more powerful test in this situation.”
Second, they state that “[i]n some situations� � � power is gained by weighting the analysis.” Lastly, in a comparison to the Begg
and Mazumdar test, they state that “the linear regression approach may be more powerful than the rank correlation test.” Egger
et al. note, though, that “any analysis of heterogeneity depends on the number of trials included in a meta-analysis, which is
generally small, and this limits the statistical power of the test.”

Although the paper provides no formal analysis in support of these assertions, an empirical evaluation based on eight
examples from the medical literature is reported. This evaluation assessed the ability of the regression asymmetry test to correctly
predict whether a meta-analysis of smaller studies will be concordant with the results of a subsequent large trial. For these eight
examples, the test detected bias in 3 of 4 cases where a meta-analysis disagreed with a subsequent large trial and indicated
no bias in all 4 cases where the meta-analysis agreed with the subsequent large trial. In contrast, the Begg and Mazumdar test
was significant for only 1 of the 4 discordant cases (but like Egger’s test, for none of the concordant cases). Nonetheless, eight
example cases are too few to be statistically convincing and the test remains unvalidated. Further, the lack of coverage analysis
leaves open the question of false-positive claims of asymmetry and publication bias. Interestingly, if the Egger’s publication bias
test is too liberal (a concern that the author of this insert holds), that translates into conservativeness at the meta-analysis level
since the bias test will suggest too frequently that caution is needed in interpreting the results of the meta-analysis.

An approximate stratified test can be constructed using logic similar to that of Begg and Mazumdar (although Egger et
al. did not do so). Let al be the intercept from the regression equation for the lth subgroup and val be the variance of al. The
stratified test statistic is defined as

zs �

P
l al�v

a
l�P

l ��v
a
l

����

and is assumed to be distributed asymptotically normal. In this form, the stratified estimate is simply the variance-weighted,
fixed effect meta-analysis of the intercepts. This stratified test is implemented in this insert.
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Examples

Begg and Mazumdar illustrated their method with examples from the literature. The first example examined the association
between Chlamydia trachomatis and oral contraceptive use derived from 29 case-control studies (Cottingham and Hunter 1992).
metabias is invoked as follows:

� metabias logor varlogor� var graph�egger�

Option var is used because the data were provided as log-odds ratios and variances and this avoids the, admittedly, small
step of generating the standard errors. The optional Egger graph is also requested. metabias provides the following analysis:

Tests for Publication Bias

Begg�s Test

adj� Kendall�s Score �P�Q� � �	
Std� Dev� of Score � 	
�
� �corrected for ties�
Number of Studies � �

z � ��	
Pr � �z� � �����

z � ��	� �continuity corrected�
Pr � �z� � ����	 �continuity corrected�

Egger�s Test

������������������������������������������������������������������������������
Std�Eff � Coef� Std� Err� t P��t� �	� Conf� Interval�

������������������������������������������������������������������������������
slope � �	������ �������	 ����� ����� ��	����� �	�	
��
bias � ������	 �����	 ����� ����� ������� ������

������������������������������������������������������������������������������

The non-continuity-corrected test statistic, z � 1.59 ( p � 0.111), differs substantially from that reported by Begg and
Mazumdar, z � 1.76 ( p � 0.08). It differs for two reasons: first, the metabias procedure corrected the standard deviation of
Kendall’s score for ties; and second, Begg and Mazumdar apparently carried out their calculation on data that differs slightly
from the data they report in their appendix.

The difference in data is apparent when comparing the funnel graph in the published paper to that generated by metabias. The
published graph suggests that the observation at �logor� varlogor� � �0.41� 0.162� incorrectly overlays observation �0.41� 0.083�;
that it, it was incorrectly entered as �0.41� 0.083�. Recalculation of the test statistic with ties broken, and with the data modified
to match the published graph, yields the published results.

Begg and Mazumdar report that their p of 0.08 is “strongly suggestive of publication bias.” Correction of the data and
calculation of the test statistic to account for the ties, as shown above, weakens this conclusion. Application of the continuity
correction further weakens the conclusion. Nonetheless, with only 29 component studies, the test is expected to have only
moderate power at best, and the existence of publication bias cannot be ruled out.

In contrast, the Egger’s bias coefficient, bias � 0.802 (P � jtj � 0.012), strongly indicates the presence of asymmetry and
publication bias. Further, the sign of the coefficient (positive) suggests that small studies overestimate the effect (or, alternatively,
that negative and/or nonsignificant small studies are not included in the Cottingham and Hunter dataset). The slope coefficient,
0.511, which is an estimate of theta (that in a weak sense might be considered to be adjusted for the effects of publication bias),
is smaller than the effects estimated from meta-analysis of these data using either fixed-effects (theta � 0.655) or random-effects
(theta � 0.716). These differences in effect estimates are consistent with those expected when small, negative studies are excluded.

The Egger plot (Figure 1), requested via the graph�egger� option, graphically shows this test and points out that the
analysis is dominated by one large, very precise study. The plot also shows that the data near the origin are systematically
elevated.

The Begg funnel graph of the data (Figure 2), which could have been selected with the graph�begg� option, provides
additional support for this interpretation.

(Figures on next page.)
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Figure 1 Figure 2

Most of the data points in the Begg plot fall above the meta-analytic effect estimate and there is a visible void in the
lower right of the funnel, that is, in the region of low effect and high variance. This is the region where studies most likely to
be subject to publication bias would appear. It is notable, though, that since the meta-analytic effect estimate and most of the
individual component effect estimates are substantially above zero, the effect of publication bias, if any, would be to inflate the
estimate rather than to lead to an incorrect conclusion about the existence of an effect.

Begg and Mazumdar’s third example called for the use of the stratified test. These data examined the association between
chlorination by-products in drinking water and cancer occurrence, with studies stratified by the site of the cancer (Morris et
al. 1992). metabias is invoked as follows:

� metabias effect variance� var by�site�

Use of option by�site� informs metabias that the stratified tests are to be carried out and that variable site is to be
used to define the strata. Results are provided in table format, presenting the statistics for each strata and then for the overall
stratified tests:

Tests for Publication Bias

�������������������������������������������������������������������������������
� � Begg�s Begg�s cont� corr� � Egger�s

site � n � score s�d� z p z p � bias p
�������������������������������������������������������������������������������
Bladder � 	 � 	 
�
�� ��� ����� ���� ���
� � ���	 �����
Brain � � �  ���� ��� ���	 ���� ���� � ��	 �
Breast � � � � ����� ��
� ����	 ���� ��	�� � ��� �����
Colon � 	 � � 
�
�� ���� ���� ���� ���� � ���
 �����

ColoRect � � � � ����� ���� ���� ���� ���� � ���� ���	�
Esophagu � � � � ����� ���� ����	 ��	� ���
� � ��� ����

Kidney � � � � ����� ��
� ����	 ���� ��	�� � ��� ����

Liver � � � � ����� ��
� ����	 ���� ��	�� � ���	� ��	�	
Lung � � � 
 ����� ��	 ���� ��� ���� � ��
 �����

Pancreas � 
 � � ����� ���� ����� ��	� ����� � ��� ����
Rectum � 
 �  ����� ��� ���� ���� ���� � ���� ����
Stomach � 
 � � ����� ���� ����� ��	� ����� � ���� �����

�������������������������������������������������������������������������������
overall � 
� � �� 	��� ��	 ����� �� ����
 � ��� �����

�������������������������������������������������������������������������������

The Begg and Mazumdar results provide no evidence of publication bias in any of the small site-specific strata, yet the
stratified test statistic, zs � 1.97 ( p � 0.049) provides strong evidence that publication bias exists in the chlorinated drinking
water and cancer literature. (These results also differ slightly from those published by Begg and Mazumdar in that the published
score for the Pancreas strata is 6, leading to an overall score of 35 and slightly different test statistics for this strata and the
overall statistic. Results for all other strata agree.) Again, the Egger test provides a stronger indication of the possible presence
of publication bias in this literature. Four site-specific strata (Breast, Colon, Pancreas and Stomach) reach statistical significance
and the p value for the overall test is more significant than that of Begg’s test, 0.000 versus 0.049. All but one of the individual
bias coefficients are positive, as is the overall bias coefficient, suggesting that the small studies in this Morris et al. dataset are
overestimating the effect (or that the negative and/or nonsignificant small studies are not included).
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Saved Results

metabias saves

S � number of studies S � Begg’s p value, continuity corrected
S � Begg’s score S � Egger’s bias coefficient
S � s.d. of Begg’s score S � Egger’s p value
S � Begg’s p value S 	 overall effect (log scale)
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sbe20 Assessing heterogeneity in meta-analysis: the Galbraith plot

Aurelio Tobias, Institut Municipal d’Investigacio Medica (IMIM), Spain, atobias@imim.es

Graphical methods are frequently used in meta-analysis to complement the statistical analysis of clinical and epidemiological
data. If the number of studies evaluated in a meta-analysis is small the assessment of heterogeneity is complicated. A range
of tests to assess heterogeneity are available (Fleiss 1981), but they tend to have low power against the alternative (Laird and
Mosteller 1990). Moreover, it is difficult to have a visual impression of the amount of heterogeneity from common meta-analysis
diagrams (Gladen and Rogan 1983, Galbraith 1988). Hence, graphical methods are particularly important to check and to explore
potential sources of heterogeneity.

The command galbr performs the Galbraith plot (Galbraith 1988), which has been more recommended (Thompson 1993)
than other graphical methods to investigate heterogeneity in meta-analysis. This command can be useful to complement the
results and graphical displays produced by the meta command (Sharp and Sterne 1997).

The Galbraith plot

Following the notation by Sharp and Sterne, let us assume that ��i is the estimated treatment effect �i in a trial i, and vi the
variance of the estimated treatment effect. Then, for each trial i the z statistic ��i�

p
vi is plotted against the reciprocal standard

error 1�
p
vi. Different log rate ratios, log odds ratios or log hazard ratios are therefore represented on the diagram by straight

lines to the origin for different gradients. In particular, it could be verified that the (unweighted) regression line constrained
through the origin has a slope equal to the overall log odds ratio in a fixed effects meta-analysis. Heterogeneity may be assessed
by the contribution of each trial i to the overall Q statistic (DerSimonian and Laird 1986) for heterogeneity. This investigation
can also be performed visually from a Galbraith plot. The position of each trial on the horizontal axis gives an indication of the
weight allocated in the meta-analysis. The vertical axis gives the contribution of each trial to the Q statistic, that is, to say the
distance between each trial point and the regression line is equal to q�i , where q�i � wi���i � ���� and Q �

P
q�i . Points outside

the confidence bounds (positioned 2 units above and below the regression line) are these trials which have a major contribution
to heterogeneity. In the absence of heterogeneity we could expect all points within the confidence limits. The Galbraith plot
can also be used to investigate possible sources of heterogeneity by labeling the points in the graph by different covariates,
for example type of trial, duration of treatment, or drug differences. We should note that this is a post-hoc investigation and
interpretation should be made with caution (Thompson 1993).

Syntax

As for the command meta, the command galbr works on a dataset containing the estimate effect, theta, and its standard
error, setheta, for each trial. The syntax is as follows:

galbr theta setheta
�
if exp

� �
in range

� �
� id�labelvar� graph options

�

Options

id�labelvar� supplies a variable which is used to label the studies. If the data contains a labeled numeric variable, it can also
be used.
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� fillin rep�� foreign

� drop �fillin

� replace freq � � if freq �� �
�� real changes made	
� list

rep�� foreign freq

� 
 Domestic �
�� 
 Foreign �
�� � Domestic �
�� � Foreign �
� � Domestic ��
�� � Foreign �
�� � Domestic �
�� � Foreign �
��  Domestic �

��  Foreign �


� � Domestic �

�� � Foreign 


Once again, however, collfreq with the zero option is more direct:
� collfreq rep�� foreign� zero

The final advantage of collfreq is that it is easier to ignore observations with missing values. This can be done by using
the nomiss option. In contrast, with the collapse approach, some preparatory action is needed. In the current example, it
would be easy to drop the observations with missing values:

� drop if rep�� �� � � foreign �� �

With a larger set of variables, a more efficient approach would be to flag such observations using mark and markout before
dropping them. But mark and markout are likely to be unfamiliar to Stata users who are not Stata programmers, and collfreq

with the nomiss option is a simpler alternative.

collfreq destroys the data in memory, as does collapse.

sbe19.1 Tests for publication bias in meta-analysis

Thomas J. Steichen, RJRT, FAX 910-741-1430, steicht@rjrt.com
Matthias Egger, University of Bristol, FAX (011) 44-117-928-7325, m.egger@bristol.ac.uk

Jonathan Sterne, UMDS, London, FAX (011) 44-171-955-4877, j.sterne@umds.ac.uk

Modification of the metabias program

This insert documents four changes to the metabias program (Steichen 1998). First, the weighted form of the Egger et
al. (1997) regression asymmetry test for publication bias has been replaced by the unweighted form. Second, an error has been
corrected in the calculation of the asymmetry test p values for individual strata in a stratified analysis. Third, error trapping has
been modified to capture or report problem situations more completely and accurately. Fourth, the labeling of the Begg funnel
graph has been changed to properly title the axes when the ci option is specified. None of these changes affects the program
syntax or operation.

The first change was made because, while there is little theoretical justification for the weighted analysis, justification
for the unweighted analysis is straightforward. As before, let �ti� vi�� i � 1� � � � � k� be the estimated effect sizes and sample
variances from k studies in a meta-analysis. Egger et al. defined the standardized effect size as t�i � ti�vi

���, and the precision

as s�1 � 1�vi���. For the unweighted form of the asymmetry test, they fit t� to s�1 using standard linear regression and

the equation t� � � � �s�1. A significant deviation from zero of the estimated intercept, b�, is then interpreted as providing
evidence of asymmetry in the funnel plot and of publication bias in the sampled data.

Jonathan Sterne (private communication to Matthias Egger) noted that this “unweighted” asymmetry test is merely a
reformulation of a standard weighted regression of the original effect sizes, ti, against their standard errors, vi

���, where the
weights are the usual 1�vi. It follows then that the “weighted” asymmetry test is merely a weighted regression of the original
effect sizes against their standard errors, but with weights 1�vi�. This form has no obvious theoretical justification.

We note further that the “unweighted” asymmetry test weights the data in a manner consistent with the weighting of the
effect sizes in a typical meta-analysis (i.e., both use the inverse variances). Thus, bias is detected using the same weighting
metric as in the meta-analysis.

For these reasons, this insert restricts metabias to the unweighted form of the Egger et al. regression asymmetry test for
publication bias.
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The second change to metabias is straightforward. A square root was inadvertently left out of the formula for the p

value of the asymmetry test that is calculated for an individual stratum when option by�� is specified. This formula has been
corrected. Users of this program should repeat any stratified analyses they performed with the original program. Please note that
unstratified analyses were not affected by this error.

The third change to metabias extends the error-trapping capability and reports previously trapped errors more accurately
and completely. A noteworthy aspect of this change is the addition of an error trap for the ci option. This trap addresses the
situation where epidemiological effect estimates and associated error measures are provided to metabias as risk (or odds) ratios
and corresponding confidence intervals. Unfortunately, if the user failed to specify option ci in the previous release, metabias
assumed that the input was in the default (theta, se theta) format and calculated incorrect results. The current release checks for
this situation by counting the number of variables on the command line. If more than two variables are specified, metabias
checks for the presence of option ci. If ci is not present, metabias assumes it was accidentally omitted, displays an appropriate
warning message, and proceeds to carry out the analysis as if ci had been specified.

Warning: The user should be aware that it remains possible to provide theta and its variance, var theta, on the command
line without specifying option var. This error, unfortunately, cannot be trapped and will result in an incorrect analysis. Though
only a limited safeguard, the program now explicitly indicates the data input option specified by the user, or alternatively, warns
that the default data input form was assumed.

The fourth change to metabias has effect only when options graph�begg� and ci are specified together. graph�begg�
requests a funnel graph. Option ci indicates that the user provided the effect estimates in their exponentiated form, exp(theta)—
usually a risk or odds ratio, and provided the variability measures as confidence intervals, (ll, ul). Since the funnel graph always
plots theta against its standard error, metabias correctly generated theta by taking the log of the effect estimate and correctly
calculated se theta from the confidence interval. The error was that the axes of the graph were titled using the variable name (or
variable label, if available) and did not acknowledge the log transform. This was both confusing and wrong and is corrected in
this release. Now when both graph�begg� and ci are specified, if the variable name for the effect estimate is RR, the y-axis is
titled “log[RR]” and the x-axis is titled “s.e. of: log[RR]”. If a variable label is provided, it replaces the variable name in these
axis titles.
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sbe24 metan—an alternative meta-analysis command

Michael J. Bradburn, Institute of Health Sciences, Oxford, UK, m.bradburn@icrf.icnet.uk
Jonathan J. Deeks, Institute of Health Sciences, Oxford, UK, j.deeks@icrf.icnet.uk

Douglas G. Altman, Institute of Health Sciences, Oxford, UK, d.altman@icrf.icnet.uk

Background

When several studies are of a similar design, it often makes sense to try to combine the information from them all to gain
precision and to investigate consistencies and discrepancies between their results. In recent years there has been a considerable
growth of this type of analysis in several fields, and in medical research in particular. In medicine such studies usually relate
to controlled trials of therapy, but the same principles apply in any scientific area; for example in epidemiology, psychology,
and educational research. The essence of meta-analysis is to obtain a single estimate of the effect of interest (effect size) from
some statistic observed in each of several similar studies. All methods of meta-analysis estimate the overall effect by computing
a weighted average of the studies’ individual estimates of effect.

metan provides methods for the meta-analysis of studies with two groups. With binary data, the effect measure can be the
difference between proportions (sometimes called the risk difference or absolute risk reduction), the ratio of two proportions (risk
ratio or relative risk), or the odds ratio. With continuous data, both observed differences in means or standardized differences in
means (effect sizes) can be used. For both binary and continuous data, either fixed effects or random effects models can be fitted
(Fleiss 1993). There are also other approaches, including empirical and fully Bayesian methods. Meta-analysis can be extended
to other types of data and study designs, but these are not considered here.

As well as the primary pooling analysis, there are secondary analyses that are often performed. One common additional
analysis is to test whether there is excess heterogeneity in effects across the studies. There are also several graphs that can be
used to supplement the main analysis.
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sbe39 Nonparametric trim and fill analysis of publication bias in meta-analysis

Thomas J. Steichen, RJRT, steicht@rjrt.com

Abstract: This insert describes metatrim, a command implementing the Duval and Tweedie nonparametric “trim and fill”
method of accounting for publication bias in meta-analysis. Selective publication of studies, which may lead to bias in
estimating the overall meta-analytic effect and in the inferences derived, is of concern when performing a meta-analysis.
If publication bias appears to exist, then it is desirable to consider what the unbiased dataset might look like and then
to reestimate the overall meta-analytic effect after any apparently “missing” studies are included. Duval and Tweedie’s
“nonparametric ‘trim and fill’ method” is an approach designed to meet these objectives.

Keywords: meta-analysis, publication bias, nonparametric, data augmentation.

Syntax

metatrim ftheta f se theta j var theta g j exp(theta) ll ul
�
cl
�
g

�
if exp

� �
in range

�

�
� fvar j cig reffect print estimat�frun j linear j quadraticg� eform graph

funnel level�#� idvar�varname� save�filename
�
� replace

�
� graph options

�

where fa j b j ���g means choose one and only one of fa� b� ���g.

Description

metatrim performs the Duval and Tweedie (2000) nonparametric “trim and fill” method of accounting for publication bias
in meta-analysis. The method, a rank-based data-imputation technique, formalizes the use of funnel plots, estimates the number
and outcomes of missing studies, and adjusts the meta-analysis to incorporate the imputed missing data. The authors claim that
the method is effective and consistent with other adjustment techniques. As an option, metatrim provides a funnel plot of the
filled data.

The user provides the effect estimate, theta, to metatrim as a log risk-ratio, log odds-ratio, or other direct measure of
effect. Along with theta, the user supplies a measure of theta’s variability (that is, its standard error, se theta, or its variance,
var theta). Alternatively, the user may provide the exponentiated form, exp(theta), (that is, a risk ratio or odds ratio) and its
confidence interval, (ll, ul).

The funnel plot graphs theta versus se theta for the filled data. Imputed observations are indicated by a square around the
data symbol. Guide lines to assist in visualizing the center and width of the funnel are plotted at the meta-analytic effect estimate
and at pseudo-confidence-interval limits about that effect estimate (that is, at theta� z� se theta, where z is the standard normal
variate for the confidence level specified by option level��).

Options

var indicates that var theta was supplied on the command line instead of se theta. Option ci should not be specified when
option var is specified.

ci indicates that exp(theta) and its confidence interval, (ll, ul), were supplied on the command line instead of theta and se theta.
Option var should not be specified when option ci is specified.

reffect specifies an analysis based on random-effects meta-analytic estimates. The default is to base calculations on fixed-effects
meta-analytic estimates.

print requests that the weights used in the filled meta-analysis be listed for each study, together with the individual study
estimates and confidence intervals. The studies are labeled by name if the idvar�� option is specified, or by number
otherwise.

estimat�frun j linear j quadraticg� specifies the estimator used to determine the number of points to be trimmed in
each iteration. The user is cautioned that the run estimator, R�, is nonrobust to an isolated negative point, and that the
quadratic estimator, Q�, may not be defined when the number of points in the data set is small. The linear estimator,
L�, is stable in most situations and is the default.

eform requests that the results in the final meta-analysis, and in the print option, be reported in exponentiated form. This is
useful when the data represent odds ratios or relative risks.

graph requests that point estimates and confidence intervals be plotted. The estimate and confidence interval in the graph are
derived using fixed- or random-effects meta-analysis, as specified by option reffect.
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funnel requests a filled funnel graph be displayed showing the data, the meta-analytic estimate, and pseudo confidence-interval
limits about the meta-analytic estimate. The estimate and confidence interval in the graph are derived using fixed or
random-effects meta-analysis, as specified by option reffect.

level�#� specifies the confidence level percent for the pseudo confidence intervals; the default is 95%.

idvar�varname� indicates the character variable used to label the studies.

save�filename�� replace�� saves the filled data in a separate Stata data file. The filename is assumed to have extension �dta

(an extension should not be provided by the user). If filename does not exist, it is created. If filename exists, an error will
occur unless replace is also specified. Only three variables are saved: a study id variable and two variables containing
the filled theta and se theta values. The study id variable, named id in the saved file, is created by metatrim; but when
option idvar�� is specified, it is based on that id variable. The filled theta and se theta variables are named filled and
sefill in the saved file.

graph options are those allowed with graph� twoway, except ylabel��, symbol��, xlog, ytick and gap are not recognized by
graph. For funnel, the default graph options include connect�lll���, symbol�iiioS�, and pen������� for displaying
the meta-analytic effect, the pseudo confidence interval limits (two lines), and the data points, respectively.

Specifying input variables

The individual effect estimates (and a measure of their variability) can be provided to metatrim in any of three ways:

1. The effect estimate and its corresponding standard error (the default method):

� metatrim theta se theta ���

2. The effect estimate and its corresponding variance (note that option var must be specified):

� metatrim theta var theta� var ���

3. The risk (or odds) ratio and its confidence interval (note that option ci must be specified):

� metatrim exp(theta) ll ul� ci ���

where exp(theta) is the risk (or odds) ratio, ll is the lower limit and ul is the upper limit of the risk ratio’s confidence
interval.

When input method 3 is used, cl is an optional input variable that contains the confidence level of the confidence interval
defined by ll and ul:

� metatrim exp(theta) ll ul cl� ci ���

If cl is not provided, metatrim assumes that a 95% confidence level was reported for each study. cl allows the user to
combine studies with diverse or non-95% confidence levels by specifying the confidence level for each study not reported
at the 95% level. Note that option level�� does not affect the default confidence level assumed for the individual studies.
Values of cl can be provided with or without a decimal point. For example, 90 and .90 are equivalent and may be mixed
(i.e., 90, .95, 80, .90, etc.). Missing values within cl are assumed to indicate a 95% confidence level.

Note that data in binary count format can be converted to the effect format used in metatrim by use of program metan

(Bradburn et al. 1998). metan automatically creates and adds variables for theta and se theta to the raw dataset, naming them
ES and seES. These variables can be provided to metatrim using the default input method.

Explanation

Meta-analysis is a popular technique for numerically synthesizing information from published studies. One of the many
concerns that must be addressed when performing a meta-analysis is whether selective publication of studies could lead to bias
in estimating the overall meta-analytic effect and in the inferences derived from the analysis. If publication bias appears to exist,
then it is desirable to consider what the unbiased dataset might look like and then to reestimate the overall meta-analytic effect
after any apparently “missing” studies are included. Duval and Tweedie’s “nonparametric ‘trim and fill’ method” is designed to
meet these objectives and is implemented in this insert.

An early, visual approach used to assess the likelihood of publication bias and to provide a hint of what the unbiased data
might look like was the funnel graph (Light and Pillemer 1984). The funnel graph plotted the outcome measure (effect size) of
the component studies against the sample size (a measure of variability). The approach assumed that all studies in the analysis
were estimating the same effect. Therefore, the effect estimates should be distributed about the unknown true effect level and
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their spread should be proportional to their variances. This suggested that, when plotted, small studies should be widely spread
about the average effect, and the spread should narrow as sample sizes increase, resulting in a symmetric, funnel-shaped graph.
If the graph revealed a lack of symmetry about the average effect (especially if small, negative studies appeared to be absent)
then publication bias was assumed to exist.

Evaluation of a funnel graph was a very subjective process, with bias—or lack of bias—residing in the eye of the beholder.
Begg and Mazumdar (1994) noted this and observed that the presence of publication bias induced skewness in the plot and a
correlation between the effect sizes and their variances. They proposed that a formal test of publication bias could be constructed
by examining this correlation. More recently, Egger et al. 1997 proposed an alternative, regression-based test for detecting
skewness in the funnel plot and, by extension, for detecting publication bias in the data. Their numerical measure of funnel plot
asymmetry also constitutes a formal test of publication bias. Stata implementations of both the Begg and Mazumdar procedure
and the Egger et al. procedure were provided in metabias (Steichen 1998; Steichen et al. 1998).

However, neither of these procedures provided estimates of the number or characteristics of the missing studies, and neither
provided an estimate of the underlying (unbiased) effect. There exist a number of methods to estimate the number of missing
studies, model the probability of publication, and provide an estimate of the underlying effect size. Duval and Tweedie list
some of these and note that all “are complex and highly computer-intensive to run” and, for these reasons, have failed to find
acceptance among meta-analysts. They offer their new method as “a simple technique that seems to meet many of the objections
to other methods.”

The following sections paraphrase some of the mathematical development and discussion in the Duval and Tweedie paper.

Estimators of the number of suppressed studies

Let �Yj � v�j �� j � �� � � � � n� be the estimated effect sizes and within-study variances from n observed studies in a meta-
analysis, where all such studies attempt to estimate a common global “effect size” �. Define the random-effects (RE) model
used to combine the Yj as

Yj � �� �j � �j

where �j � N��� ��� accounts for heterogeneity between studies, and �j � N��� ��j � is the within-study variability of study j.
For a fixed-effects (FE) model, assume �� � 0.

Further, in addition to n observed studies, assume that there are k� relevant studies that are not observed due to publication
bias. Both the value of k�, that is, the number of unobserved studies, and the effect sizes of these unobserved studies are
unknown and must be estimated.

Now, for any collection Xi, i � �� � � � � N of random variables, each with a median of zero and sign generated according
to an independent set of Bernoulli variables taking values �1 and 1, let ri denote the rank of jXij and

W�

N �
X

Xi��

ri

be the sum of the ranks associated with positive Xi. Then W�

N has a Wilcoxon distribution.

Assume that among these N random variables, k� were suppressed, leaving n observed values. Furthermore, assume that
the suppression has taken place in such a way that the k� values of the Xi with the most extreme negative ranks have been
suppressed. (Note: Duval and Tweedie call this their key assumption and present it italicized, as done here, for emphasis. Further,
they label the model for an overall set of studies defined in this way as a suppressed Bernoulli model and state that it might be
expected to lead to a truncated funnel plot.)

Rank again the n observed jXij as r�i running from 1 to n. Let �� � � denote the length of the rightmost run of ranks
associated with positive values of the observed Xi; that is, if h is the index of the most negative of the Xi and r�h is its absolute
rank, then �� � n� r�h. Define the “trimmed” rank test statistic for the observed n values as

Tn �
X

Xi��

r�i

Note that though the distributions of �� and Tn depend on k�, the dependence is omitted in this notation. Based on these
quantities, define three estimators of k�, the number of suppressed studies:

R� � �� � ��

L� �
�Tn � n�n� ��

	n� �
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and
Q� � n� ����

p
�n� � �Tn � ���

Duval and Tweedie provide the mean and variance of each estimator as follows (the reader should refer to the original paper
for the derivation):

E�R�� � k�� var�R�� � �k� � �

E�L�� � k� � k�����n� �	� var�L�� � �
 var�Tn	���n� �	�

where
var�Tn	 � �n�n� �	��n� �	 � ��k�� � ��k�� � ��k� � �nk�� � �nk� � 
n�k�	���

and

E�Q�� � k� �
� var�Tn	

��n� ���	� � k���n� k� � �		���
� var�Q�� �

� var�Tn	

�n� ���	� � k���n� k� � �	

The authors also report that for n large and k� of a smaller order than n, then asymptotically:

E�R�� � k��

E�L�� � k��

E�Q�� � k� � ��
�

var�R�� � o�n	�

var�L�� � n���

var�Q�� � n���

These results suggest that L� and Q� should have similar behavior, but the authors report that in practice Q� is often larger,
sometimes excessively so. They also note that L� generally has smaller mean square error than Q� when k� � n�4� 2.

Duval and Tweedie remark that the R� run estimator is rather conservative and nonrobust to the presence of a relatively
isolated negative term at the end of the sequence of ranks. They suggest that the estimators based on Tn seem more robust to
such a departure from the suppressed Bernoulli hypothesis. They also note that the Q� quadratic estimator is defined only when
Tn � n��� � ���
, and that simulations show this to be violated quite frequently when the number of studies, n, is small and
when the number of suppressed studies, k�, is large relative to n. These concerns leave the L� linear estimator as the best all
around choice.

Because only whole studies can be trimmed, the estimators are rounded in practice to the nearest nonnegative integer, as
follows:

R�
� � maxf�� R�g

L�
� �

�
max

�
�� L� �

�

�

��

Q�
� �

�
max

�
�� Q� �

�

�

��

where �x� is the integer part of x.

The Iterative trim and fill algorithm

Because the global “effect size” � is unknown, the number and position of any missing studies is correlated with the
true value of �. Therefore, Duval and Tweedie developed an iterative algorithm to estimate these values simultaneously. The
algorithm can be used with any of the three estimators of k� defined in the previous section (the metatrim program allows
the user to specify which one is to be used through the estimat�� option). Likewise, either a fixed-effects or random-effects
meta-analysis model can be used to estimate b��l� within each iteration �l	 of the algorithm (the default model in metatrim is
fixed effects, but random effects is used when option reffect is specified). Note that the meta program of Sharp and Sterne
(1997, 1998) is called by metatrim to carry out the meta-analysis calculations.

The algorithm proceeds as follows:

1. Starting with values Yi, estimate b���� using the chosen meta-analysis model. Construct an initial set of centered values

Y
���
i � Yi � b����� i � �� � � � � n

and estimate bk���� using the chosen estimator for k� applied to the set of values Y ���
i .



12 Stata Technical Bulletin STB-57

2. Let l be the current step number. Remove bk
�l���
� values from the right end of the original Yi and estimate b�

�l� based on

this trimmed set of n� bk
�l���
� values: fY�� � � � � Yn�bk�l���

�

g� Construct the next set of centered values

Y
�l�
i � Yi � b�

�l�� i � �� � � � � n

and estimate bk
�l�
� using the chosen estimator for k� applied to the set of values Y

�l�
i .

3. Increment l and repeat step 2 until an iteration L where bk
�L�
� � bk

�L���
� . Assign this common value to be the estimated

value bk�. Note that in this iteration it will also be true that b�
�L�

� b�
�L���.

4. Augment (that is, “fill”) the dataset Y with the bk� imputed symmetric values

Y �

j � �b�
�L� � Yn�j��� j � �� � � � �bk�

and imputed standard errors
��j � �n�j��� j � �� � � � �bk�

Estimate the “trimmed and filled” value of � using the chosen meta-analysis method applied to the full augmented dataset
fY�� � � � � Yn� Y

�

� � � � � � Y �

bk�
g.

Conceptually, this algorithm starts with the observed data, iteratively trims (that is, removes) extreme positive studies from
the dataset until the remaining studies do not show detectable deviation from symmetry, fills (that is, imputes into the original
dataset) studies that are left-side mirrored reflections (about the center of the trimmed data) of the trimmed studies and, finally,
repeats the meta-analysis on the filled dataset to get “trimmed and filled” estimates. Each filled study is assigned the same
standard error as the trimmed study it reflects in order to maintain symmetry within the filled dataset.

Example

The method is illustrated with an example from the literature that examines the association between Chlamydia trachomatis
and oral contraceptive use derived from 29 case–control studies (Cottingham and Hunter 1992). Analysis of these data with the
publication bias tests of Begg and Mazumdar (p � 0.115) and Egger et al. (p � 0.016), as provided in metabias, suggests
that publication bias may affect the data. To examine the potential impact of publication bias on the interpretation of the data,
metatrim is invoked as follows:

� metatrim logor varlogor� reffect funnel var

The random-effects model and display of the optional funnel graph are requested via options reffect and funnel. Option var

is required because the data were provided as log-odds ratios and variances. By default, the linear estimator, L�, is used to
estimate k�, as no other estimator was requested. metatrim provides the following output:

Note� option �var� specified�

Meta�analysis

� Pooled ��	 CI Asymptotic No� of
Method � Est Lower Upper z
value p
value studies
������������������������������������������������������������
Fixed � ���� ����� ����� ������ ����� ��
Random � ���� ����� ����� ������ �����

Test for heterogeneity� Q� ������ on �� degrees of freedom �p� ������
Moment�based estimate of between studies variance � �����

Trimming estimator� Linear
Meta�analysis type� Random�effects model

iteration � estimate Tn � to trim diff
�������������������������������������������������

� � ���� ��� � ���
� � ���� ���  ��
� � ��� ��� � �
� � ��� ��� � ��
� � ��� ��� � �

Filled
Meta�analysis

� Pooled ��	 CI Asymptotic No� of
Method � Est Lower Upper z
value p
value studies
������������������������������������������������������������
Fixed � ���� ����� ����� ����� ����� �
Random � ���� ����� ����� ������ �����

Test for heterogeneity� Q� ������ on �� degrees of freedom �p� ������
Moment�based estimate of between studies variance � �����
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metatrim first calls program meta to perform and report a standard meta-analysis of the original data, showing both the
fixed- and random-effects results. These initial results are always reported as theta estimates, regardless of whether the data were
provided in exponentiated form.

metatrim next reports the trimming estimator and type of meta-analysis model to be used in the iterative process, then
displays results at each iteration. The estimate column shows the value of b��l� at each iteration. As expected, its value at
iteration 1 is the same as shown for the random-effects method in the meta-analysis panel, and then decreases in successive
iterations as values are trimmed from the data. Column Tn reports the Tn statistic, column � to trim reports the successive

estimates bk�l�� and column diff reports the sum of the absolute differences in signed ranks between successive iterations. The
algorithm stops when diff is zero.

metatrim finishes with a call to program meta to report an analysis of the trimmed and filled data. Observe that there
are now 36 studies, composed of the n � 29 observed studies plus the additional bk� � 7 imputed studies. Also note that the
estimate of b� reported as the random effects pooled estimate for the 36 studies is not the same as the value b���� shown in
the fifth (and final) line of the iteration panel. These values usually differ when the random-effects model is used (because the
addition of imputed values change the estimate of ��) but are identical always when the fixed-effects model is used.

In summary, metatrim adds 7 “missing” studies to the dataset, moving the random-effects summary estimate from
b� � 0.716� ��� CI: � 0.595� 0.837 � to b� � 0.655� ��� CI: � 0.531� 0.779 �. The new estimate, though slightly lower, remains
statistically significant; correction for publication bias does not change the overall interpretation of the dataset. Addition of
“missing” studies results in an increased variance between studies, the estimate rising from 0.021 to 0.031, and increased evidence
of heterogeneity in the dataset, p � 0.118 in the observed data versus p � 0.054 in the filled data. As expected, when the
trimmed and filled dataset is analyzed with the publication bias tests of Begg and Mazumdar and Egger et al. (not shown),
evidence of publication bias is no longer observed (p � 0.753 and p � 0.690, respectively).

The funnel plot (Figure 1), requested via the funnel option, graphically shows the final filled estimate of � (as the horizontal
line) and the augmented data (as the points), along with pseudo confidence-interval limits intended to assist in visualizing the
funnel. The plot indicates the imputed data by a square around the data symbol. The filled dataset is much more symmetric than
the original data and the plot shows no evidence of publication bias.

Fil led funnel plot with pseudo 95% confidence l imits
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Figure 1. Funnel plot for analysis of Cottingham and Hunter data.

Additional options that can be specified include print to show the weights, study estimates and confidence intervals for
the filled data set, eform to request that the results be reported in exponentiated form in the final meta-analysis and in the
print option be reported in exponentiated form (this is useful when the data represent odds ratios or relative risks), graph to
graphically display the study estimates and confidence intervals for the filled data set, and save�filename� to save the filled data
in a separate Stata datafile.

Remarks

The Duval and Tweedie method is based on the observation that an unbiased selection of studies that estimate the same
thing should be symmetric about the underlying common effect (at least within sampling error). This implies an expectation that
the number of studies, and the magnitudes of those studies, should also be roughly equivalent both above and below the common
effect value. It is, therefore, reasonable to apply a nonparametric approach to test these assumptions and to adjust the data until
the assumptions are met. The price of the nonparametric approach is, of course, lower power (and a concomitant expectation
that one may under-adjust the data).
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Duval and Tweedie use the symmetry argument in a somewhat roundabout way, choosing to first trim extreme positive
studies until the remaining studies meet symmetry requirements. This makes sense when the studies are subject only to publication
bias, since trimming should preferably toss out the low-weight, but extreme studies. Nonetheless, if other biases affect the data,
in particular if there is a study that is high-weight and extremely positive relative to the remainder of the studies, then the method
could fail to function properly. The user must remain alert to such possibilities.

Duval and Tweedie’s final step—filling in imputed reflections of the trimmed studies—has no effect on the final trimmed
point estimate in a fixed effects analysis but does cause the confidence interval of the estimate to be smaller than that from the
trimmed or original data. One could question whether this “increased” confidence is warranted.

The random-effects situation is more complex, as both the trimmed point estimate and confidence interval width are affected
by filling, with a tendency for the filled data to yield a point estimate between the values from the original and trimmed data.
When the random-effects model is used, the confidence interval of the filled data is typically smaller than that of either the
trimmed or original data.

Experimentation suggests that the Duval and Tweedie method trims more studies than may be expected; but because of
the increase in precision induced by the imputation of studies during filling, changes in the “significance” of the results occur
less often than expected. Thus the two operations (trimming, which reduces the point estimate, and filling, which increases the
precision) seem to counter each other.

Another phenomenon noted is a tendency for the heterogeneity of the filled data to be greater than that of the original data.
This suggests that the most likely studies to be trimmed and filled are those that are most responsible for heterogeneity. The
generality of this phenomenon and its impact on the analysis have not been investigated.

Duval and Tweedie provide a reasonable development based on accepted statistics; nonetheless, the number and the
magnitude of the assumptions required by the method are substantial. If the underlying assumptions hold in a given dataset,
then, as with many methods, it will tend to under- rather than over-correct. This is an acceptable situation in my view (whereas
“over-correction” of publication bias would be a critical flaw).

This author presents the program as an experimental tool only. Users must assess for themselves both the amount of
correction provided and the reasonableness of that correction. Other tools to assess publication bias issues should be used in
tandem. metatrim should be treated as merely one of an arsenal of methods needed to fully assess a meta-analysis.

Saved Results

metatrim does not save values in the system S # macros, nor does it return results in r��.

Note

The command meta (Sharp and Sterne 1997, 1998) should be installed before running metatrim.
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Abstract. Meta-analysis of diagnostic test accuracy presents many challenges.
Even in the simplest case, when the data are summarized by a 2 × 2 table from
each study, a statistically rigorous analysis requires hierarchical (multilevel) models
that respect the binomial data structure, such as hierarchical logistic regression.
We present a Stata package, metandi, to facilitate the fitting of such models in
Stata. The commands display the results in two alternative parameterizations and
produce a customizable plot. metandi requires either Stata 10 or above (which has
the new command xtmelogit), or Stata 8.2 or above with gllamm installed.

Keywords: st0163, metandi, metandiplot, diagnosis, meta-analysis, sensitivity and
specificity, hierarchical models, generalized mixed models, gllamm, xtmelogit, re-
ceiver operating characteristic (ROC), summary ROC, hierarchical summary ROC

1 Introduction

There are several existing user-written commands in Stata that are intended primarily
for meta-analysis (see Sterne et al. [2007] for an overview). There is increasing interest in
systematic reviews and meta-analyses of data from diagnostic accuracy studies (Deeks
2001b; Devillé et al. 2002; Tatsioni et al. 2005; Gluud and Gluud 2005; Mallett et al.
2006; Gatsonis and Paliwal 2006), which presents many additional challenges compared
to more traditional meta-analysis applications, such as controlled trials. In particu-
lar, diagnostic accuracy cannot be adequately summarized by one measure; two mea-
sures are typically used, most often sensitivity and specificity or, alternatively, posi-
tive and negative likelihood ratios, and the two are correlated (Deeks 2001a). Meta-
analysis of diagnostic accuracy therefore requires different and more complex methods
than traditional meta-analysis applications, even in the simplest situation where the
data from each primary study are summarized as a 2 × 2 table of test results against
true disease status, both of which have been dichotomized. In addition, substantial
between-study heterogeneity is commonplace, and the models must account for this
(Lijmer, Bossuyt, and Heisterkamp 2002).

Several methods of meta-analyzing diagnostic accuracy data have been proposed, of
which two are statistically rigorous: the hierarchical summary receiver operating charac-
teristic (HSROC) model (Rutter and Gatsonis 2001) and the bivariate model (Reitsma et
al. 2005). In the absence of covariates, these turn out to be different parameterizations
of the same model (Harbord et al. 2007; Arends et al. 2008).

c© 2009 StataCorp LP st0163
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The bivariate model can be fit in Stata by using the user-written gllamm command,
as pointed out by Coveney (2004). In Stata 10, the same model can be fit considerably
faster by using the new xtmelogit command. In either case, however, some data
preparation is required, the syntax is complex (particularly for gllamm), and the output
is not easy to interpret.

In this article, we present a new Stata command, metandi, to facilitate the fitting of
these hierarchical logistic regression models for meta-analysis of diagnostic test accuracy.
The metandi command fits the model and displays the estimates in both the HSROC and
bivariate parameterizations. metandi also displays some familiar summary measures
(sensitivity and specificity, positive and negative likelihood ratios, and the diagnostic
odds ratio). However, these simple summary measures fail to describe the expected
trade-off between sensitivity and specificity, which is best illustrated graphically. We
have therefore included a command, metandiplot, to simplify the plotting of graphical
summaries of the fitted model, namely, the summary receiver operating characteristic
(SROC) curve and the prediction region, and also to plot the summary point and its
confidence region.

The name metandi was chosen to indicate that, like metan (Bradburn, Deeks, and
Altman 1998), metandi takes the cell counts of 2× 2 tables as input but is designed for
meta-analysis of diagnostic accuracy.

metandi is not intended to provide a comprehensive package for diagnostic meta-
analysis by itself; other plots are also useful, such as forest plots showing within-study es-
timates and confidence intervals for sensitivity and specificity separately (Deeks 2001b).

Section 2 of this article introduces an example dataset, which we will use to illustrate
the commands. Section 3 then gives some background on methods and models that have
been proposed for meta-analysis of diagnostic accuracy. Sections 4 and 5 illustrate the
output of metandi and metandiplot on the example dataset. Section 6, which assumes
somewhat greater knowledge of both statistics and Stata, gives examples of the use
of predict after metandi for model checking and identification of influential studies.
Finally, sections 7 and 2, which are intended mainly as reference material, detail the
formal syntax of the commands, and the methods and formulas used.

2 Example: Lymphangiography for diagnosis of lymph
node metastasis

We shall illustrate the use of the metandi package on data from 17 studies of lym-
phangiography for the diagnosis of lymph node metastasis in women with cervical can-
cer. Lymphangiography is one of three imaging techniques in the meta-analysis of
Scheidler et al. (1997), and these data have been frequently used as an example for
methodological papers on meta-analysis of diagnostic accuracy (Rutter and Gatsonis
2001; Macaskill 2004; Reitsma et al. 2005; Harbord et al. 2007). These data are pro-
vided in the auxiliary file scheidler LAG.dta. The total number of patients in each
study ranges from 21 to 300. There is one observation in the dataset for each study.
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The data needed for meta-analysis consist of the number of true positives (tp), false
positives (fp), false negatives (fn), and true negatives (tn).

Figure 1 shows a SROC plot of these data, generated by the official Stata commands
given below. An SROC plot is similar to a conventional ROC plot (see, e.g., [R] roc) in
that it plots sensitivity (true-positive rate) against specificity (true-negative rate), but
here each symbol represents a different study rather than a different threshold within
the same study. It therefore makes no sense to connect the points with a line, but it can
be useful to indicate the size of each study by the symbol size. (It might be preferable
to use an ellipse or rectangle to separately indicate the number of people with [tp +
fn] and without [tn + fp] the disease of interest, but this is hard to achieve within the
current Stata graphics system.) By convention, the specificity is plotted on a reversed
scale (or equivalently, the false-positive rate is plotted on a conventional scale).

. use scheidler_LAG
(Lymphangiography for diagnosing lymph node metastases)

. generate sens = tp/(tp+fn)

. generate spec = tn/(tn+fp)

. label variable sens "Sensitivity"

. label variable spec "Specificity"

. local opts "xscale(reverse) xla(0(.2)1) yla(0(.2)1, nogrid) aspect(1) nodraw"

. scatter sens spec [fw=tp+fp+fn+tn], m(Oh) `opts´ name(sroccirc)

. scatter sens spec, mlabel(studyid) m(i) mlabpos(0) `opts´ name(sroclab)

. graph combine sroccirc sroclab, xsize(4.5) scale(*1.5)
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Figure 1. SROC plot of the lymphangiography data. Left panel: Studies indicated by
circles sized according to the total number of individuals in each study. Right panel:
Studies indicated by study ID numbers.



214 Meta-analysis of diagnostic accuracy

3 Models for meta-analysis of diagnostic accuracy

Several statistical methods for meta-analysis of data from diagnostic test accuracy stud-
ies have been proposed that account for the correlation between sensitivity and speci-
ficity (Moses, Shapiro, and Littenberg 1993; Rutter and Gatsonis 2001; Reitsma et al.
2005).

Moses, Shapiro, and Littenberg (1993) proposed a method of generating an SROC

curve by using simple linear regression. This method has frequently been used, but
the assumptions of simple linear regression are not met, and the method is therefore
approximate. There is also uncertainty as to the most appropriate weighting of the
regression (Walter 2002; Rutter and Gatsonis 2001).

Two more-complex but statistically rigorous approaches have been proposed that
overcome the limitations of the linear regression method: the HSROC model (Rutter
and Gatsonia 2001) and the bivariate model (Reitsma et al. 2005). Both approaches
are based on hierarchical models, i.e., both approaches involve statistical distributions
at two levels. At the lower level, they model the cell counts in the 2× 2 tables by using
binomial distributions and logistic (log-odds) transformations of proportions. Although
their motivation is distinct and they allow covariates to be added to the models in differ-
ent ways, it has been shown that the two models are equivalent when no covariates are
fit, as well as in certain models including covariates (Harbord et al. 2007; Arends et al.
2008).

3.1 HSROC model

The HSROC model (Rutter and Gatsonis 2001) assumes that there is an underlying
ROC curve in each study with parameters α and β that characterize the accuracy and
asymmetry of the curve. The 2×2 table for each study then arises from dichotomizing at
a positivity threshold, θ. The parameters α and θ are assumed to vary between studies;
both are assumed to have normal distributions as in conventional random-effects meta-
analysis. The accuracy parameter has a mean of Λ (capital lambda) and a variance of
σ2

α, while the positivity parameter θ has a mean of Θ (capital theta) and a variance of
σ2

θ . Because estimation of the shape parameter, β, requires information from more than
one study, it is assumed constant across studies. When no covariates are included in an
HSROC model, there are therefore five parameters: Λ, Θ, β, σ2

α, and σ2
θ .

3.2 Bivariate model

The bivariate model (Reitsma et al. 2005) models the sensitivity and specificity more
directly. It assumes that their logit (log-odds) transforms have a bivariate normal
distribution between studies. The logit-transformed sensitivities are assumed to have a
mean of μA and a variance of σ2

A, while the logit-transformed specificities have a mean
of μB and a variance of σ2

B . The trade-off between sensitivity and specificity is allowed
for by also including a correlation, ρAB , that is expected to be negative. The bivariate
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model, like the HSROC model, therefore has five parameters when no covariates are
included: μA, μB , σ2

A, σ2
B , and ρAB .

4 metandi output

The output from running metandi on the lymphangiography data is shown below (the
nolog option suppresses the iteration log and is used here merely to save space):

. use scheidler_LAG, clear
(Lymphangiography for diagnosing lymph node metastases)

. metandi tp fp fn tn, nolog

True positives: tp False positives: fp
False negatives: fn True negatives: tn

Meta-analysis of diagnostic accuracy

Log likelihood = -91.391372 Number of studies = 17

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Bivariate
E(logitSe) .7266321 .1544626 .4238909 1.029373
E(logitSp) 1.638955 .2505372 1.147911 2.129999

Var(logitSe) .1249622 .1306738 .0160943 .9702552
Var(logitSp) .8232703 .4055446 .3135009 2.161952
Corr(logits) .2387873 .4557706 -.6067877 .8308258

HSROC
Lambda 2.187142 .3086554 1.582189 2.792096
Theta .0705698 .3271092 -.5705525 .7116921
beta .9426366 .5764601 1.64 0.102 -.1872044 2.072478

s2alpha .7946708 .5114529 .2250873 2.805586
s2theta .1220778 .1082908 .0214569 .6945553

Summary pt.
Se .6740658 .0339356 .6044139 .7367944
Sp .8373927 .0341147 .7591292 .8937849
DOR 10.65029 3.296352 5.806411 19.53509
LR+ 4.145361 .9181013 2.685598 6.398582
LR- .389225 .0452324 .3099427 .4887875

1/LR- 2.569208 .2985712 2.045879 3.226402

Covariance between estimates of E(logitSe) & E(logitSp) .0045838

The bivariate and HSROC parameter estimates are displayed along with their stan-
dard errors and approximate 95% confidence intervals in the standard Stata format. The
bivariate location parameters, μA and μB , are denoted by E(logitSe) and E(logitSp);
the variance parameters, σ2

A and σ2
B , are shown as Var(logitSe) and Var(logitSp);

and the correlation, σAB , is shown as Corr(logits). The HSROC parameters are de-
noted by using the notation of Rutter and Gatsonis (2001) given in section 3.1, spelling
out Greek letters with capital initials for the capital Greek letters Λ and Θ, and showing
σ2

α and σ2
θ as s2alpha and s2theta.
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z statistics and p-values are not given for most of the parameters because param-
eter values of zero do not correspond to null hypotheses of interest. The exception is
the HSROC shape (asymmetry) parameter, β (beta), where β = 0 corresponds to a
symmetric ROC curve in which the diagnostic odds ratio does not vary along the curve.

The output also gives summary values and confidence intervals for the sensitivity
(Se) and specificity (Sp) (back-transformed from E(logitSe) and E(logitSp)), as well
as values for the diagnostic odds ratio (DOR) and the positive and negative likelihood
ratios (LR+ and LR-) at the summary point. The summary likelihood ratios will not, in
general, be the same as would be obtained by first calculating the likelihood ratios for
each study and meta-analyzing these. Such an approach has been deprecated in favor of
the approach implemented here (Zwinderman and Bossuyt 2008). A summary value for
the inverse of the negative likelihood ratio (1/LR-) is also given, because larger values of
the inverse of the negative likelihood ratio indicate a more accurate test, and comparing
this with the positive likelihood ratio can indicate whether a positive or negative test
result has greater impact on the odds of disease.

Finally, the output shows the covariance between μ̂A and μ̂B . This is needed to draw
confidence and prediction regions, and is included to make it easier to do so in external
software, such as the Cochrane Collaboration’s Review Manager 5 (Nordic Cochrane
Centre 2007).

Technical note

On rare occasions, during model fitting, gllamm may report an error, such as “con-
vergence not achieved: try with more quadrature points” or (less transparently) “log
likelihood cannot be computed”. Increasing the number of integration points beyond
metandi’s default of 5 by using the nip() option (e.g., nip(7)) may resolve this.

5 metandiplot

The metandiplot command produces a graph of the model fit by metandi, which must
be the last estimation-class command executed. For convenience, the metandi command
has a plot option, which produces the same graph. If metandiplot is not followed by
a varlist, then the study-specific estimates (shown by the circles in figure 2) are not
included in the graph. The metandiplot command has options to alter the default
appearance of the graph or to turn off any of the plot elements. These options are not
available when using the plot option to metandi. metandiplot can be run many times
with different options without refitting the model with metandi.
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. metandiplot tp fp fn tn
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Figure 2. Plot of fitted model from metandiplot

The resulting graph (figure 2) shows the following summaries, together with circles
showing the individual study estimates:

• A summary curve from the HSROC model

• A summary operating point, i.e., summary values for sensitivity and specificity

• A 95% confidence region for the summary operating point

• A 95% prediction region (confidence region for a forecast of the true sensitivity
and specificity in a future study)

The default is to include all the summaries listed above, which can result in a rather
cluttered graph, so options are included to remove any of the elements; for example,
predopts(off) turns off the prediction region. See section 7.2 for more information
about metandiplot options.
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By default, the summary HSROC curve is displayed only for sensitivities and speci-
ficities at least as large as the smallest study-specific estimates if a varlist is included.

The shape of the prediction region is dependent on the assumption of a bivariate
normal distribution for the random effects and should therefore not be overinterpreted; it
is intended to give a visual representation of the extent of between-study heterogeneity,
which is often considerable.

6 predict after metandi

Many of Stata’s standard postestimation tools will not work after metandi or will not
work as expected, because metandi temporarily reshapes the data before fitting the
model.

The notable exception is predict, which can be used to obtain posterior predictions
(empirical Bayes estimates) of the sensitivity and specificity in each study (mu), as well
as various statistics that can be useful for detecting outliers (e.g., ustd) and influential
observations (cooksd).

The help file provides basic commands for examining diagnostics. We take the
opportunity here to provide slightly more customized displays.

Empirical Bayes estimates give the best estimate of the true sensitivity and specificity
in each study, and these estimates will be “shrunk” toward the summary point compared
with the study-specific estimates shown in figure 1.
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. predict eb
(option mu assumed; posterior predicted Se & Sp)

. metandiplot, addplot(scatter eb1 eb0, msymbol(o))
> legend(label(5 "Empirical Bayes"))
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Figure 3. Empirical Bayes estimates

Comparing figure 3 with figure 2 shows that the shrinkage is generally greater for
sensitivity than for specificity in this example, reflecting both the smaller variance of
sensitivity (on the logit scale) and the fact that most studies have fewer participants
with disease than without disease, leading to more precise estimates of specificity than
of sensitivity.

Cook’s distance is a measure of the influence of a study on the model parame-
ters and can be used to check for particularly influential studies. Cook’s distance is
calculated using gllapred and so is available in Stata 10 only if the gllamm option
was used with metandi. gllapred calculates Cook’s distance to measure influence on
all model parameters including the variance parameters (Skrondal and Rabe-Hesketh
2004, sec. 8.6.6). To check for outliers, standardized predicted random effects can be
interpreted as standardized study-level residuals.
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. metandi tp fp fn tn, gllamm nolog
(output omitted )

. predict cooksd, cooksd
(Cook´s distance may take a few seconds...)

. predict ustd_Se ustd_Sp, ustd

. local opts "mlabel(studyid) mlabpos(0) m(i) nodraw"

. scatter cooksd studyid,`opts´ name(cooksd)

. scatter ustd_Se ustd_Sp, xscale(rev) xla(, grid) xline(0) yline(0) `opts´
> name(ustd)

. graph combine cooksd ustd, xsize(5) scale(*1.5)
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Figure 4. Left panel: Cook’s distance. Right panel: Standardized residuals (standard-
ized predicted random effects).

Figure 4 shows both Cook’s distance and the standardized residuals. (The residual
corresponding to specificity has been plotted on a reversed axis to correspond with the
convention for ROC plots used in figure 1.) These two graphs are best read in com-
bination. Cook’s distance shows which studies are influential, while the standardized
residuals give some insight into why. According to Skrondal and Rabe-Hesketh (2004),
a typical cutpoint for declaring a value of Cook’s D to be “large” is four times the
number of parameters divided by the number of clusters (here studies). (Definitions of
Cook’s D differ, hence so does the cutpoint—the definition used by Stata in [R] regress
postestimation divides by the number of parameters.) Because there are five param-
eters in this model, this suggests a cutpoint of 20 divided by the number of studies
for interpreting Cook’s D after metandi, giving 20/17 ≈ 1.2 for the lymphangiography
meta-analysis. Here, study 1 is particularly influential, followed by study 3. Studies
1 and 3 have high standardized residuals for specificity, leading to influence on both
the mean and variance of logit-transformed specificity. Study 13 has a large (negative)
standardized residual for sensitivity but does not appear to be so influential as judged



R. M. Harbord and P. Whiting 221

by its Cook’s distance. Further investigation of the effect of individual studies on the
model could be undertaken by refitting the model and leaving out each study in turn.

7 Syntax and options for commands

7.1 The metandi command

Syntax

metandi tp fp fn tn
[
if
] [

in
] [

, plot gllamm force ip(g | m) nip(#)

nobivariate nohsroc nosummarypt detail level(#) trace nolog
]

by is allowed with metandi; see [D] by.

Options

plot requests a plot of the results on an SROC plot. This is a convenience option
equivalent to executing the metandiplot command after metandi with the same list
of variables, tp, fp, fn, and tn (and the same if and in qualifiers, if specified). Greater
control of the plot is available through the options of the metandiplot command
when issued as a separate command after metandi.

gllamm specifies that the model be fit using gllamm. This is the default in Stata 8 and
9, so the option is of use only in Stata 10, in which the model is fit using xtmelogit
by default.

force forces metandi to attempt to fit data where one or more studies have tp+fn = 0
(or tn + fp = 0), i.e., where there are no individuals that are positive (negative) for
the reference standard. Without this option, metandi exits with an error when such
data exist. Problems may be encountered in fitting such data, particularly when the
model is fit using xtmelogit. Sensitivity (specificity) cannot be estimated within
such studies, so they are not included in the plot produced by metandiplot.

ip(g | m) specifies the quadrature (numerical integration) method used to integrate out
the random effects: ip(g), the default, gives Cartesian product quadrature, while
ip(m) gives spherical quadrature, which is available in gllamm but not in xtmelogit.
Spherical quadrature can be more efficient, though its properties are less well known
and it can sometimes cause the adaptive quadrature step to take longer to converge.
See Rabe-Hesketh, Skrondal, and Pickles (2005).

nip(#) specifies the number of integration points used for quadrature. Higher values
should result in greater accuracy but typically at the expense of longer execution
times. Specifying too small a value can lead to convergence problems or even failure
of adaptive quadrature; if you receive the error “log likelihood cannot be computed”,
try increasing nip(). For Cartesian product quadrature, nip() specifies the num-
ber of points for each of the two random effects; the default is nip(5). For spher-
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ical quadrature, nip() specifies the degree, d, of the approximation; the default is
nip(9), and the only values currently supported by gllamm are 5, 7, 9, 11, and 15.
These defaults give approximately the same accuracy, because degree d for spherical
quadrature approximately corresponds in accuracy to (d + 1)/2 points per random
effect for Cartesian product quadrature (Rabe-Hesketh, Skrondal, and Pickles 2005,
app. B).

nobivariate, nohsroc, and nosummarypt suppress reporting of the bivariate param-
eter estimates, the HSROC parameter estimates, or the summary point estimates,
respectively.

detail displays the output of all gllamm or xtmelogit commands issued.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.7 Specifying the width
of confidence intervals.

trace adds a display of the current parameter vector to the iteration log.

nolog suppresses display of the iteration log.

7.2 The metandiplot command

Syntax

metandiplot
[
tp fp fn tn

] [
if
] [

in
] [

weight
] [

, notruncate level(#)

predlevel(numlist) npoints(#) subplot options addplot(plot)

twoway options
]

Options

notruncate specifies that the HSROC curve will not be truncated outside the region
of the data. By default, the HSROC curve is not shown when the sensitivity or
specificity is less than its smallest study estimate.

level(#) specifies the confidence level, as a percentage, for the confidence contour.
The default is level(95) or as set by set level; see [U] 20.7 Specifying the
width of confidence intervals.

predlevel(numlist) specifies the levels, as a percentage, for the prediction contour(s).
The default is one contour at the same probability level as the confidence region.
Up to five prediction contours are allowed.

npoints(#) specifies the number of points to use in drawing the outlines of the confi-
dence and prediction regions. The default is npoints(500).

subplot options, which are summopts(), confopts(), predopts(), curveopts(), and
studyopts(), control the display of the summary point, confidence contour, predic-
tion contour(s), HSROC curve, and study symbols, respectively. The options within
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each set of parentheses are simply passed through to the appropriate twoway plot.
Any of the plots can be turned off by specifying, for example, summopts(off).

addplot(plot) allows adding additional graph twoway plots to the graph; see [G] ad-
dplot option. For example, empirical Bayes predictions could be generated by using
predict after metandi and then added to the graph. See section 6.

twoway options are most of the options documented in [G] twoway options, including
options for titles, axes, labels, schemes, and saving the graph to disk. However, the
by() option is not allowed.

7.3 The predict command after metandi

Syntax

predict
[
type

]
newvarlist

[
if
] [

in
] [

, statistic
]

statistic description

mu posterior predicted (empirical Bayes) sensitivity and specificity;
the default

u posterior means (empirical Bayes predictions, BLUPs) of
random effects

sdu posterior standard deviations of random effects
ustd standardized posterior means of random effects
linpred linear predictor with empirical Bayes predictions plugged in:

linpred = xb + u
cooksd Cook’s distance for each study; available only when model was

fit using gllamm

Most of the above statistics require newvarlist to consist of two new variables to store
them: one for the statistic associated with sensitivity and one for the statistic associated
with specificity. If newvarlist contains only one newvar, the statistics associated with
sensitivity and specificity will be stored in newvar1 and newvar0, respectively. cooksd,
however, is computed once for each study and therefore requires only one newvar. See
section 6 for examples.

(Continued on next page)
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7.4 Saved results

metandi saves the following results in e():

Scalars
e(N) number of studies e(ll) log likelihood

Macros
e(cmd) metandi e(predict) program used to implement
e(tpfpfntn) names of tp fp fn tn predict

variables e(properties) b V
e(cmd) metareg

Matrices
e(b) bivariate coefficient vector e(V) variance–covariance matrix of
e(b hsroc) HSROC coefficient vector the bivariate estimators

e(V hsroc) variance–covariance matrix of
the HSROC estimators

Functions
e(sample) marks estimation sample

8 Methods and formulas

It is possible to use routines for linear mixed models to fit an approximate version
of the bivariate model obtained by using empirical logit transforms of the estimated
sensitivity and specificity in each study together with their estimated standard errors
(Reitsma et al. 2005). However, the small cell counts common in diagnostic accuracy
studies can lead to poor performance of such approximations. Generalized mixed mod-
els, in particular, hierarchical (mixed-effects) logistic regression, can handle the binomial
nature of the data directly and are therefore preferable (Chu and Cole 2006; Riley et al.
2007).

Such models are complex to fit, however, because they require numerical integration
(quadrature) to integrate out the random effects. metandi uses gllamm or xtmelogit
to fit the bivariate model by using adaptive quadrature, then transforms the parameter
estimates to those of the HSROC model by using the delta method (Cox 1998).

Because the bivariate model can sometimes prove difficult to fit, some care has been
taken to provide good starting values. First, two separate univariate models are fit
to sensitivity and specificity. These provide excellent starting values for the two mean
and two variance parameters of the bivariate model. A reasonable starting value for
the correlation parameter is obtained from the correlation between the posterior means
(empirical Bayes predictions) of the two univariate models.

We now give the mathematical forms of the bivariate and HSROC models in the
absence of covariates. See Rutter and Gatsonis (2001); Reitsma et al. (2005); and Har-
bord et al. (2007) for information on the models with covariates, which are not currently
supported by metandi.
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8.1 The bivariate model

Following Reitsma et al. (2005), we denote the sensitivity in the ith study by pAi and
the specificity by pBi, and base analysis on their logit transforms:

μAi = logit(pAi)

μBi = logit(pBi)

(We use the letter μ where Reitsma et al. (2005) used θ to avoid a clash of notation
with the HSROC model defined in the next section.)

The bivariate model is a random-effects model in which the logit transforms of the
true sensitivity and true specificity in each study have a bivariate normal distribu-
tion across studies, thereby allowing for the possibility of correlation between them
(Reitsma et al. 2005):

(
μAi

μBi

)
∼ N

{(
μA

μB

)
,ΣAB

}
with ΣAB =

(
σ2

A σAB

σAB σ2
B

)

8.2 The HSROC model

The HSROC model (Rutter and Gatsonis 2001) was originally formulated in terms of the
probability, πij , that a patient in study i with disease status j has a positive test result,
where j = 0 for a patient without the disease and j = 1 for a patient with the disease.
Therefore, sensitivity pAi = πi1 and specificity pBi = 1 − πi0.

The HSROC model for study i takes the form

logit(πij) = (θi + αiXij) exp(−βXij) (1)

where Xij = −1/2 for those without disease (j = 0) and +1/2 for those with disease
(j = 1). Both θi and αi are allowed to vary between studies. In the model without
covariates fit by metandi, they are assumed to have independent normal distributions
with θi ∼ N(Θ, σ2

θ) and αi ∼ N(Λ, σ2
α). The model is nonlinear in the parameter β

and therefore cannot be fit in gllamm directly.

We can rewrite (1) as two separate equations for the logit transforms of sensitivity
pAi and specificity pBi, thus connecting to the parameters μAi and μBi of the bivariate
model above:

μAi = logit(pAi) = b−1(θi +
1
2
αi)

μBi = logit(pBi) = −b(θi − 1
2
αi)

This tells us that μAi and μBi are linear combinations of two random variables,
θi and αi, with independent normal distributions, and that they therefore must have a
bivariate normal distribution. Some straightforward further algebra gives the explicit re-
lationship between the parameters of the two models (Harbord et al. 2007; Arends et al.
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2008), enabling HSROC parameter estimates to be obtained by transforming the bivari-
ate parameter estimates. Standard errors for the transformed parameter estimates are
obtained by the delta method, which gives the same standard errors that would be ob-
tained from standard maximum-likelihood methods if the HSROC model were fit directly
(Cox 1998).

8.3 Methods and formulas for metandiplot

HSROC curve

The HSROC model gives rise to an SROC curve by allowing the threshold parameter, θi,
to vary while holding the accuracy parameter, αi, fixed at its mean, Λ. The expected
sensitivity for a given specificity is then given by (Rutter and Gatsonis 2001; Macaskill
2004)

logit(sensitivity) = Λe−β/2 − e−β logit(specificity)

Bivariate confidence and prediction regions

Confidence and prediction regions in SROC space can be constructed by using the esti-
mates from the bivariate model (Reitsma et al. 2005; Harbord et al. 2007). An elliptical
joint confidence region for μA and μB is most easily specified by using a parametric rep-
resentation (Douglas 1993)

μA = μ̂A + sA c cos t (2)

μB = μ̂B + sB c cos(t + arccos r) (3)

where sA and sB are the estimated standard errors of μ̂A and μ̂B , r is the estimate of
their correlation, and varying t from 0 to 2π generates the boundary of the ellipse. The
constant c has been called the boundary constant of the ellipse (Alexandersson 2004);
c =

√
2f2,n−2;α, where n is the number of studies and f2,n−2;α is the upper 100α% point

of the F distribution with degrees of freedom 2 and n − 2 (Douglas 1993; Chew 1966).
This ellipse is then back-transformed to conventional ROC space to give a confidence
region for the summary operating point.

A prediction region giving the region that has a given probability (e.g., 95%) of
including the true sensitivity and specificity of a future study is generated similarly.
The covariance matrix for the true logit sensitivity and logit specificity in a future
study is

ΣAB + Var
(

μ̂A

μ̂B

)

In practice, both terms are estimated by fitting the model to the data. The parameters
sA, sB , and r in (2) and (3) can then be replaced by the corresponding quantities derived
from this covariance matrix to give the prediction ellipse in logit ROC space, which is
then back-transformed to a prediction region for the true sensitivity and specificity of
a future study in conventional ROC space.
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8.4 Methods and formulas for predict

If metandi fit the model by using gllamm, then predict after metandi uses gllapred;
see Rabe-Hesketh, Skrondal, and Pickles (2004). If metandi fit the model by using
xtmelogit, predict after metandi uses the prediction facilities of xtmelogit; see
[XT] xtmelogit postestimation.
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Abstract. This paper presents a command, glst, for trend estimation across
different exposure levels for either single or multiple summarized case–control,
incidence-rate, and cumulative incidence data. This approach is based on con-
structing an approximate covariance estimate for the log relative risks and esti-
mating a corrected linear trend using generalized least squares. For trend analysis
of multiple studies, glst can estimate fixed- and random-effects metaregression
models.
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1 Introduction

Epidemiological studies often assess whether the observed relationship between increas-
ing (or decreasing) levels of exposure and the risk (or odds) of diseases follows a linear
dose–response pattern. Methods for trend estimation of single and multiple summarized
dose–response studies (Berlin, Longnecker, and Greenland 1993) are particularly useful
when the full original data are not available.

To demonstrate these methods, our paper uses different types of dose–response data
arising from published case–control, incidence-rate, and cumulative incidence data (also
see [ST] epitab). Summarized data are typically reported as a series of dose-specific
relative risks, with one category serving as the common referent group. The term
relative risk (RR) will be used as a generic term for the risk ratio (cumulative incidence
data), rate ratio (incidence-rate data), and odds ratio (case–control data).

Table 1 shows a summary of case–control data investigating the association be-
tween the consumption of alcohol and the risk of breast cancer, first presented by
Rohan and McMichael (1988), in which it appears that risk of breast cancer increases
with increasing levels of alcohol intake.

c© 2006 StataCorp LP st0096
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Table 1: Case–control data on alcohol and breast cancer risk (Rohan and McMichael
1988)

Alcohol Assigned No. of No. of Total Adjusted RR

(g/d) dose (g/d) cases controls subjects (95% CI)

0 0 165 172 337 1.0 (Referent)

<2.5 2 74 93 167 0.80 (0.51–1.27)

2.5−9.3 6 90 96 186 1.16 (0.73–1.85)

>9.3 11 122 90 212 1.57 (0.99–2.51)

Table 2 shows a summary of incidence-rate data investigating the association be-
tween the long-term intake of dietary fiber and risk of coronary heart disease among
women, first presented by Wolk et al. (1999), which supports the hypothesis that higher
fiber intake reduces the risk of coronary heart disease.

Table 2: Incidence-rate data on fiber intake and coronary heart disease risk (Wolk et al.
1999)

Quintile of Assigned dose No. of Person- Adjusted RR

fiber intake (g/d) cases years (95% CI)

1 11.5 148 134, 707 1.0 (Referent)

2 14.3 127 133, 824 0.98 (0.77–1.24)

3 16.4 114 130, 654 0.92 (0.71–1.18)

4 18.8 107 124, 522 0.87 (0.66–1.15)

5 22.9 95 117, 808 0.77 (0.57–1.04)

Table 3 shows a summary of cumulative incidence data investigating the association
between high-fat dairy food intake and risk of colorectal cancer, first presented by
Larsson, Bergkvist, and Wolk (2005), which suggests that more servings per day of high-
fat dairy food reduces the risk of colorectal cancer.

(Continued on next page)
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Table 3: Cumulative incidence data on high-fat dairy food and colorectal cancer risk
(Larsson, Bergkvist, and Wolk 2005)

High-fat dairy Assigned dose No. of Total Adjusted RR

(servings/d) (servings/d) cases subjects (95% CI)

<1.0 0.5 110 8,103 1.0 (Referent)

1.0− <2.0 1.5 212 17,538 0.75 (0.60–0.96)

2.0− <3.0 2.5 211 15,304 0.74 (0.58–0.95)

3.0− <4.0 3.5 132 9,078 0.68 (0.52–0.90)

≥4.0 6.5 133 10,685 0.59 (0.44–0.79)

For each of these summarized tables, we have adjusted relative risks and confidence
limits for each nonreference exposure level. The usual approach to trend estimation,
namely, the expected change of the log relative risks for a unit change of the exposure
level, is to fit a linear regression through the origin, where the response variable is
the log relative risks, the assigned dose is the covariate, and the log relative risks are
weighted by the inverse of their variances. This method is known as weighted least-
squares (WLS) regression (see [R] vwls), and it assumes that the log relative risks are
independent—an assumption that is never satisfied in practice. The log relative risks
are correlated given that they are estimated using a common referent group, and this
standard approach underestimates the variance of the slope (Greenland and Longnecker
1992). This problem can be particularly relevant in a meta-analysis of summarized dose–
response data where each study slope (trend) is weighted by the inverse of the variance
(Shi and Copas 2004).

An efficient estimation method for the slope of a single study is therefore proposed
and implemented in the command glst, as described by Greenland and Longnecker
(1992). This method is then incorporated in the estimation of fixed and random-effects
metaregression models for the analysis of multiple studies.

The rest of the article is organized as follows: section 2 introduces the dose–response
model and the estimation method; section 3 describes the syntax of the command glst;
section 4 presents some practical examples based on published data; section 5 compares
the corrected and uncorrected methods for trend estimation; and section 6 contains final
comments.

2 Method

2.1 Log-linear dose–response model for a single study

It is possible to analyze the shape of the dose–response relationship between reported
log relative risks and the exposure levels by estimating a log-linear dose–response regres-
sion model (Greenland and Longnecker 1992; Berlin, Longnecker, and Greenland 1993;
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Shi and Copas 2004). Assuming that the exposure variable takes value 0 in the reference
category, the estimated log relative risk in the reference category is set to zero (log 1);
therefore, no intercept models are used. The matrix notation is

y = Xβ + e (1)

y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

...
yi

...
yn

⎤
⎥⎥⎥⎥⎥⎥⎦

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 x12 . . . x1p

...
...

...
xi1 xi2 xip

...
...

...
xn1 xn2 . . . xnp

⎤
⎥⎥⎥⎥⎥⎥⎦

β =

⎡
⎢⎣

β1

...
βp

⎤
⎥⎦ e =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1

...
εi

...
εn

⎤
⎥⎥⎥⎥⎥⎥⎦

where y is an n × 1 vector of (reported) estimated log relative risks; i = 1, 2, . . . , n
identifies nonreference exposure levels; X is an n × p matrix of nonstochastic covari-
ates, where the first column, denoted by xi1, identifies the exposure variable, and the
remaining p−1 columns, for instance, may represent transformations of xi1; β is a p×1
vector of unknown regression coefficients; and e is an n × 1 vector of random errors,
with expected value E(e) = 0 and variance–covariance matrix Cov(e) = E(ee′) equal
to the following symmetric matrix given by

Cov(e) = Σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ11

...
. . .

σi1 σij

...
. . .

σn1 . . . σnj . . . σnn

⎤
⎥⎥⎥⎥⎥⎥⎦

Thus the response variable y has expected value E(y) = Xβ and covariance matrix
Cov(y) = Σ.

2.2 Generalized least squares

We use generalized least squares (GLS) to efficiently estimate the β vector of regression
coefficients in (1). Assuming that the variance–covariance matrix of e is Cov(e) = Σ,
this method involves minimizing (y − Xβ)′Σ−1(y − Xβ) with respect to β. Suppose
initially that the variance–covariance matrix Σ is known. In matrix notation, the
resulting estimator b of the regression coefficients β is

b = (X′Σ−1X)−1X′Σ−1y (2)

and the estimated covariance matrix v of b is

v = Ĉov(b) = (X′Σ−1X)−1 (3)
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A remarkable property of the GLS estimator is that for any choice of Σ, the GLS estimate
of β is unbiased; that is, E(b) = β.

GLS estimation imposes no distributional assumption for the random errors, e,
whereas maximum likelihood (ML) estimation assumes a distribution, and the log-
likelihood of the sample observed is then maximized. Under the assumption that random
errors are normally distributed with zero mean and variance–covariance matrix Σ, i.e.,
e ∼ N(0, Σ), the log-likelihood function can be written as the following:

l = −n

2
log(2π) − 1

2
log |Σ| − 1

2

{(
y − Xβ

)′
Σ−1

(
y − Xβ

)}
(4)

Maximizing (4) with respect to β is equivalent to solving ∂l/∂β = 0. The solution is
the ML estimator of β, which under the normality assumption turns out to be the same
as the GLS estimator given by (2).

2.3 Statistical inference

To construct confidence intervals and tests of hypotheses about β, we can make direct
use of the GLS estimate, b, and its estimated covariance matrix, v. When the normality
assumption of the random error e is introduced, the distributional properties of y and
functions of y follow at once.

Because y ∼ N(Xβ,Σ), the vector b, which is a linear function of y, is therefore
approximately normally distributed b ∼ N(β,v).

A test of the null hypothesis, H0: bj = 0 versus HA: bj �= 0, can be based on the
following Wald statistic,

Z =
bj√vj

where bj denotes the jth element of the vector b and vj denotes the jth diagonal
element of v, with j = 1, 2, . . . , p. The Z statistic can be compared with a standard
normal distribution.

Wald test–type confidence intervals of β are computed using the large-sample ap-
proximation, the z distribution rather than the t distribution, because the estimates,
b, are based on a collection of n presumably large groups of subjects rather than n
subjects (Grizzle, Starmer, and Koch 1969; Greenland 1987).

2.4 Covariances

In summarized dose–response data, the log relative risks, y, are estimated using a
common reference group. Therefore, the elements of y are not independent and the
off-diagonal elements of Σ are not zero (Greenland and Longnecker 1992). This section
describes the method and formulas needed to estimate all the elements of Σ.
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The diagonal element σii of Σ, the variance of the log relative risk yi, is estimated
from the normal theory–based confidence limits

σii =
[{

log(ub) − log(lb)
}
/(2 × zα/2)

]2
(5)

where ub and lb are, respectively, the upper and lower bounds of the reported relative
risks, exp(yi), and zα/2 denotes the (1 − α/2)-level standard normal deviate (e.g., use
1.96 for 95% confidence interval).

Following the method proposed by Greenland and Longnecker (1992), one way to
estimate the off-diagonal elements σij of Σ, with i �= j, is to assume that the correla-
tions between the unadjusted log relative risks are approximately equal to those of the
adjusted log relative risks. Here, besides the log relative risks, their variances, and ex-
posure levels, we also need to know for each exposure level the number of cases and the
number of controls for case–control data (table 4), or the number of cases for incidence-
rate data (table 5), or the number of cases and noncases for cumulative incidence data
(table 6)—information usually available from the publication.

Table 4: Summary of case–control data

Exposure levels

x01 x11 . . . xi1 . . . xn1 Total

Cases A0 A1 . . . Ai . . . An M1 =
Pn

i=0 Ai

Controls B0 B1 . . . Bi . . . Bn M0 =
Pn

i=0 Bi

Total N0 N1 . . . Ni . . . Nn M1 + M0

The off-diagonal elements of Σ can be estimated using the following three-step pro-
cedure, where formulas used for steps 1 and 2 change according to the study type:
case–control, incidence-rate, or cumulative incidence data.

For case–control data, where we model log odds ratios, the off-diagonal elements σij

of Σ are computed as follows:

1. Fit cell counts Ai and Bi as modeled in table 4 (which has margin M1 and Ni),
such that

(Ai × B0)/(A0 × Bi) = exp(yi) (6)

where Ai is the fitted number of cases and Bi is the fitted number of controls at
each exposure level (see iterative algorithm described in Greenland and Longnecker
1992, appendix 2).
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2. For i �= j, estimate the asymptotic correlation, rij , of yi and yj by

rij = s0/(sisj)1/2 (7)

where s0 = (1/A0 + 1/B0) and si = (1/Ai + 1/Bi + 1/A0 + 1/B0).

3. Estimate the off-diagonal elements, σij , of the asymptotic covariance matrix Σ by

σij = rij × (σiσj)1/2

where σi and σj are the variances of yi and yj , estimated using (5).

The above method can be easily extended to the analysis of incidence-rate and
cumulative incidence data, upon redefinition of terms in (6) and (7).

Table 5: Summary of incidence-rate data

Exposure levels
x01 x11 . . . xi1 . . . xn1 Total

Cases A0 A1 . . . Ai . . . An M1 =
∑n

i=0 Ai

Person-time N0 N1 . . . Ni . . . Nn M0 =
∑n

i=0 Ni

For instance, for incidence-rate data, where we model log incidence-rate ratios, fit cell
counts Ai as modeled in table 5 such that (Ai × N0)/(A0 × Ni) = exp(yi). In (7), we
redefine s0 = (1/A0) and si = (1/Ai + 1/A0).

Table 6: Summary of cumulative incidence data

Exposure levels

x01 x11 . . . xi1 . . . xn1 Total

Cases A0 A1 . . . Ai . . . An M1 =
Pn

i=0 Ai

Noncases B0 B1 . . . Bi . . . Bn M0 =
Pn

i=0 Bi

Total N0 N1 . . . Ni . . . Nn M1 + M0

Then, for cumulative incidence data, where we model log risk ratios, fit cell counts
Ai as modeled in table 6 such that (Ai × N0)/(A0 × Ni) = exp(yi). In (7), again s0

and s1 need to be computed differently: s0 = (1/A0 − 1/N0) and si = (1/Ai − 1/Ni +
1/A0 − 1/N0).

2.5 Heterogeneity

The analysis of the estimated residual vector ê = y − Xb is useful to evaluate how
close reported and fitted log relative risks are at each exposure level. A statistic for the
goodness of fit of the model is
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Q = (y − Xb)′Σ−1(y − Xb) (8)

where Q has approximately, under the null hypothesis that the fitted model is correct, a
χ2 distribution with n− p degrees of freedom. If the p-value derived from this statistic
is small, we may infer that there is some problem with the model; e.g., perhaps het-
erogeneity is present or there is some unaccounted-for bias. If, however, the p-value is
large, we can conclude only that the test did not detect a problem with the model, not
that there is no problem. The Q statistic (like most fit statistics) has low power; i.e.,
its sensitivity to model problems is limited.

2.6 Log-linear dose–response model for multiple studies

The method discussed in the previous section can be applied to estimate the underlying
trend from multiple summarized data. When dealing with multiple studies and multiple
exposure levels, a more flexible method of trend estimation requires pooling the study
data before estimating the dose–response model (Greenland and Longnecker 1992).

In a meta-analysis of dose–response studies, heterogeneity means that the shape or
slope of the dose–response relationship varies among studies (Berlin, Longnecker, and
Greenland 1993). The pool-first method increases the number of the log relative risks
and dose values available for the analysis and it allows either to get a better fit of the
dose–response relationship, by including fractional polynomials and splines in X, or to
identify sources of heterogeneity across studies, by including effect modifiers in X.

Fixed-effects dose–response metaregression model

Let yk be the nk × 1 response vector and let Xk be the nk × p covariates matrix for
the kth study, with k = 1, 2, . . . , S. The number of nonreference exposure levels, nk, for
the kth study might vary among the S studies. We pool the data by concatenating the
matrices yk and Xk

y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1
...

yk
...

yS

⎤
⎥⎥⎥⎥⎥⎥⎦

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

X1

...
Xk

...
XS

⎤
⎥⎥⎥⎥⎥⎥⎦

so the outcome y will be an n× 1 vector, where n =
∑S

k=1 nk, and the linear predictor
X will be an n × p matrix.

Using the pool-first method, the log-linear model

y = Xβ + e (9)
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becomes a fixed-effects dose–response metaregression model, where now the vector of
random errors, e, has expected value E(e) = 0 and covariance Cov(e) = E(ee′) equal
to the following symmetric n × n block-diagonal matrix,

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Σ1

...
. . .

0 Σk

...
. . .

0 . . . 0 . . . ΣS

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

where Σk is the nk ×nk estimated covariance matrix for the kth study. We assume that
the log relative risks are correlated within each study but uncorrelated across different
studies.

The GLS estimators are given by (2) and (3), where the variance–covariance matrix
is now given by (10). The summary slope (trend) across studies is a weighted average
of each study slope with weighting matrix given by the inverse of Σ.

A test for heterogeneity is again given by (8), where the variance–covariance matrix
is given by (10). The Q statistic has approximately, under the null hypothesis, a χ2

distribution with n − p degrees of freedom.

The assumption implicit in a fixed-effects metaregression model is that each study is
estimating the same underlying trend. If heterogeneity is detected then it means that we
could fit a better dose–response model, namely, one closer to the observed log relative
risks, by either including in the linear predictor transformations of the dose variable
and/or interaction terms between exposure dose levels and additional covariates, such
as the study design. If important residual heterogeneity is still present after accounting
for all known effect modifiers, a random-effect metaregression dose–response model
will be necessary to estimate a summary trend across studies (Berlin, Longnecker, and
Greenland 1993).

Random-effects dose–response metaregression model

We extend the fixed-effect dose–response model (9) to incorporate residual heterogeneity
by including an additive random effect

y = Xβ + Zη + e

where Z is an n × 1 vector containing the dose variable, first column of X, and η is
a random effect with expected value E(η) = 0 and variance E(ηη′) = τ2, and the
random variables η and e are independent. The τ2 represents a between-study variance
component and quantifies the amount of spread about an overall slope (trend) of the
dose variable in the reference category of all covariates specified in X. We estimate the
between-study variance using the moment estimator
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τ̂2 =
Q − (n − p)

tr(Σ−1) − tr{Σ−1X(X′Σ−1X)−1X′Σ−1}
where tr denotes the trace of a matrix. A revised variance–covariance matrix, Σ, is
obtained by replacing the matrices Σk = Σk + τ̂2ZkZ′

k in the block diagonal matrix
(10). The revised matrix Σ is plugged into the GLS estimators b and v, defined by
(2, 3), and into the Q statistic, defined by (8). To get a fully efficient estimator, this
procedure is repeated until the difference between successive estimates of τ̂2 is less than
10−5. Whenever τ̂2 is negative, because Q < n−p, it is set to zero. The above iterative
GLS method is approximately equivalent to first estimating the slope for each study and
then pooling the slopes with a random-effects model (DerSimonian and Laird 1986).

3 The glst command

The estimation command glst is written for Stata 9.1, and it uses several inline Mata
functions (see [M-5] intro).

3.1 Syntax of glst

glst depvar dose
[
indepvars

] [
if
] [

in
]
, se(stderr) cov(n cases)

[ [
cc | ir | ci ]

pfirst(id study) random level(#) eform
]

where depvar, the outcome variable, contains log relative risks; dose, a required covari-
ate, contains the exposure levels; and indepvars may contain other covariates, such as
transformations of doses or interaction terms.

3.2 Options

se(stderr) specifies an estimate of the standard error of depvar. se() is required.

cov(n cases) specifies the variables containing the information required to fit the co-
variances among correlated log relative risks. At each exposure level, according to
the study type, n is the number of subjects (controls plus cases) for case–control
data (cc); or the total person-time for incidence-rate data (ir); or the total number
of persons (cases plus noncases) for cumulative incidence data (ci). The variable
cases contains the number of cases at each exposure level.

cc specifies case–control data. It is required for trend estimation of a single study unless
the option pfirst(id study) is specified.

ir specifies incidence-rate data. It is required for trend estimation of a single study
unless the option pfirst(id study) is specified.

ci specifies cumulative incidence data. It is required for trend estimation of a single
study unless the option pfirst(id study) is specified.
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pfirst(id study) specifies the pool-first method with multiple summarized studies.
The variable id is a numeric indicator variable that takes the same value across
correlated log relative risks within a study. The variable study must take value 1
for case–control, 2 for incidence-rate, and 3 for cumulative incidence study. Within
each group of log relative risks, the first observation is assumed to be the referent.

random specifies the iterative generalized least squares method to estimate a random-
effect metaregression model. Between-study variability of the dose coefficient is
estimated with the moment estimator.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

eform reports coefficient estimates as exp(b) rather than b. Standard errors and confi-
dence intervals are similarly transformed.

3.3 Saved results

glst saves in e():

Scalars
e(N) number of observations e(df gf) goodness-of-fit degrees of
e(chi2) model χ2 statistic freedom
e(ll) log likelihood e(chi2 gf) goodness-of-fit test
e(tau2) between-study variance τ2 e(S) number of studies
e(df m) model degrees of freedom

Macros
e(cmd) glst e(properties) b V

e(depvar) name of dependent variable

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of

e(Sigma) bΣ matrix the estimators

Functions
e(sample) marks estimation sample

4 Examples

4.1 Case–control data: Alcohol and breast cancer risk

Consider the case–control data shown in table 1 on alcohol and breast cancer (Rohan
and McMichael 1988). We use the dataset containing the summarized information,
and we calculate the standard errors of the log relative risks from the reported 95%
confidence intervals using (5).
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. use cc_ex

. gen double se = (logub - loglb)/(2*invnormal(.975))

We fit the log-linear dose–response model (1) to regress the log relative risks on the
exposure level. The command glst fits the covariances and uses the GLS estimator to
provide a correct estimate of the linear trend.

. glst logrr dose, se(se) cov(n case) cc

Generalized least-squares regression Number of obs = 3
Goodness-of-fit chi2(2) = 1.93 Model chi2(1) = 4.83
Prob > chi2 = 0.3816 Prob > chi2 = 0.0279

logrr Coef. Std. Err. z P>|z| [95% Conf. Interval]

dose .0454288 .0206639 2.20 0.028 .0049284 .0859293

The command glst stores the fitted covariance matrix of the log relative risks in
e(Sigma)

. matrix list e(Sigma)

symmetric e(Sigma)[3,3]
c1 c2 c3

r1 .05417235
r2 .01881768 .05627467
r3 .01943145 .02068682 .05632754

The exponentiated linear trend for a change of 11 g/d of alcohol level is 1.65 (95%
CI = 1.06, 2.57).

. lincom dose*11, eform

( 1) 11 dose = 0

logrr exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(1) 1.648255 .3746524 2.20 0.028 1.055709 2.573384

The goodness-of-fit p-value (Q = 1.93, Pr = 0.3816) is large. Thus this test detected no
problems with the fitted model.

4.2 Incidence-rate data: Fiber intake and coronary heart disease

Consider now the incidence-rate data shown in table 2 on long-term intake of dietary
fiber and risk of coronary heart disease among women (Wolk et al. 1999). As we did for
case–control data, we use the command glst to get an efficient estimate of the slope.

. use ir_ex

. gen double se = (logub - loglb)/(2*invnormal(.975))
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. glst logrr doser, se(se) cov(n case) ir

Generalized least-squares regression Number of obs = 4
Goodness-of-fit chi2(3) = 0.18 Model chi2(1) = 3.47
Prob > chi2 = 0.9809 Prob > chi2 = 0.0626

logrr Coef. Std. Err. z P>|z| [95% Conf. Interval]

doser -.0232086 .0124649 -1.86 0.063 -.0476394 .0012221

. lincom doser*10, eform

( 1) 10 doser = 0

logrr exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(1) .7928775 .0988316 -1.86 0.063 .6210185 1.012296

For a 10-g/d increase in total fiber intake, the rate of coronary heart disease decreased
by 21% (RR = 0.79, 95% CI = 0.62, 1.01). The linear trend estimated with the glst
command on summarized data is very close to the linear trend estimated on full data
(68,782) reported in the abstract of the paper (RR = 0.81, 95% CI = 0.66, 0.99).

4.3 Cumulative incidence data: High-fat dairy food intake and col-
orectal cancer risk

Finally, let’s consider now the cumulative incidence data shown in table 3 on high-fat
dairy food intake and colorectal cancer risk (Larsson, Bergkvist, and Wolk 2005).

. use ci_ex

. gen double se = (logub - loglb)/(2*invnormal(.975))

. glst logrr dose, se(se) cov(n case) ci

Generalized least-squares regression Number of obs = 4
Goodness-of-fit chi2(3) = 2.56 Model chi2(1) = 11.84
Prob > chi2 = 0.4648 Prob > chi2 = 0.0006

logrr Coef. Std. Err. z P>|z| [95% Conf. Interval]

dose -.073636 .0214036 -3.44 0.001 -.1155863 -.0316857

. lincom dose*2, eform

( 1) 2 dose = 0

logrr exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(1) .8630591 .0369452 -3.44 0.001 .7936024 .9385948

Each increment of two servings per day of high-fat dairy foods corresponded to a 14%
reduction in the risk of colorectal cancer (RR = 0.86, 95% CI = 0.79, 0.94). Once again,
the linear trend estimated with the glst command on summarized data is very close to
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the linear trend estimated on full data (60,708) reported in the abstract of the paper
(RR = 0.87, 95% CI = 0.78, 0.96).

4.4 Meta-analysis: Lactose intake and ovarian cancer risk

Earlier we showed how to estimate a linear trend for a single study. Here we show how to
use the command glst to estimate a summary linear trend across multiple studies. We
consider as a motivating example a meta-analysis of epidemiological studies (six case–
control and three cohort studies) investigating the association between lactose intake
and ovarian cancer risk (Larsson, Orsini, and Wolk 2005).

Fixed-effects dose–response metaregression model

We can easily pool trend estimates across studies with the option pfirst(), which
specifies the variable names identifying the correlated log relative risks and the type of
study (case–control or incidence-rate data).

. use ma_ex

. glst logrr dose, se(se) cov(n case) pfirst(id study) eform

Fixed-effects dose-response model Number of studies = 9

Generalized least-squares regression Number of obs = 28
Goodness-of-fit chi2(27) = 40.25 Model chi2(1) = 1.11
Prob > chi2 = 0.0486 Prob > chi2 = 0.2925

logrr exb(b) Std. Err. z P>|z| [95% Conf. Interval]

dose 1.025822 .0248455 1.05 0.293 .9782636 1.075693

Overall, there is no evidence of association between milk intake (10 g/d) and risk
of ovarian cancer (RR = 1.03, 95% CI = 0.98, 1.08). However, the goodness-of-fit test
(Q = 40.25, Pr = 0.0486) suggests that we should take into account potential sources
of heterogeneity. The estimated association of lactose intake with ovarian cancer risk
might depend on the study design. Therefore, we create a product (interaction) term
between the type of study (1 for incidence-rate and 0 for case–control data) and the
dose variable, and we include it in the model. An alternative would be to stratify the
meta-analysis by study design.

. gen types = study == 2

. gen doseXtypes = dose*types

(Continued on next page)
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. glst logrr dose doseXtypes, se(se) cov(n case) pfirst(id study)

Fixed-effects dose-response model Number of studies = 9

Generalized least-squares regression Number of obs = 28
Goodness-of-fit chi2(26) = 30.55 Model chi2(2) = 10.80
Prob > chi2 = 0.2453 Prob > chi2 = 0.0045

logrr Coef. Std. Err. z P>|z| [95% Conf. Interval]

dose -.0340478 .0308599 -1.10 0.270 -.094532 .0264365
doseXtypes .1550466 .0497982 3.11 0.002 .0574439 .2526492

. lincom dose + doseXtypes*0, eform

( 1) dose = 0

logrr exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(1) .9665253 .0298269 -1.10 0.270 .9097986 1.026789

. lincom dose + doseXtypes*1, eform

( 1) dose + doseXtypes = 0

logrr exp(b) Std. Err. z P>|z| [95% Conf. Interval]

(1) 1.128624 .0441106 3.10 0.002 1.045397 1.218476

No association between milk intake and risk of ovarian cancer was found among six
case–control studies (RR = 0.97, 95% CI =0.91, 1.03). A positive association between
milk intake and risk of ovarian cancer was found among three cohort studies (RR = 1.13,
95% CI = 1.05, 1.22). A systematic difference in slopes related to study design might
result, for instance, from the existence of recall bias in the case–control studies that
would not be present in the cohort studies. Now the goodness-of-fit test (Q = 30.55,
Pr = 0.2453) detects no further problems with the fitted model.

Random-effects dose–response metaregression model

We can also check residual heterogeneity across linear trend estimates by fitting a
random-effects model.

. glst logrr dose doseXtypes, se(se) cov(n case) pfirst(id study) random

Random-effects dose-response model Number of studies = 9

Iterative Generalized least-squares regression Number of obs = 28
Goodness-of-fit chi2(26) = 28.37 Model chi2(2) = 7.29
Prob > chi2 = 0.3407 Prob > chi2 = 0.0261

logrr Coef. Std. Err. z P>|z| [95% Conf. Interval]

dose -.0443064 .0394422 -1.12 0.261 -.1216116 .0329988
doseXtypes .1654426 .063171 2.62 0.009 .0416297 .2892555

Moment-based estimate of between-study variance of the slope: tau2 = 0.0026
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The trend estimates for case–control and cohort studies are quite close to the previous
ones under fixed-effects models. The between-study standard deviation is close to zero
(τ̂ = 0.00261/2 = 0.05), which implies that the study-specific trends have only a small
spread around the average trend (−0.044) for case–control studies. Furthermore, if
we model heterogeneity directly with a random-effects model, without considering any
effect modifiers, the results of the meta-analysis briefly described above could not be
achieved at all.

. glst logrr dose, se(se) cov(n case) pfirst(id study) eform random

Random-effects dose-response model Number of studies = 9

Iterative Generalized least-squares regression Number of obs = 28
Goodness-of-fit chi2(27) = 32.17 Model chi2(1) = 0.20
Prob > chi2 = 0.2259 Prob > chi2 = 0.6519

logrr exb(b) Std. Err. z P>|z| [95% Conf. Interval]

dose 1.016753 .0374417 0.45 0.652 .9459546 1.092851

Moment-based estimate of between-study variance of the slope: tau2 = 0.0059

We would simply conclude that, overall, there is no association between lactose
intake on ovarian cancer risk (RR = 1.02, 95% CI = 0.95, 1.09).

5 Empirical comparison of the WLS and GLS estimates

Here we compare and evaluate the uncorrected (WLS) and corrected (GLS) estimates
of the linear trend, b, its standard error, se =

√
v, and the heterogeneity statistic,

Q. Table 7 summarizes the results for single (sections 4.1–4.3) and multiple studies
(section 4.4)

Table 7: Empirical comparison of GLS and WLS estimates

GLS WLS Difference (%)

b se Q b se Q b se Q

Single study

Case–control 0.045 0.021 1.93 0.033 0.019 1.72 26.4 9.5 10.5

Incidence-rate −0.008 0.006 1.61 −0.007 0.004 0.93 14.6 33.7 42.2

Cumulative

incidence −0.073 0.021 2.57 −0.098 0.018 2.20 −33.2 15.6 14.1

Multiple

studies

Case–control −0.034 0.031 24.02 −0.042 0.026 30.48 −23.1 17.2 −26.9

Incidence-rate 0.121 0.039 6.54 0.142 0.033 3.24 −17.0 15.0 50.5

Overall 0.025 0.024 40.25 0.026 0.020 52.90 −3.2 16.4 −31.4
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The relative differences, expressed as percentages, between the GLS and WLS esti-
mates are calculated as (GLS − WLS)/GLS ×100. The GLS estimates of the linear trend,
b, could be higher or lower than the WLS estimates, and the small differences are not
surprising because both estimators are consistent (Greenland and Longnecker 1992).
The Q statistic based on GLS estimates could be higher or lower than the one based on
WLS estimates. In the WLS procedure the off-diagonal elements of Σ, covariances among
log relative risks, are set to zeros, whereas in the GLS the covariances are not zeros (see
section 2.4). Therefore, the weighting matrix, Σ−1, in the Q statistic depends both
on variances and covariances of the log relative risks. As expected, the GLS estimates
of the standard errors, se, are always higher than the WLS estimates of the standard
errors for single and multiple studies. The underestimation of the standard error of
the uncorrected WLS method somewhat overstates the precision of the trend estimate.
Further empirical comparisons between the corrected and uncorrected methods can be
found in Greenland and Longnecker (1992).

6 Conclusion

We presented a command, glst, to efficiently estimate the trend from summarized epi-
demiological dose–response data. As shown with several examples, the method can be
applied for published case–control, incidence-rate, and cumulative incidence data, from
either a single study or multiple studies. In the latter case, the command glst fits
fixed-effects and random-effects metaregression models to allow a better fit of the dose–
response relation and the identification of sources of heterogeneity. Adjusting the stan-
dard error of the slope for the within-study covariance is just one of the statistical issues
arising in the synthesis of information from different studies. Other important issues,
not considered in this paper, are the exposure scale, publication bias, and methodologic
bias (Berlin, Longnecker, and Greenland 1993; Shi and Copas 2004; Greenland 2005).
A limitation of the method proposed by Greenland and Longnecker (1992) is the as-
sumption that the correlation matrices of the unadjusted and adjusted log relative risks
are approximately equal. In future developments of the command, upper and lower
bounds of the covariance matrix will be implemented to assess the sensitivity of the GLS

estimators, as pointed out by Berrington and Cox (2003).
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Abstract. A new command, metamiss, performs meta-analysis with binary out-
comes when some or all studies have missing data. Missing values can be imputed
as successes, as failures, according to observed event rates, or by a combination of
these according to reported reasons for the data being missing. Alternatively, the
user can specify the value of, or a prior distribution for, the informative missingness
odds ratio.
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1 Introduction

Just as missing outcome data present a threat to the validity of any research study, so
they present a threat to the validity of any meta-analysis of research studies. Typically,
analyses assume that the data are missing completely at random or missing at random
(MAR) (Little and Rubin 2002). If the data are not MAR (i.e., they are informatively
missing) but are analyzed as if they were missing completely at random or MAR, then
nonresponse bias typically occurs. The threat of bias carries over to meta-analysis,
where the problem can be compounded by nonresponse bias applied in a similar way in
different studies.

Many methods for dealing with missing outcome data require detailed data for each
participant. Dealing with missing outcome data in a meta-analysis raises particular
problems because limited information is typically available in published reports. Al-
though a meta-analyst would ideally seek any important but unreported data from the
authors of the original studies, this approach is not always successful, and it is un-
common to have access to more than group-level summary data at best. We therefore
address the meta-analysis of summary data, focusing on the case of an incomplete binary
outcome.

A central concept is the informative missingness odds ratio (IMOR), defined as the
odds ratio between the missingness, M , and the true outcome, Y , within groups (White,
Higgins, and Wood 2008). A value of 1 indicates MAR, while IMOR = 0 means that
missing values are all failures, and IMOR = ∞ means that missing values are all successes.
We allow the IMOR to differ across groups and across subgroups of individuals defined
by reasons for missingness, or to be specified with uncertainty.

We will describe metamiss in the context of a meta-analysis of randomized controlled
trials comparing an “experimental group” with a “control group”, but it could be used

c© 2009 StataCorp LP st0157
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in any meta-analysis of two-group comparisons. metamiss only prepares the data for
each study, and then it calls metan to perform the meta-analysis. It allows two main
types of methods: imputation methods and Bayesian methods.

First, metamiss offers imputation methods as described in Higgins, White, and
Wood (2008). Missing values can be imputed as failures or as successes; using the same
rate as in the control group, the same rate as in the experimental group, or the same
rate as in their own group; or using IMORs. When reasons for missingness are known, a
mixture of the methods can be used.

Second, metamiss offers Bayesian methods that allow for user-specified uncertainty
about the missingness mechanism (Rubin 1977; Forster and Smith 1998; White, Higgins,
and Wood 2008). These use the prior logIMORij ∼ N(mij , s

2
ij) in group j = E,C of

study i, with corr(logIMORiE , logIMORiC) = r.

The approach of Gamble and Hollis (2005) is also implemented. In this approach,
two extreme analyses are performed for each study, regarding all missing values as
successes in one group and failures in the other. The two 95% confidence intervals
are then combined (together with intermediate values), and a modified standard error
is taken as one quarter the width of this combined confidence interval. This method
appears to overpenalize studies with missing data (White, Higgins, and Wood 2008),
but it is included here for comparison.

2 metamiss command

2.1 Syntax

metamiss requires six variables (rE, fE, mE, rC, fC, and mC ), which specify the number
of successes, failures, and missing values in each randomized group. There are four
syntaxes described below.

Simple imputation

metamiss rE fE mE rC fC mC, imputation method
[
imor option

imputation options meta options
]

where

imputation method is one of the imputation methods listed in section 2.2, specified
without an argument.

imor option is either imor(# | varname
[
# | varname

]
) or

logimor(# | varname
[
# | varname

]
) (see section 2.3).

imputation options are any of the options described in section 2.4.
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meta options are any of the meta-analysis options listed in section 2.6, as well
as any valid option for metan, including random, by(), and xlabel() (see sec-
tion 2.6).

Imputation using reasons

metamiss rE fE mE rC fC mC, imputation method1 impuation method2[
imputation method3 . . .

] [
imor option imputation options meta options

]

where

imputation method1, imputation method2, etc., are any imputation method listed
in section 2.2 except icab and icaw, specified with arguments to indicate numbers
of missing values to be imputed by each method.

imor option, imputation options, and meta options are the same as documented
in Simple Imputation.

Bayesian analysis using priors

metamiss rE fE mE rC fC mC, sdlogimor(# | varname
[
# | varname

]
)[

imor option bayes options meta options
]

where

imor option and meta options are the same as documented in Simple Imputation.

bayes options are any of the options described in section 2.5.

Gamble–Hollis analysis

metamiss rE fE mE rC fC mC, gamblehollis
[
meta options

]

where

gamblehollis specifies to use the Gamble–Hollis analysis.

meta options are the same as documented in Simple Imputation.

2.2 imputation method

For simple imputation, specify one of the following options without arguments. For
imputation using reasons, specify two or more of the following options with arguments.
The abbreviations ACA, ICA-0, etc., are explained by Higgins, White, and Wood (2008).
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aca
[
(# | varname

[
# | varname

]
)
]

performs an available cases analysis (ACA).

ica0
[
(# | varname

[
# | varname

]
)
]

imputes missing values as zeros (ICA-0).

ica1
[
(# | varname

[
# | varname

]
)
]

imputes missing values as ones (ICA-1).

icab performs a best-case analysis (ICA-b), which imputes missing values as ones in
the experimental group and zeros in the control group—equivalent to ica0(0 1)
ica1(1 0). If rE and rC count adverse events, not beneficial events, then icab will
yield a worst-case analysis.

icaw performs a worst-case analysis (ICA-w), which imputes missing values as zeros
in the experimental group and ones in the control group—equivalent to ica0(1 0)
ica1(0 1). If rE and rC count beneficial events, not adverse events, then icaw will
yield a best-case analysis.

icape
[
(# | varname

[
# | varname

]
)
]

imputes missing values by using the observed
probability in the experimental group (ICA-pE).

icapc
[
(# | varname

[
# | varname

]
)
]

imputes missing values by using the observed
probability in the control group (ICA-pC).

icap
[
(# | varname

[
# | varname

]
)
]

imputes missing values by using the observed
probability within groups (ICA-p).

icaimor
[
(# | varname

[
# | varname

]
)
]

imputes missing values by using the IMORs
specified by imor() or logimor() within groups (ICA-IMORs).

The default is icaimor if imor() or logimor() is specified; if no IMOR option is
specified, the default is aca.

Specifying arguments

Used with arguments, these options specify the numbers of missing values to be imputed
by each method. For example, ica0(mfE mfC) icap(mpE mpC) indicates that mfE in-
dividuals in group E and mfC individuals in group C are imputed using ICA-0, while
mpE individuals in group E and mpC individuals in group C are imputed using ICA-p.
If the second argument is omitted, it is taken to be zero. If, for some group, the total
over all reasons does not equal the number of missing observations (e.g., if mfE + mpE
does not equal mE), then the missing observations are shared between imputation types
in the given ratio. If the total over all reasons is zero for some group, then the miss-
ing observations are shared between imputation types in the ratio formed by summing
overall numbers of individuals for each reason across all studies. If the total is zero for
all studies in one or both groups, then an error is returned. Numerical values can also
be given: e.g., ica0(50 50) icap(50 50) indicates that 50% of missing values in each
group are imputed using ICA-0 and the rest are imputed using ICA-p.
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2.3 imor option

imor(# | varname
[
# | varname

]
) sets the IMORs or (if the Bayesian method is being

used) the prior medians of the IMORs. If one value is given, it applies to both
groups; if two values are given, they apply to the experimental and control groups,
respectively. Both values default to 1. Only one of imor() or logimor() can be
specified.

logimor(# | varname
[
# | varname

]
) does the same as imor() but on the log scale.

Thus imor(1 1) is the same as logimor(0 0). Only one of imor() or logimor()
can be specified.

2.4 imputation options

w1 specifies that standard errors be computed, treating the imputed values as if they
were observed. This is included for didactic purposes and should not be used in real
analyses. Only one of w1, w2, w3, or w4 can be specified.

w2 specifies that standard errors from the ACA be used. This is useful in separating
sensitivity to changes in point estimates from sensitivity to changes in standard
errors. Only one of w1, w2, w3, or w4 can be specified.

w3 specifies that standard errors be computed by scaling the imputed data down to
the number of available cases in each group and treating these data as if they were
observed. Only one of w1, w2, w3, or w4 can be specified.

w4, the default, specifies that standard errors be computed algebraically, conditional on
the IMORs. Conditioning on the IMORs is not strictly correct for schemes including
ICA-pE or ICA-pC, but the conditional standard errors appear to be more realistic
than the unconditional standard errors in this setting (Higgins, White, and Wood
2008). Only one of w1, w2, w3, or w4 can be specified.

listnum lists the reason counts for each study implied by the imputation method option.

listall lists the reason counts for each study after scaling to match the number of
missing values and imputing missing values for studies with no reasons.

listp lists the imputed probabilities for each study.

2.5 bayes options

sdlogimor(# | varname
[
# | varname

]
) sets the prior standard deviation for log IMORs

for the experimental and control groups, respectively. Both values default to 0.

corrlogimor(# | varname) sets the prior correlation between log IMORs in the experi-
mental and control groups. The default is corrlogimor(0).

method(gh | mc | taylor) determines the method used to integrate over the distribution
of the IMORs. method(gh) uses two-dimensional Gauss–Hermite quadrature and is
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the recommended method (and the default). method(mc) performs a full Bayesian
analysis by sampling directly from the posterior. This is time consuming, so dots
display progress, and you can request more than one of the measures or, rr, and rd.
method(taylor) uses a Taylor-series approximation, as in section 4 of Forster and
Smith (1998), and is faster than the default but typically inaccurate for sdlogimor()
larger than one or two.

nip(#) specifies the number of integration points under method(gh). The default is
nip(10).

reps(#) specifies the number of Monte Carlo draws under method(mc). The default is
reps(100).

missprior(##
[
##

]
) and respprior(##) apply when method(mc) is used, but

they are unlikely to be much used. They specify the parameters of the beta priors
for P (M) and P (Y |M = 0): the parameters for the first group are given by the
first two numbers, and the parameters for the second group are given by the next
two numbers or are the same as for the first group. The defaults are both beta(1, 1).

nodots suppresses the dots that are displayed to mark the number of Monte Carlo draws
completed.

2.6 meta options

or, rr, and rd specify the measures to be analyzed. Usually, only one measure can be
specified; the default is rr. However, when using method(mc), all three measures
can be obtained for no extra effort, so any combination is allowed. When more than
one measure is specified, the formal meta-analysis is not performed, but measures
and their standard errors are saved (see section 2.7).

log has the results reported on the log risk-ratio (RR) or log odds-ratio scale.

id(varname) specifies a study identifier for the results table and forest plot.

Most other options allowed with metan are also allowed, including by(), random, and
nograph.

2.7 Saved results

metamiss saves results in the same way as metan: ES, selogES, etc. The sample size,
SS, excludes the missing values, but an additional variable, SSmiss, gives the total
number of missing values. When method(mc) is run, the log option is assumed for the
measures or and rr, and the following variables are saved for each measure (logor,
logrr, or rd): the ACA estimate, ESTRAW measure; the ACA variance, VARRAW measure;
the corrected estimate, ESTSTAR measure; and the corrected variance, VARSTAR measure.
If these variables already exist, then they are overwritten.
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3 Examples

3.1 Data

We apply the above methods to a meta-analysis of randomized controlled trials com-
paring haloperidol to placebo in the treatment of schizophrenia. A Cochrane review of
haloperidol forms the basis of our data (Joy, Adams, and Lawrie 2006). Further details
of our analysis are given in Higgins, White, and Wood (2008).

The main data consist of the variables author (the author); r1, f1, and m1 (the
counts of successes, failures, and missing observations in the intervention group); and
r2, f2, and m2 (the corresponding counts in the control group).

3.2 Available cases analysis

The following analysis illustrates metamiss output, but the same results could in fact
have been obtained by using metan r1 f1 r2 f2, fixedi:

. use haloperidol

. metamiss r1 f1 m1 r2 f2 m2, aca id(author) fixed nograph
*******************************************************************
******** METAMISS: meta-analysis allowing for missing data ********
******** Available cases analysis ********
*******************************************************************
Measure: RR.
Zero cells detected: adding 1/2 to 6 studies.

(Calling metan with options: label(namevar=author) fixed eform nograph ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.417 0.891 2.252 18.86
Beasley | 1.049 0.732 1.504 31.22
Bechelli | 6.207 1.520 25.353 2.05
Borison | 7.000 0.400 122.442 0.49
Chouinard | 3.492 1.113 10.955 3.10
Durost | 8.684 1.258 59.946 1.09
Garry | 1.750 0.585 5.238 3.37
Howard | 2.039 0.670 6.208 3.27
Marder | 1.357 0.747 2.466 11.37
Nishikawa_82 | 3.000 0.137 65.903 0.42
Nishikawa_84 | 9.200 0.581 145.759 0.53
Reschke | 3.793 1.058 13.604 2.48
Selman | 1.484 0.936 2.352 19.11
Serafetinides | 8.400 0.496 142.271 0.51
Simpson | 2.353 0.127 43.529 0.48
Spencer | 11.000 1.671 72.396 1.14
Vichaiya | 19.000 1.157 311.957 0.52
---------------------+---------------------------------------------------
I-V pooled ES | 1.567 1.281 1.916 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 27.29 (d.f. = 16) p = 0.038
I-squared (variation in ES attributable to heterogeneity) = 41.4%

Test of ES=1 : z= 4.37 p = 0.000
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The effect size (ES) refers to the RR in this output. For brevity, future listings
include only the four largest studies: Arvanitis, Beasley, Marder, and Selman, with 2%,
41%, 3%, and 42% missing data, respectively. Interest therefore focuses on changes in
inferences for the Beasley and Selman studies.

3.3 Imputation methods

We illustrate imputing all missing values as zeros, using the weighting scheme w4, which
correctly allows for uncertainty (although in ica0, w1 gives the same answers):

. metamiss r1 f1 m1 r2 f2 m2, ica0 w4 id(author) fixed nograph
*******************************************************************
******** METAMISS: meta-analysis allowing for missing data ********
******** Simple imputation ********
*******************************************************************
Measure: RR.
Method: ICA-0 (impute zeros).
Weighting scheme: w4.
Zero cells detected: adding 1/2 to 6 studies.

(Calling metan with options: label(namevar=author) fixed eform nograph ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.362 0.854 2.172 24.38
Beasley | 1.429 0.901 2.266 25.01

(output omitted )

Marder | 1.357 0.745 2.473 14.75

(output omitted )

Selman | 2.429 1.189 4.960 10.42

(output omitted )

---------------------+---------------------------------------------------
I-V pooled ES | 1.898 1.507 2.390 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 21.56 (d.f. = 16) p = 0.158
I-squared (variation in ES attributable to heterogeneity) = 25.8%

Test of ES=1 : z= 5.45 p = 0.000

The Beasley and Selman trials have more missing data in the control group, so
imputing failures increases their estimated RR, and the pooled RR also increases.

3.4 Impute using known IMORs

Now we assume that the IMOR is 0.5 in each group, that is, that the odds of success in
missing data are half the odds of success in observed data.
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. metamiss r1 f1 m1 r2 f2 m2, icaimor imor(1/2 1/2) w4 id(author) fixed nograph
*******************************************************************
******** METAMISS: meta-analysis allowing for missing data ********
******** Simple imputation ********
*******************************************************************
Measure: RR.
Method: ICA-IMOR (impute using IMORs 1/2 1/2).
Weighting scheme: w4.
Zero cells detected: adding 1/2 to 6 studies.

(Calling metan with options: label(namevar=author) fixed eform nograph ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.399 0.878 2.227 22.12
Beasley | 1.120 0.737 1.700 27.47

(output omitted )

Marder | 1.358 0.746 2.473 13.34

(output omitted )

Selman | 1.743 0.973 3.121 14.11

(output omitted )

---------------------+---------------------------------------------------
I-V pooled ES | 1.699 1.365 2.115 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 24.63 (d.f. = 16) p = 0.077
I-squared (variation in ES attributable to heterogeneity) = 35.0%

Test of ES=1 : z= 4.75 p = 0.000

The assumption is intermediate between ACA and ICA-0, and so is the result.

3.5 Impute using reasons for missingness

Most studies indicated the distribution of reasons for missing outcomes. We assigned
imputation methods as follows:

• For reasons such as “lack of efficacy” or “relapse”, we imputed failures (ICA-0).

• For reasons such as “positive response”, we imputed successes (ICA-1).

• For reasons such as “adverse event”, “withdrawal of consent”, or “noncompliance”,
we considered that the patient had not received the intervention, and we imputed
according to the control group rate ICA-pC, implicitly assuming lack of selection
bias.

• For reasons such as “loss to follow-up”, we assumed MAR and imputed according
to the group-specific rate ICA-p.

Counts for these four groups are given by the variables df1, ds1, dc1, and dg1 for
the intervention group, and df2, ds2, dc2, and dg2 for the control group.

In some trials, the reasons for missingness were given for a different subset of par-
ticipants, for example, when clinical outcome and dropout were reported for different
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time points. In such a case, metamiss applies the proportion in each reason-group
to the missing population in that trial. In trials that did not report any reasons for
missingness, the overall proportion of reasons from all other trials is used.

. metamiss r1 f1 m1 r2 f2 m2, ica0(df1 df2) ica1(ds1 ds2) icapc(dc1 dc2)
> icap(dg1 dg2) w4 id(author) fixed nograph
*******************************************************************
******** METAMISS: meta-analysis allowing for missing data ********
******** Imputation using reasons ********
*******************************************************************
Measure: RR.
Method: ICA-r combining ICA-0 ICA-1 ICA-pC ICA-p.
Weighting scheme: w4.
Zero cells detected: adding 1/2 to 6 studies.

(Calling metan with options: label(namevar=author) fixed eform nograph ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.381 0.867 2.201 21.37
Beasley | 1.349 0.892 2.041 27.10

(output omitted )

Marder | 1.368 0.751 2.491 12.91

(output omitted )

Selman | 1.767 1.037 3.010 16.36

(output omitted )

---------------------+---------------------------------------------------
I-V pooled ES | 1.785 1.439 2.214 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 21.86 (d.f. = 16) p = 0.148
I-squared (variation in ES attributable to heterogeneity) = 26.8%

Test of ES=1 : z= 5.27 p = 0.000

3.6 Impute using uncertain IMORs

Finally, we allow for uncertainty about the IMORs. In the analysis below, we take a
N(0, 4) prior for the log IMORs in each group, with the log IMORs in the two groups
being a priori uncorrelated.
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. metamiss r1 f1 m1 r2 f2 m2, sdlogimor(2) logimor(0) w4 id(author) fixed
> nograph
*******************************************************************
******** METAMISS: meta-analysis allowing for missing data ********
******** Bayesian analysis using priors ********
*******************************************************************
Measure: RR.
Zero cells detected: adding 1/2 to 6 studies.
Priors used: Group 1: N(0,2^2). Group 2: N(0,2^2). Correlation: 0.
Method: Gauss-Hermite quadrature (10 integration points).

(Calling metan with options: label(namevar=author) fixed eform nograph ...)

Study | ES [95% Conf. Interval] % Weight
---------------------+---------------------------------------------------
Arvanitis | 1.416 0.889 2.257 30.37
Beasley | 1.085 0.506 2.324 11.36

(output omitted )

Marder | 1.350 0.737 2.472 18.04

(output omitted )

Selman | 1.596 0.671 3.799 8.77

(output omitted )

---------------------+---------------------------------------------------
I-V pooled ES | 1.867 1.444 2.413 100.00
---------------------+---------------------------------------------------

Heterogeneity chi-squared = 20.93 (d.f. = 16) p = 0.181
I-squared (variation in ES attributable to heterogeneity) = 23.6%

Test of ES=1 : z= 4.76 p = 0.000

Note how the weight assigned to the Beasley and Selman studies is greatly reduced.
Because these studies have estimates below the pooled mean, the pooled mean increases.

4 Details

4.1 Zero cell counts

Like metan, metamiss adds one half to all four cells in a 2×2 table for a particular study
if any of those cells contains zero. However, this behavior is modified under methods
that impute with certainty (ICA-0, ICA-1, ICA-b, and ICA-w): the certain imputation is
performed before metamiss decides whether to add one half. As a result, apparently
similar options such as ica1 and logimor(99) differ slightly in the haloperidol data,
because the logimor(99) analysis adds one half to six studies with r2 = 0, whereas the
ica1 analysis does this only for three studies with r2 + m2 = 0.

(Continued on next page)
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4.2 Formula

For the imputation methods, in a given group of a given study, let r, f , and m be the
number of observed successes, failures, and missing observations; let π̂ = r/(r + f) be
the observed success fraction; and let N = r + f + m be the total count. Let k index
reason-groups with counts mk and IMOR θk, so that, for example, a group imputed by
ICA-0 has θk = 0. Then the estimated success fraction is

π̂∗ =
1
N

(
r +

∑
k

mkθkπ̂

1 − π̂ + θkπ̂

)

with the variance obtained by a Taylor-series expansion (Higgins, White, and Wood
2008).

For the Bayesian methods, let δj be the log IMOR in group j. Then

π̂∗
j (δj) =

1
Nj

(
rj +

mje
δj π̂j

1 − π̂j + eδj π̂j

)

and, for example, the log risk ratio is obtained by finding the expectation of

logπ̂∗
E(δE) − logπ̂∗

C(δC)

over the prior p(δE , δC) by numerical integration. The variance is obtained by combining
the variance conditional on p(δE , δC) with the variance over p(δE , δC) (White, Higgins,
and Wood 2008).

5 Discussion

We believe that ACA is a suitable starting point for a sensitivity analysis that might en-
compass, for example, imor(1/2 1/2), imor(1/2 2), sdlogimor(2) corrlogimor(1),
and sdlogimor(2) corrlogimor(0) (Higgins, White, and Wood 2008; White, Higgins,
and Wood 2008). However, a “best” analysis might use reasons for missingness together
with subject matter knowledge to assign suitable IMORs. Future work will explore how
to integrate the two approaches.
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Abstract. Multivariate meta-analysis combines estimates of several related pa-
rameters over several studies. These parameters can, for example, refer to multiple
outcomes or comparisons between more than two groups. A new Stata command,
mvmeta, performs maximum likelihood, restricted maximum likelihood, or method-
of-moments estimation of random-effects multivariate meta-analysis models. A
utility command, mvmeta make, facilitates the preparation of summary datasets
from more detailed data. The commands are illustrated with data from the Fib-
rinogen Studies Collaboration, a meta-analysis of observational studies; I estimate
the shape of the association between a quantitative exposure and disease events
by grouping the quantitative exposure into several categories.
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1 Introduction

Standard meta-analysis combines estimates of one parameter over several studies
(Normand 1999). Multivariate meta-analysis is an extension that can combine esti-
mates of several related parameters (van Houwelingen, Arends, and Stijnen 2003). In
such work, it is important to allow for heterogeneity between studies, usually by fitting
a random-effects model (Thompson 1994).

Multivariate meta-analysis has a variety of applications in randomized controlled
trials. The simplest is modeling the outcome separately in each arm of a clinical
trial (van Houwelingen, Arends, and Stijnen 2003). Other published applications ex-
plore treatment effects simultaneously on two clinical outcomes (Berkey, Anderson,
and Hoaglin 1996; Berkey et al. 1998; Riley et al. 2007a,b) or on cost and effective-
ness (Pinto, Willan, and O’Brien 2005), and explore combining trials comparing more
than one treatment (Hasselblad 1998; Lu and Ades 2004). Further applications have
been reviewed by Riley et al. (2007b).

There are also possible applications of multivariate meta-analysis in observational
studies. These applications include assessing the shape of the association between a
quantitative exposure and a disease, which will be illustrated in this article.

One difficulty in random-effects meta-analysis is estimating the between-studies
variance. In the univariate case, this is commonly performed by using the method
of DerSimonian and Laird (1986). However, maximum likelihood (ML) and restricted
maximum likelihood (REML) methods are alternatives (van Houwelingen, Arends, and

c© 2009 StataCorp LP st0156
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Stijnen 2003); in Stata, they are not available in metan but can be obtained from
metareg (Sharp 1998). This article describes a new command, mvmeta, that performs
REML and ML estimation in the multivariate case by using a Newton–Raphson proce-
dure. mvmeta requires a dataset of study-specific point estimates and their variance–
covariance matrix. I also describe a utility command, mvmeta make, that facilitates
forming this dataset.

2 Multivariate random-effects meta-analysis with
mvmeta

2.1 Syntax

mvmeta b V
[
if
] [

in
] [

, reml ml mm fixed vars(varlist) corr(expression)

start(matrix |matrix expression | mm) showstart showchol

keepmat(bname Vname) nouncertainv eform(name) bscorr bscov

missest(#) missvar(#) maximize options
]

where the data are arranged with one line per study, the point estimates are held in
variables whose names start with b (excluding b itself), the variance of bx is held in
variable Vxx, and the covariance of bx and by is held in variable Vxy or Vyx (or the
corr() option is specified).

If the dataset includes variables whose names start with b that do not represent
point estimates, then the vars() option must be used.

2.2 Options

reml, the default, specifies that REML be used for estimation. Specify only one of the
reml, ml, mm, or fixed options.

ml specifies that ML be used for estimation. ML is likely to underestimate the variance,
so REML is usually preferred. Specify only one of the reml, ml, mm, or fixed options.

mm specifies that the multivariate method-of-moments procedure (Jackson, White, and
Thompson Forthcoming) be used for estimation. This procedure is a multivariate
generalization of the procedure of DerSimonian and Laird (1986) and is faster than
the likelihood-based methods. Specify only one of the reml, ml, mm, or fixed options.

fixed specifies that the fixed-effects model be used for estimation. Specify only one of
the reml, ml, mm, or fixed options.

vars(varlist) specifies which variables are to be used. By default, all variables b* are
used (excluding b itself). The order of variables in varlist does not affect the model
itself but does affect the parameterization.
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corr(expression) specifies that all within-study correlations take the given value. This
means that covariance variable Vxy need not exist. (If it does exist, corr() is
ignored.)

start(matrix |matrix expression | mm) specifies a starting value for the between-studies
variance, except start(mm) specifies that the starting value is computed by the mm
method. If start() is not specified, the starting value is the weighted between-
studies variance of the estimates, not allowing for the within-study variances; this
ensures that the starting value is greater than zero (the iterative procedure never
moves away from zero). start(0) uses a starting value of 0.001 times the default.
The starting value for the between-studies mean is the fixed-effects estimate.

showstart reports the starting values used.

showchol reports the estimated values of the basic parameters underlying the between-
studies variance matrix (the Cholesky decomposition).

keepmat(bname Vname) saves the vector of study-specific estimates and the vector of
the variance–covariance matrix for study i as bnamei and Vnamei, respectively.

nouncertainv invokes alternative (smaller) standard errors that ignore the uncertainty
in the estimated variance–covariance matrix and therefore agree with results pro-
duced by procedures such as SAS PROC MIXED (without the ddfm=kr option) and
metareg. (Note, however, that the confidence intervals do not agree because mvmeta
uses a normal approximation, whereas the other procedures approximate the degrees
of freedom of a t distribution.)

eform(name) exponentiates the reported mean parameters, labeling them name.

bscorr reports the between-studies variance–covariance matrix as the standard devia-
tions and reports the correlation matrix. This is the default if bscov is not specified.

bscov reports the between-studies variance–covariance matrix without transformation.

missest(#) specifies the value to be used for missing point estimates; the default is
missest(0). This is of minor importance because the variance of these missing
estimates is specified to be very large.

missvar(#) is used in imputing the variance of missing point estimates. For a specific
variable, the variance used is the largest observed variance multiplied by the specified
value. The default is missvar(1E4); this value is unlikely to need to be changed.

maximize options are any options allowed by ml maximize.

3 Details of mvmeta

3.1 Notation

The data for mvmeta comprise the point estimate, yi, and the within-study variance–
covariance matrix, Si, for each study i = 1 to n.
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We assume the model

yi ∼ N(μi, Si)
μi ∼ N(μ,Σ)

Σ =

⎛
⎝ τ2

1 κ12τ1τ2 .
κ12τ1τ2 τ2

2 .
. . .

⎞
⎠

where yi, μi, and μ are p×1 vectors, and Si and Σ are p×p matrices. The within-study
variance, Si, is assumed to be known. Our aim is to estimate μ and Σ.

We set Wi = (Σ + Si)−1, noting that this depends on the unknown Σ. If Σ were
known (or assumed to be the zero matrix, as in fixed-effects meta-analysis), then we
would have

μ̂ =

(∑
i

Wi

)−1(∑
i

Wiyi

)

3.2 Estimating Σ

Methods proposed for estimating Σ in the multivariate setting include extensions of
Cochran’s method (Berkey et al. 1998), of the DerSimonian and Laird method (Pinto,
Willan, and O’Brien 2005) for diagonal Wi, and of likelihood-based methods (van
Houwelingen, Arends, and Stijnen 2003). We use the latter because of their gener-
ality and optimality properties. Respectively, the likelihood and restricted likelihood
are

−2L =
∑

i

{log |Σ + Si | + (yi − μ)′Wi(yi − μ)} + nplog2π

− 2RL = −2L + log |
∑

i

Wi | − plog2π (1)

where Wi is a function of the unknown Σ, as noted above.

We maximize the (restricted) likelihood with a Newton–Raphson algorithm by using
Stata’s ml procedure. To ensure that Σ is nonnegative definite (for example, in the
bivariate case, to ensure that the between-studies variances are nonnegative and that
the between-studies correlation lies between −1 and 1), the basic model parameters are
taken as the elements of a Cholesky decomposition of Σ (Riley et al. 2007b).

3.3 Saved results

As well as the usual e() information, mvmeta returns the estimated overall mean in
e(Mu) and the between-studies variance–covariance matrix, the standard deviation vec-
tor, and the correlation matrix in e(Sigma), e(Sigma SD), and e(Sigma corr), respec-
tively.
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3.4 Files required

mvmeta uses the likelihood program mvmeta l.ado.

4 A utility command to produce data in the correct for-
mat: mvmeta make

4.1 Syntax

mvmeta make regression command
[
if
] [

in
] [

weight
]
, by(by variable)

saving(savefile)
[
replace append names(bname Vname) keepmat

usevars(varlist) useconstant esave(namelist) nodetails pause

ppfix(none | check | all) augwt(#) noauglist ppcmd(regcmd
[
, options

]
)

hard regression options
]

mvmeta make performs regression command for each level of by variable and stores
the results in savefile in the format required by mvmeta. weight is any weight allowed
by regression command.

4.2 Options

by(by variable) is required; it identifies the studies in which the regression command
will be performed.

saving(savefile) is required; it specifies to save the regression results to savefile.

replace specifies to overwrite the existing file called savefile.

append specifies to append the current results to the existing file called savefile.

names(bname Vname) specifies that the estimated coefficients for variable x are to
be stored in variable bnamex and that the estimated covariance between coefficients
bnamex and bnamey is to be stored in variable Vnamexy. The default is names(y S).

keepmat specifies that the results are also to be stored as matrices. The estimate vector
and the covariance matrix for study i are stored as matrices bnamei and Vnamei,
respectively, where bname and Vname are specified with names().

usevars(varlist) identifies the variables whose regression coefficients are of interest.
The default is all variables in the model, excluding the constant.

useconstant specifies that the constant is also of interest.

esave(namelist) adds the specified e() statistics to the saved data. For example,
esave(N ll) saves e(N) and e(ll) as variables e N and e ll.
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nodetails suppresses the results of running regression command on each study.

pause pauses output after the analysis of each study, provided that pause on has been
set.

ppfix(none | check | all) specifies whether perfect prediction should be fixed in no
studies, only in studies where it is detected (the default), or in all studies.

augwt(#) specifies the total weight of augmented observations to be added in any
study in which perfect prediction is detected (see section 7). augwt(0) turns off
augmentation but is not recommended. The default is augwt(0.01).

noauglist suppresses listing of the augmented observations.

ppcmd(regcmd
[
, options

]
) specifies that perfect prediction should be fixed by using

regression command regcmd with options options instead of by using the default
augmentation procedure.

hard is useful when convergence cannot be achieved in some studies. It captures the
results of initial model fitting in each study and treats any nonzero return code as a
symptom of perfect prediction.

regression options are any options for regression command.

5 Example 1: Telomerase data

Data from 10 studies of the value of telomerase measurements in the diagnosis of primary
bladder cancer were reproduced by Riley et al. (2007b). In the table below, taken
from that article, y1 is logit sensitivity, y2 is logit specificity, and s1 and s2 are their
respective standard errors, all estimated from 2 × 2 tables of true status versus test
status.

. use telomerase
(Riley´s telomerase data)

. format y1 s1 y2 s2 %6.3f

. list, noobs clean

study y1 s1 y2 s2
1 1.139 0.406 3.219 1.020
2 1.447 0.556 1.299 0.651
3 1.705 0.272 0.661 0.308
4 0.470 0.403 3.283 0.588
5 0.856 0.290 4.920 1.004
6 1.440 0.371 1.386 0.456
7 0.187 0.306 3.219 1.442
8 1.504 0.451 2.197 0.745
9 1.540 0.636 2.269 0.606

10 1.665 0.412 -1.145 0.434

. generate S11=s1^2

. generate S22=s2^2
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5.1 Univariate meta-analysis

We first analyze the data by two univariate meta-analyses:

. mvmeta y S, vars(y1) bscov
Note: using method reml
Note: using variable y1
Note: 10 observations on 1 variables

(output omitted )

Number of obs = 10
Wald chi2(1) = 38.52

Log likelihood = -8.7276382 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Overall_mean
y1 1.154606 .1860421 6.21 0.000 .7899701 1.519242

Estimated between-studies covariance matrix Sigma:
y1

y1 .18579341

. mvmeta y S, vars(y2) bscov
Note: using method reml
Note: using variable y2
Note: 10 observations on 1 variables

(output omitted )

Number of obs = 10
Wald chi2(1) = 12.93

Log likelihood = -18.728644 Prob > chi2 = 0.0003

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Overall_mean
y2 1.963801 .5460555 3.60 0.000 .8935515 3.03405

Estimated between-studies covariance matrix Sigma:
y2

y2 2.386426

These results agree with SAS PROC MIXED as reported by Riley et al. (2007b), except
that the standard errors for the overall means are slightly larger (0.5461 for y2, compared
with 0.5414 from SAS). This is because SAS does not, by default, allow for uncertainty in
the estimated between-studies variance (SAS Institute 1999). mvmeta’s nouncertainv
option inverts just the elements of the information matrix relating to the overall mean
and agrees with SAS PROC MIXED:
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. mvmeta y S, vars(y2) nouncertainv
Note: using method reml
Note: using variable y2
Note: 10 observations on 1 variables

(output omitted )

Alternative standard errors, ignoring uncertainty in V:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Overall_mean
y2 1.963801 .5413727 3.63 0.000 .9027297 3.024872

5.2 Multivariate analysis

Because sensitivity and specificity are estimated on separate groups of individuals, their
within-study covariance is zero. We could generate a new variable, S12=0, but it is
easier to use the corr(0) option:

. mvmeta y S, corr(0) bscov
Note: using method reml
Note: using variables y1 y2
Note: 10 observations on 2 variables
Note: corr(0) used for all covariances

(output omitted )

Number of obs = 10
Wald chi2(2) = 159.58

Log likelihood = -24.415968 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Overall_mean
y1 1.166187 .1863275 6.26 0.000 .8009913 1.531382
y2 2.057752 .5607259 3.67 0.000 .9587493 3.156755

Estimated between-studies covariance matrix Sigma:
y1 y2

y1 .20219111
y2 -.7227506 2.5835381

Again these results agree with those of Riley et al. (2007b), except that our stan-
dard errors are slightly larger because they allow for uncertainty in the between-studies
covariance, Σ.

6 Example 2: Fibrinogen Studies Collaboration data

Fibrinogen Studies Collaboration (FSC) is a meta-analysis of individual data on 154,012
adults from 31 prospective studies with information on plasma fibrinogen and major
disease outcomes (Fibrinogen Studies Collaboration 2004). As part of the published
analysis, the incidence of coronary heart disease was compared across 10 groups defined
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by baseline levels of fibrinogen (Fibrinogen Studies Collaboration 2005). That analysis
used a fixed-effects model; here we allow for heterogeneity between studies by using
a random-effects model, but we reduce the analysis to five groups to avoid presenting
lengthy output.

In the first stage of analysis, we start with individual-level data including fibrinogen
concentration, fg, in five levels. Following standard practice in the analysis of these data
(Fibrinogen Studies Collaboration 2005), all analyses are stratified by sex and, for two
studies that were randomized trials, by trial arm (variable tr). We adjust all analyses
for age (variable ages), although in practice, more confounders would be adjusted for.
We use the esave(N) option to record the sample size used in each study in variable
e N.

. stset duration allchd

(output omitted )

. xi: mvmeta_make stcox ages i.fg, strata(sex tr) nohr
> saving(FSCstage1) replace by(cohort) usevars(i.fg) names(b V) esave(N)
i.fg _Ifg_1-5 (naturally coded; _Ifg_1 omitted)
Using coefficients: _Ifg_2 _Ifg_3 _Ifg_4 _Ifg_5

-> cohort==1

failure _d: allchd
analysis time _t: duration

Iteration 0: log likelihood = -5223.9564
Iteration 1: log likelihood = -5135.3888
Iteration 2: log likelihood = -5129.5633
Iteration 3: log likelihood = -5129.551
Refining estimates:
Iteration 0: log likelihood = -5129.551

Stratified Cox regr. -- Breslow method for ties

No. of subjects = 14436 Number of obs = 14436
No. of failures = 603
Time at risk = 127969.6428

LR chi2(5) = 188.81
Log likelihood = -5129.551 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ages .0501925 .0072871 6.89 0.000 .03591 .064475
_Ifg_2 .2523666 .1895222 1.33 0.183 -.11909 .6238233
_Ifg_3 .5317069 .1804709 2.95 0.003 .1779905 .8854233
_Ifg_4 .9464425 .1761563 5.37 0.000 .6011824 1.291703
_Ifg_5 1.400935 .1779354 7.87 0.000 1.052188 1.749682

Stratified by sex tr

-> cohort==2

(output omitted )

Here are the data stored for the first 15 of the 31 studies; the data also include
covariances V Ifg 2 Ifg 3, etc., which are not displayed to save space. The first row of
the data below reproduces the results from the stcox analysis given above.
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. use FSCstage1, clear

. format b* V* %5.3f

. list cohort b_Ifg_2 b_Ifg_3 b_Ifg_4 b_Ifg_5 V_Ifg_2_Ifg_2 V_Ifg_3_Ifg_3,
> clean noobs

cohort b_Ifg_2 b_Ifg_3 b_Ifg_4 b_Ifg_5 V_Ifg_~2 ~3_Ifg_3
1 0.252 0.532 0.946 1.401 0.036 0.033
2 -0.184 -0.032 0.119 0.567 0.348 0.344
3 0.001 -0.529 -0.339 0.416 0.375 0.323
4 0.066 0.184 0.407 0.645 0.058 0.053
5 0.078 0.406 0.544 1.088 0.101 0.083
6 -0.113 0.456 0.456 0.875 0.065 0.054
7 -2.149 -0.264 -0.494 0.169 1.336 0.421
8 -0.039 0.170 0.420 1.053 0.042 0.038
9 0.443 0.595 0.922 0.797 0.202 0.175

10 0.356 1.312 0.628 2.133 1.500 1.170
11 1.297 1.052 1.421 1.752 0.559 0.542
12 0.323 0.545 0.681 0.540 0.132 0.122
13 -0.042 0.509 0.560 0.998 0.088 0.072
14 -2.667 -2.524 -2.010 -1.767 1.337 0.584
15 5.946 5.420 6.088 7.057 189.088 189.271

(output omitted )

Note the large parameter estimates and very large variances in study 15, which
occur because this study has no events in category 1 of fg. Details of how such perfect
prediction is handled are described in section 7.

Now the second stage of analysis:

. mvmeta b V
Note: using method reml
Note: using variables b_Ifg_2 b_Ifg_3 b_Ifg_4 b_Ifg_5
Note: 31 observations on 4 variables

(output omitted )

Wald chi2(4) = 139.59
Log likelihood = -79.489126 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Overall_mean
b_Ifg_2 .1615842 .0796996 2.03 0.043 .005376 .3177925
b_Ifg_3 .3926019 .0878114 4.47 0.000 .2204947 .5647091
b_Ifg_4 .5620076 .0905924 6.20 0.000 .3844497 .7395654
b_Ifg_5 .8973289 .0942603 9.52 0.000 .712582 1.082076

Estimated between-studies SDs and correlation matrix:
SD b_Ifg_2 b_Ifg_3 b_Ifg_4 b_Ifg_5

b_Ifg_2 .22734097 1 .98953788 .97421937 .70621223
b_Ifg_3 .28611302 .98953788 1 .99657543 .80096928
b_Ifg_4 .30834247 .97421937 .99657543 1 .84773246
b_Ifg_5 .32742861 .70621223 .80096928 .84773246 1

It is interesting to compare the estimates with those obtained from four univari-
ate meta-analyses, which can be run by mvmeta b V, vars(b Ifg 2), etc., and are
summarized in table 1.
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Table 1. Summary of estimates from four univariate meta-analyses

Group Univariate Multivariate
μ̂i se(μ̂i) τ̂i μ̂i se(μ̂i) τ̂i Correlations κ̂ij

2 vs 1 0.200 0.066 0.134 0.162 0.080 0.227 1
3 vs 1 0.430 0.073 0.196 0.393 0.088 0.286 0.990 1
4 vs 1 0.568 0.084 0.263 0.562 0.091 0.308 0.974 0.997 1
5 vs 1 0.840 0.101 0.363 0.897 0.094 0.327 0.706 0.801 0.848 1

The univariate and multivariate methods give broadly similar point estimates, μ̂i,
but the multivariate method gives rather larger estimates of three between-studies stan-
dard deviations, τ̂i, and, consequently, larger standard errors for μ̂i. A different choice
of reference category would yield the same multivariate results but different univariate
results. Of course, the multivariate method also has the advantage of estimating the
between-studies correlations.

7 Perfect prediction

7.1 The problem

One difficulty that can occur in regression models with a categorical or time-to-event
outcome is perfect prediction or separation (Heinze and Schemper 2002). In logistic
regression, for example, perfect prediction occurs if there is a level of a categorical
explanatory variable for which the observed values of the outcome are all one (or all
zero); in Cox regression, it occurs if there is a category in which no events are observed.
Here, as one or more regression parameters go to plus or minus infinity, the log likelihood
increases to a limit and the second derivative of the log likelihood tends to zero.

Stata handles this problem in two ways. Stata first attempts to detect perfect
prediction. If successful, it drops the relevant observations and term from the model.
However, sometimes (in particular, if perfect prediction is in the reference category of
a variable with more than two levels) Stata fails to detect perfect prediction. Here
Stata reports very large ML estimates, observes that the variance–covariance matrix is
singular, and reports a generalized inverse.

In the meta-analysis context, perfect prediction is likely to occur in some studies
and not in others. (In the FSC analysis, it occurred in four studies.) Unfortunately,
neither of the above solutions is satisfactory. In the first case, the model fit to a study
with perfect prediction differs from that fit to other studies and has fewer parameters,
so combination across studies is not meaningful. In the second case, some extremely
large coefficients have inappropriately moderate standard errors, so they can have an
excessive influence on meta-analytic results.
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As an example, we use data from FSC study 15, which has no events in the reference
category fg==1:

. xi: stcox ages i.fg if cohort==15, nohr

(output omitted )

No. of subjects = 3134 Number of obs = 3134
No. of failures = 17
Time at risk = 9465.954814

LR chi2(5) = 16.43
Log likelihood = -127.22742 Prob > chi2 = 0.0057

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ages .0357279 .0263705 1.35 0.175 -.0159573 .087413
_Ifg_2 21.36403 .9147602 23.35 0.000 19.57113 23.15692
_Ifg_3 20.84916 . . . . .
_Ifg_4 21.50048 .8689028 24.74 0.000 19.79746 23.2035
_Ifg_5 22.47926 .7987255 28.14 0.000 20.91379 24.04473

Perfect prediction has not been detected, and the coefficients are appropriately large
but with inappropriately small standard errors.

7.2 Solution: Augmentation

mvmeta make checks for perfect prediction by checking that 1) all parameters are re-
ported and 2) there are no zeros on the diagonal of the variance–covariance matrix of
the parameter estimates. If perfect prediction is detected, mvmeta make augments the
data in such a way as to avoid perfect prediction but gives the added observations a
tiny weight to minimize their impact on well-estimated parts of the model.

The augmentation is performed at two design points for each covariate x, defined by
letting x = x± sx (where x and sx are the study-specific mean and standard deviation
of x, respectively) and by fixing other covariates at their mean value. The records added
at each design point depend on the form of regression model. For logistic regression, we
add one event and one nonevent. For other regression models with discrete outcomes,
we add one observation with each outcome level. For survival analyses, we add one event
at time tmin/2 and one censoring at time tmax + tmin/2, where tmin and tmax are the first
and last follow-up times in the study. For a stratified Cox model, the augmentation is
performed for each stratum.

A total weight of wp is then shared equally between the added observations, where w
is specified by the augwt() option (the default is augwt(0.01)), and p is the number of
model parameters (treating the baseline hazard in a Cox model as one parameter). The
regression model is then rerun including the weighted added observations. For study 15,
this yields

(Continued on next page)
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No. of subjects = 3134.06 Number of obs = 3134
No. of failures = 17.03
Time at risk = 9466.077771

LR chi2(5) = 16.33
Log likelihood = -115.75111 Prob > chi2 = 0.0060

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

ages .0353976 .0263231 1.34 0.179 -.0161948 .08699
_Ifg_2 5.946375 13.75093 0.43 0.665 -21.00495 32.89771
_Ifg_3 5.41975 13.75757 0.39 0.694 -21.54459 32.38409
_Ifg_4 6.088434 13.74965 0.44 0.658 -20.86039 33.03726
_Ifg_5 7.057288 13.74605 0.51 0.608 -19.88448 33.99905

Stratified by sex tr

The coefficients for the Ifg * terms are reduced but still large, but their large
standard errors now mean that they will not unduly influence the meta-analysis. The
coefficient and standard error for ages are barely changed. It is useful to compare the
variance–covariance matrix of the parameter estimates before augmentation,

ages _Ifg_2 _Ifg_3 _Ifg_4 _Ifg_5
ages .00069444

_Ifg_2 .00156723 .83711768
_Ifg_3 0 0 0
_Ifg_4 -.00185585 .49628548 0 .75596628
_Ifg_5 -.00303957 .49370111 0 .50944939 .64022023

with that after augmentation:

ages _Ifg_2 _Ifg_3 _Ifg_4 _Ifg_5
ages .00069291

_Ifg_2 -.00309014 189.08811
_Ifg_3 -.00465418 188.76205 189.27067
_Ifg_4 -.00650648 188.77085 188.78488 189.05294
_Ifg_5 -.00768805 188.77649 188.79309 188.81504 188.95394

Because the covariances in the latter matrix are large, contrasts between groups 2,
3, 4, and 5 will receive appropriately small standard errors. This study will therefore
contribute information about contrasts between groups 2, 3, 4, and 5 to the meta-
analysis, but it will contribute no information about contrasts between group 1 and
other groups.

A related problem occurs if some study has no observations at all in a particular
category. The augmentation algorithm is applied here, too, with the modification that
the value sx, used to define the added design points, is taken as the standard deviation
across all studies, because the within-study standard deviation is zero.
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8 Discussion

8.1 Difficulties and limitations

The main difficulty that might be encountered in fitting multivariate random-effects
meta-analysis models is a nonpositive-definite Σ. However, the parameterization used
here ensures that Σ is positive semidefinite and achieves a nonpositive-definite Σ if one
or more elements of the Cholesky decomposition approach zero. I have encountered non-
convergence of the Newton–Raphson algorithm only when the starting value is Σ = 0,
which is avoided by a suitable nonzero choice of starting values, or when inappropriately
handled perfect prediction has led to extreme parameter estimates with small standard
errors.

The standard error provided for an REML analysis allows for uncertainty in estimat-
ing Σ by inverting the second derivative matrix of the restricted likelihood (1). This
is not the standard approach (Kenward and Roger 1997), and its properties require
further investigation. Confidence intervals based on a t distribution would be a useful
enhancement.

At present, the augmentation routine in mvmeta make effectively ignores any cat-
egory in which perfect prediction occurs but allows information to be drawn from
other categories from that study. A larger augmentation would allow information
to be drawn from categories with perfect prediction. For example, if the data con-
sist of 2 × 2 tables, then standard practice would add 0.5 observations to each cell
(Sweeting, Sutton, and Lambert 2004). This amounts to assigning to the augmented
observations a total weight equal to the number of parameters, and it is tempting to
apply this rule more widely (by using augment(1)). However, larger augmentation
weights have the undesirable property of not being invariant to reparameterization; for
example, a different choice of reference category for the fg variable in section 6 would
lead to somewhat different results. Larger augmentation is probably best implemented
by the user.

There are alternate ways to handle perfect prediction, including various forms of
penalized likelihood. The methods of Le Cessie and van Houwelingen (1992) and Ver-
weij and van Houwelingen (1994) have been implemented in Stata by the plogit and
stpcox commands, respectively, and both are currently being updated to allow for per-
fect prediction (G. Ambler, pers. comm.). The method of Firth (1993) is invariant to
reparameterization and is being implemented by the author. When suitable routines
become available in Stata, they can be called by the ppcmd() option in mvmeta make.

8.2 Comparison to other procedures

All the models considered here can also be fit in SAS PROC MIXED, although some
programming effort is required to specify the known within-study variances, Si. The
two approaches are very similar, but by default, SAS produces standard errors that ignore
the uncertainty in Σ, and produces confidence intervals by using the t distribution on
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n− 1 degrees of freedom. Further, SAS optionally provides a standard error adjusted to
allow for uncertainty in estimating Σ and provides the approximate degrees of freedom
of Kenward and Roger (1997), which has good small-sample properties.

Multivariate meta-analysis models cannot be fit by using existing Stata commands,
but univariate models can. metan differs from mvmeta because it uses DerSimonian
and Laird (1986) estimation of the random-effects variance. metareg offers the choice
of DerSimonian and Laird, ML, or REML estimation, so if run without covariates, it
can be compared to mvmeta. The original metareg (Sharp 1998) used the algorithm
of Hardy and Thompson (1996) and did not always find the best solution. Version 2
of metareg, by Harbord and Higgins (2008), uses Newton–Raphson maximization via
ml, and produces the same point estimates as mvmeta and the same standard er-
rors as mvmeta with the nouncertainv option. metareg produces confidence inter-
vals that allow for nonnormality of the sampling distributions by using the method
of Knapp and Hartung (2003); its z option produces confidence intervals that agree
with mvmeta. Of course, metareg also has the enormous advantage of handling meta-
regression.

8.3 More than two outcomes

Although mvmeta handles several outcomes perfectly well, its computing time increases
sharply as the number of outcomes increases. mvmeta can even computationally handle
situations where there are more quantities of interest than studies (p > n); however,
fitting such large models can be unwise and results can be untrustworthy.
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What meta-analysis features are available in Stata? 

Title  User-written packages for meta-analysis in Stata  
Authors Jonathan A. C. Sterne, University of Bristol 

Ross J. Harris, University of Bristol 
Roger M. Harbord, University of Bristol 
Thomas J. Steichen, RJRT 

Date  

  

January 2007; updated April 2009; minor revisions July 2009  

Stata does not have a meta-analys is co mmand. Stata users,  however, have 

developed an excellent suite of commands for performing meta-analyses. 

In 2009, Stata publis hed Meta-Analysis in Stata: An Updated Collection from the 

Stata Journal, which brings together all the Stata Journal articles about meta-analysis. 

This book is available for purchase at http://www.stata-press.com/books/mais.html. 

We have created a command to download a ll user-written commands discussed in 

this collection, except for those commands listed in the appendix. For instructions on 

obtaining this command, see http://www.stata-press.com/data/mais.html. 

The following meta-analysis commands are all described in Meta-Analysis in Stata: 

An Updated Collection from the Stata Journal. 

1. metan 

metan is the main Stata meta-analysis command. Its latest version allows the user to 

input the cell frequencies from the 2 × 2 table for eac h study (for binary outcomes), 

the mean and standard deviation in each group (for numeric al outcomes), or the 

effect esti mate and standard error from ea ch study. It provides a comprehensiv e 

range of methods for meta-a nalysis, including inv erse-variance-weighted meta- 

analysis, and creates new variables containi ng the treatment effe ct estimate and its 

standard error for each study. These variabl es can then be us ed as input to other 

Stata meta-analysis c ommands. Meta-analyses may be conducted in subgroups b y 

using the by() option. 

All the meta-analysis calculations available in metan are based on standard methods, 

an overview of which may be found in c hapter 15 of Deeks, Alt man, and Bradburn 

(2001). 

The version of the metan command that used Stata 7 graphics has been renamed 

metan7 and is downloaded as part of the metan package currently available on the 

SSC archive. 



The most recent help file for metan provides several clickable examples of using the 

command. 

2. labbe 

labbe draws a L’Abbe plot for event data (proportion of successes in the two groups). 

It is available via the metan package as a version 7 command that uses version 6 

graphics. 

3. metacum 

metacum performs cumulative meta-analyses and graphs the results. 

4. metap 

metap combines p-values by using Fisher’s method, Edgington’s additive method, or 

Edgington’s normal curve method. It was re leased in 1999 as a version 6 command 

(no graphics) and last updated in 2000. It requires the user to input a p-value for each 

study. 

5. metareg 

metareg does meta-regression. It was first released in 1998 and has been updated to 

take account of improvements in Stata estimation facilities and recent methodological 

developments. It requires t he user to input the treatm ent effect estimate and it s 

standard error for each study. 

6. metafunnel 

metafunnel plots funnel plots. It was releas ed in 2004 and uses Stata 8 graphics. It 

requires the user to input the treatment effect estimate and its standard error for each 

study. 

7. confunnel 

confunnel plots contour-enhanced funnel plots. The command has been designed to 

be flexible, allowing the user to add extra features to the funnel plot. 

8. metabias 



metabias provides statistical tests for funnel plot asymmetry. It was first released in 

1997, but it has been updated to provide recent ly proposed tests that maintain better 

control of the false-positive rate than those available in the original command. 

9. metatrim 

metatrim implements the “trim and fill” method to  adjust for publication bias in funnel 

plots. It requires the user to input the tr eatment effect estimate and its standard error  

for each study. 

10. metandi and metandiplot 

metandi facilitates the fitting of hierarchic al logistic regression models for  

meta-analysis of diagnostic test accuracy studies. metandiplot produces a graph of 

the model fit by metandi, which must be the last estimation-class command 

executed. 

11. glst 

glst calculates a log-linear dose-response regression model us ing generalized least 

squares for trend estimation of single or  multiple summarized dose-respons e 

epidemiological studies. Out put from this command ma y be useful in deriving 

summary effects and  their st andard errors for inclusion in meta-analyses of such 

studies. 

12. metamiss 

metamiss performs meta-analysis with binary out comes when some or all studies  

have missing data. 

13. mvmeta and mvmeta_make 

mvmeta performs maximum  likelihood, re stricted maximum likelihood, or 

method-of-moments estimation of random-effects multivariate meta-analysis models. 

mvmeta_make facilitates the preparation of su mmary datasets from more detaile d 

data. 

The following commands are documented in the Appendix: 



14. metannt 

metannt is intended to aid interpretation of meta-analyses of binary data b y 

presenting intervention effect sizes in abs olute terms, as the number needed to treat 

(NNT) and the number of events avoided (o r added) per 1,000. The user inputs  

design parameters, and metannt uses the metan command to calculate the required 

statistics. This command is available as part of the metan package. 

15. metaninf 

metaninf i s a port of the metainf command to use metan as its analysis  engine 

rather than meta. It w as released in 2001 as a version 6 command using v ersion 6 

graphics and was las t updated in 2004. It require s the user to provide input in the 

form needed by metan. To install the package, type ssc install metaninf in Stata. 

16. midas 

midas provides statistical and graphical rout ines for undertaking meta-analysis of  

diagnostic test performance in Stat a. To install the package, type ssc install midas  

in Stata. 

17. meta_lr 

meta_lr graphs positive and negative likelihood rati os in diagnos tic tests. It can do 

stratified meta-analysis of individual estima tes. The user must provide the effect 

estimates (log positiv e likelihood ratio and log negative likelihood ratio) and their  

standard errors. Commands meta and metareg are used for internal calculations . 

This is a v ersion 8 command released in 2004. To insta ll the package, type ssc 
install meta_lr in Stata. 

18. metaparm 

metaparm performs meta-analyses and calculates confidence intervals and p-values 

for differences or rati os between paramet ers for different s ubpopulations for data 

stored in the parmest format. To install the package, type ssc install metaparm  in 

Stata. 



Appendix: Further Stata meta-analysis
commands

Stata users have written meta-analysis commands that have not, so far, been accepted
for publication in the Stata Journal. Here are brief descriptions of commands known
to the editor at the time of publishing this collection. Readers should note that these
commands have not undergone the review process required for publication in the Stata
Journal. This list is likely to be incomplete, and the editor apologizes to authors of
any commands that have been overlooked. For the most up-to-date information on
these and other meta-analysis commands, readers are encouraged to check the Stata
frequently asked question on meta-analysis:

http://www.stata.com/support/faqs/stat/meta.html

• metannt is intended to aid interpretation of meta-analyses of binary data by pre-
senting intervention effect sizes in absolute terms, as the number needed to treat
(NNT) and the number of events avoided (or added) per 1,000. The user inputs de-
sign parameters, and metannt uses the metan command to calculate the required
statistics. This command is available as part of the metan package.

The NNT is the number of individuals required to experience the intervention in
order to expect there to be one additional event to be observed. It is defined as
the reciprocal of the absolute value of the risk difference (risk of the outcome in
the intervention group minus risk in control).

NNT =
1

|risk difference|
Assuming the event is undesirable, this is termed the number needed to treat to
benefit. If the intervention arm experiences more events, this is commonly referred
to as the number needed to treat to harm. Because most meta-analyses are based
on ratio measures, the risk difference is calculated based on an assumed value of
the risk in the control group. The metannt command calculates this by deriving
an estimate of the intervention effect (e.g., a risk ratio), applying it to a population
with a given outcome event risk, and deriving from this a projected event risk if
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the population were to receive the intervention. The number of avoided or excess
events (respectively) per 1,000 population is the difference between the two event
risks multiplied by 1,000. Optionally, a confidence interval is also presented, using
the confidence limits for the estimated intervention effect applied to the control
group event rate.

• metaninf investigates the influence of one study on the overall meta-analysis es-
timate and shows graphically the results when the meta-analysis estimates are
computed, omitting one study in each turn. This command makes repeated calls
to the metan command for its analyses. It was released in 2001 and was last
updated in 2004. It requires the user to provide input in the form needed by
metan. To install the package, type ssc install metaninf in Stata. Articles
describing metainf, a previous version of the command, were published in the
Stata Technical Bulletin (Tobias 1999, 2000).

• midas provides statistical and graphical routines for undertaking meta-analysis of
diagnostic test performance in Stata. Primary data synthesis is performed within
the bivariate mixed-effects binary regression modeling framework. Model speci-
fication, estimation, and prediction are carried out with xtmelogit in Stata 10
or the gllamm command in Stata 9 by adaptive quadrature. Using the estimated
coefficients and variance–covariance matrices, midas calculates summary operat-
ing sensitivity and specificity (with confidence and prediction contours in sum-
mary receiver operating characteristic space), summary likelihood, and odds ra-
tios. Global and relevant test performance metric-specific heterogeneity statistics
are provided. midas facilitates extensive statistical and graphical data synthesis
and exploratory analyses of heterogeneity, covariate effects, publication bias, and
influence. Bayes’ nomograms and likelihood-ratio matrices can be obtained and
used to guide clinical decision making. The minimum required input data are
variables containing the elements of the 2 × 2 contingency tables (true positives,
false positives, false negatives, and true negatives) of test results from each study.
To install the package, type ssc install midas in Stata.

Further information on the comprehensive suite of facilities provided by midas
is available at http://www.sitemaker.umich.edu/metadiagnosis/midas home. In
particular, two presentations given at Stata Users Group meetings are available
at http://www.sitemaker.umich.edu/metadiagnosis/presentations and via RePEc
at http://econpapers.repec.org/paper/bocasug07/4.htm and
http://ideas.repec.org/p/boc/wsug07/1.html.

• meta lr graphs positive and negative likelihood ratios in diagnostic tests. It can do
stratified meta-analysis of individual estimates. The user must provide the effect
estimates (log positive likelihood ratio and log negative likelihood ratio) and their
standard errors. Commands meta and metareg are used for internal calculations.
This is a version 8 command released in 2004. To install the package, type ssc
install meta lr in Stata.

• metaparm performs meta-analyses and calculates confidence intervals and p-values
for differences or ratios between parameters for different subpopulations, for data
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stored in the parmest format (Newson 2003). To install the package, type ssc
install metaparm in Stata.
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Abstract. The metadialog package provides Stata dialog boxes for the publicly
available meta-analysis commands. It includes the commands needed to create a
Meta-Analysis submenu on the StataCorp-defined User menu.
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1 Description

User-written dialog boxes and menus were introduced in Stata 8 to provide an alternative
to the standard command-line interface. The metadialog package provides dialog boxes
(.dlg files) and the commands needed to create a Meta-Analysis submenu that will
contain the publicly available meta-analysis commands. The 14 commands included
in this package that may be placed on the menu are meta, metan, metap, metareg,
metacum, funnel, metafunnel, labbe, metannt, metaninf, metainf, galbr, metabias,
and metatrim.

This package, which was announced on Statalist, was made available originally at
the Statistical Software Components (SSC) archive site hosted by the Boston College De-
partment of Economics at http://ideas.repec.org/s/boc/bocode.html. Many of the un-
derlying meta-analysis programs were introduced in the Stata Technical Bulletin (STB),
though some subsequently may have been updated and republished via the SSC archives.
Some programs were published only on the SSC archives site. The metadialog pack-
age is reintroduced here to allow update pointers to be placed to the underlying STB

programs and to announce it to those users who may not participate on Statalist.

The dialogs were written for a specific version of each program file (see the listing
below). If you do not have these versions installed, you should update the specific
programs before using the related dialogs. Use the net search name command to find
and install the appropriate versions of these programs.

You may choose not to create the menu and, instead, run the dialogs directly from
the Stata command line via the db name command. If so,

c© 2004 StataCorp LP pr0012
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command runs description
db meta meta 2.06 Meta-analysis of effects
db metan metan 1.74 Meta-analysis of binary and continuous
db metap metap 2.0.0 Meta-analysis of p-values
db metareg metareg 1.06 Meta-analysis regression
db metacum metacum 1.02 Cumulative meta-analysis
db funnel funnel 1.04 Metan-based funnel graph
db metafunnel metafunnel 1.02 Funnel graph (vertical)
db labbe labbe 1.21 Metan-based L’abbe graph
db metannt metannt 1.0 Metan-based NNT

db metaninf metaninf 1.0.1 Metan-based influence analysis
db metainf metainf 3.0.0 Meta-based influence analysis
db galbr galbr 2.0 Galbraith plot for heterogeneity
db metabias metabias 1.2.2 Publication bias in meta-analysis
db metatrim metatrim 1.0.5 Trim and fill analysis

You can install the metadialog package from within Stata by using the net install
metadialog command.

The commands needed to create a Meta-Analysis submenu are documented in
help file meta dialog.hlp, which is installed with the dialogs. These commands are
also shown below. The menu commands are placed in your personal Stata profile.do

file to create a submenu on the StataCorp-defined User menu.

You can determine if you have defined a profile.do file by starting Stata and
observing whether a line of the form

running C:\data\stata\profile.do . . .

appears on the screen as part of the initiation sequence. If it does, add the commands
below to that file and resave the file. If the line does not appear, you have not defined
a profile. Create a plain text file containing the commands below, name it profile.do,
and save it somewhere in the Stata path.

The menu creation commands are shown below. Because of the length of these lines,
many have been split into two lines:

if _caller() >= 8 {
window menu clear
window menu append submenu "stUser" "&Meta-Analysis"
window menu append item "Meta-Analysis" \\\

"Of Effects (&meta)" "db meta"
window menu append item "Meta-Analysis" \\\

"Of Binary and Continuous (meta&n)" "db metan"
window menu append item "Meta-Analysis" \\\

"Of p-values (meta&p)" "db metap"
window menu append item "Meta-Analysis" \\\

"Cumulative (meta&cum)" "db metacum"
window menu append item "Meta-Analysis" \\\

"Regression (meta&reg)" "db metareg"
window menu append item "Meta-Analysis" \\\

"Funnel Graph, metan-based (f&unnel)" "db funnel"
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window menu append item "Meta-Analysis" \\\
"Funnel Graph, &vertical (metafunnel)" "db metafunnel"

window menu append item "Meta-Analysis" \\\
"L’abbe Graph, metan-based (&labbe)" "db labbe"

window menu append item "Meta-Analysis" \\\
"NNT, metan-based (metann&t)" "db metannt"

window menu append item "Meta-Analysis" \\\
"Influence Analysis, metan-based (metan&inf)" "db metaninf"

window menu append item "Meta-Analysis" \\\
"Influence Analysis, meta-based (metain&f)" "db metainf"

window menu append item "Meta-Analysis" \\\
"Galbraith Plot for Heterogeneity (&galbr)" "db galbr"

window menu append item "Meta-Analysis" \\\
"Publication Bias (meta&bias)" "db metabias"

window menu append item "Meta-Analysis" \\\
"Trim and Fill Analysis (metatrim)" "db met&atrim"

window menu refresh
}

Dialogs are available only in Stata 8 or later; thus, the leading

if caller() >= 8 {

and trailing

}

lines above are needed only if you also run Stata 7. Leaving these lines in will not cause
problems.

The easiest way to capture these commands is to open the help file in your text
editor, copy the lines, and then paste them into your profile.do file.
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// contour enhanced funnel plots for meta-analysis
// analysis for stata journal article
// tom palmer
// 26oct2007

use magnesium, clear

gen logES = logor
gen selogES = selogor 

//metafunnel logES selogES
//graph export confunnel1.eps, replace

//confunnel logES selogES
//graph export confunnel2.eps, replace

//confunnel logES selogES, metric(invse)
//graph export confunnel3.eps, replace

//confunnel logES selogES, onesided(lower)
//graph export confunnel4.eps, replace

local t1 = round(exp(-4)*100)/100
local t2 = round(exp(-2)*100)/100
local t3 = exp(0)
local t4 = round(exp(2)*100)/100
local t5 = round(exp(4)*100)/100
confunnel logES selogES, metric(var) shadedcontours solidcontours ///
	twowayopts(xtitle("Odds ratios") ///
	`"xlabel(-4 "`t1'" -2 "`t2'" 0 "`t3'" 2 "`t4'" 4 "`t5'")"')
//graph export confunnel5.eps, replace

// use with metan

capture drop logES selogES
metan alive0 dead0 alive1 dead1, or nograph fixed
local fixedlogES = log(r(ES))
generate logES = log(_ES)
rename _selogES selogES
su selogES, meanonly
local semax = r(max)
confunnel logES selogES, ///
	extraplot(function `fixedlogES', horizontal lc(gs8) range(0 `semax') || ///
	  function `fixedlogES' + x*invnorm(.025), horizontal range(0 `semax') lc(gs8) || ///
	  function `fixedlogES' + x*invnorm(.975), horizontal range(0 `semax') lc(gs8)) ///
	legendlabels(`"8 "F.E. & 95% C.I.""') contcolour(gs10)
//graph export confunnel6.eps, replace

// use with metabias

capture noisily drop invselogES
metabias logES selogES, graph(egger)
matrix b = e(b)
local bias = b[1,2]
local slope = b[1,1]
su selogES, meanonly
local semax = r(max)
metamodbias alive0 dead0 alive1 dead1, graph
//metabias alive0 dead0 alive1 dead1, graph
matrix c = e(b)
local modbias = c[1,2]
local modslope = c[1,1]
confunnel logES selogES, contours(5 10) ///
	extraplot(function (`bias'*x + `slope'), horizontal range(0 `semax') lc(gs8) || ///
		function (`modbias'*x + `modslope'), horizontal range(0 `semax') lc(gs4)) ///
	legendlabels(`"6 "Egger" 7 "Harbord""')
graph export confunnel7.eps, replace

// use with metatrim

use passivesmoking, clear
local n = _N
metan logOR selogOR, nograph
local ES = r(ES)
su selogOR, meanonly
local semax = r(max)
metatrim logOR selogOR, save(metatrimdata, replace)
use metatrimdata, clear
local nfilled = _N - `n'
metan filled fillse, nograph
local filledES = r(ES)
confunnel filled fillse if _n > `nfilled', contours(5 10) contcolour(gs10) ///
	extraplot(scatter fillse filled if _n <= `nfilled', m(T) mc(gs8) || ///
		function `ES', horizontal lc(black) range(0 `semax') || ///
		function `filledES', horizontal lc(gs8) range(0 `semax')) ///
	legendlabels(`"6 "Filled" 7 "F.E." 8 "F.E. filled""')
//graph export confunnel8.eps,






set more off
clear
set scheme sj

sjlog using met_ex1, replace
use bcgtrial
describe
list trialnam startyr tcases tnoncases ccases cnoncases, clean noobs abbreviate(10)
sjlog close, replace

sjlog using met_ex2, replace
metan tcases tnoncases ccases cnoncases, rr fixedi lcols(trialnam startyr) xlabel(0.1, 10) favours(BCG reduces risk of TB # BCG increases risk of TB)
sjlog close, replace
graph export BCG_basic.eps, replace

sjlog using met_ex3, replace
gen logRR = ln( (tcases/ttotal) / (ccases/ctotal) )
gen selogRR = sqrt( 1/tcases +1/ccases -1/ttotal -1/ctotal )
metan logRR selogRR, fixed eform nograph
sjlog close, replace

sjlog using met_ex4, replace
metan tcases tnoncases ccases cnoncases, rr fixedi second(random) lcols(trialnam startyr) nograph
sjlog close, replace

sjlog using met_ex5, replace
metan tcases tnoncases ccases cnoncases, rr fixedi second(random) lcols(trialnam authors startyr alloc latitude) counts astext(70) textsize(200) boxsca(80) xlabel(0.1,10) notable xsize(10) ysize(6)
sjlog close, replace
graph export BCG_cols.eps, replace

sjlog using met_ex6, replace
gen lat_cat = ""
replace lat_cat = "Tropical, < 23.5° latitude" if latitude <= 23.5
replace lat_cat = "23.5-40° latitude" if latitude > 23.5 & latitude < 40
replace lat_cat = "Northern, > 40° latitude" if latitude >= 40 & latitude < .
assert lat_cat != ""
label var lat_cat "Latitude region"
metan tcases tnoncases ccases cnoncases, rr fixedi second(random) nosecsub lcols(trialnam startyr latitude) astext(60) by(lat_cat) xlabel(0.1,10) xsize(10) ysize(8)
sjlog close, replace
graph export BCG_by.eps, replace

sjlog using met_ex7, replace
metan logRR selogRR, random second(-.6587 -1.205 -.1937 Bayes) secondstats(Noninformative prior: d~dnorm(0.0, 0.001)) eform notable astext(60) textsize(130) lcols(trialnam startyr latitude) xlabel(0.1,10) 
sjlog close, replace
graph export BCG_user.eps, replace

sjlog using met_ex8, replace
metan tcases tnoncases ccases cnoncases, rr random rfdist lcols(trialnam startyr latitude) astext(60) by(lat_cat) xlabel(0.1,10) xsize(10) ysize(8) notable
sjlog close, replace
graph export BCG_rfdist.eps, replace

sjlog using met_ex9, replace
metan tcases tnoncases ccases cnoncases, rr random efficacy lcols(trialnam startyr) textsize(150) notable xlabel(0.1, 10) 
sjlog close, replace
graph export BCG_efficacy.eps, replace

sjlog using met_ex10, replace
gen counts = string(tcases) + "/" + string(tcases+tnoncases) + "," + string(ccases) + "/" + string(ccases+cnoncases)
metan tcases tnoncases ccases cnoncases, rr fixedi second(random) nosecsub notable olineopt(lwidth(thick) lcolor(navy) lpattern(dot)) boxopt(msymbol(triangle) mcolor(dkgreen)) pointopt(mlabel(counts) mlabsize(tiny) mlabposition(5))
sjlog close, replace

sjlog using met_ex11, replace
global metamethod rr fixedi second(random) nosecsub
global metacolumns lcols(trialnam startyr latitude) astext(60)
global metastyle boxopt(mcolor(forest_green) msymbol(triangle)) pointopt(msymbol(smtriangle) mcolor(gold) msize(tiny) mlabel(counts) mlabsize(tiny) mlabposition(2) mlabcolor(brown)) diamopt(lcolor(black) lwidth(medthick)) graphregion(fcolor(gs10)) boxsca(80)
global metaopts favours(decreases TB # increases TB) xlabel(0.1, 0.2, 0.5, 2, 5, 10) notable
metan tcases tnoncases ccases cnoncases, $metamethod $metacolumns $metastyle $metaopts by(lat_cat) xsize(10) ysize(8)
sjlog close, replace
graph export BCG_options.eps, replace












use diuretic, clear

gen logor=log((rt/(nt-rt))/(rc/(nc-rc)))
gen selogor=sqrt((1/rc)+(1/(nc-rc))+(1/rt)+(1/(nt-rt)))
meta logor selogor, ef

meta logor selogor, ef graph(r) id(trialid) cline xlab(0.5,1,1.5) xline(1) /* 
*/ boxsh(4) b2("Odds ratio - log scale") saving(sharp1.gph,replace)

meta logor selogor, ef graph(e) id(trialid) cline xlab(0.5,1,1.5) xline(1) /*
*/ boxsh(2) b2("Odds ratio - log scale") saving(sharp2.gph,replace)




/* Analyses in article "Updated tests for small-study effects in meta-analyses"
   Roger Harbord 2008-12-12
*/

clear
capture log close
set more off
set scheme sj

sjlog using sbe19_6a, replace
use nicotinegum
describe
sjlog close, replace

sjlog using sbe19_6b, replace
metan d1 h1 d0 h0, or nograph
sjlog close, replace

gen logor=log(_ES)
gen selogor=_selogES

metafunnel logor selogor, egger
graph export sbe19_6a.eps, replace

sjlog using sbe19_6c, replace
metabias d1 h1 d0 h0, egger
sjlog close, replace

metabias logor selogor, egger

sjlog using sbe19_6d, replace
metabias d1 h1 d0 h0, harbord graph
sjlog close, replace
graph export sbe19_6b.eps, replace

sjlog using sbe19_6e, replace
metabias d1 h1 d0 h0, peters
sjlog close, replace

exit








version 9

sjlog using output1, replace
use cc_ex.dta, clear
gen double se = (logub - loglb)/(2*invnorm(.975))
sjlog close, replace


sjlog using output2, replace
vwls logrr dose if logrr != 0, sd(se) noconstant
matrix list e(V)
sjlog close, replace


sjlog using output3, replace
glst logrr dose, se(se) cov(n case) cc
sjlog close, replace

sjlog using output4, replace
matrix list e(Sigma)
sjlog close, replace

sjlog using output5, replace
lincom dose*11, eform
sjlog close, replace

sjlog using output6, replace
use ci_ex.dta, clear
gen double se = (logub - loglb)/(2*invnorm(.975))
glst logrr dose, se(se) cov(n case) ci
lincom dose*2, eform
sjlog close, replace

sjlog using output7, replace
use ir_ex.dta, clear
gen double se = (logub - loglb)/(2*invnorm(.975))
glst logrr doser, se(se) cov(n case) ir
lincom doser*10, eform
sjlog close, replace

sjlog using output8, replace
use ma_ex.dta, clear
glst logrr dose, se(se) cov(n case) pfirst(id study) eform
sjlog close, replace

sjlog using output9, replace
gen types = study == 2
gen doseXtypes = dose*types
glst logrr dose doseXtypes, se(se) cov(n case) pfirst(id study) 
lincom dose + doseXtypes*0, eform
lincom dose + doseXtypes*1, eform
sjlog close, replace

sjlog using output11, replace
glst logrr dose doseXtypes, se(se) cov(n case) pfirst(id study)  random
sjlog close, replace

sjlog using output10, replace
glst logrr dose, se(se) cov(n case) pfirst(id study) eform random
sjlog close, replace





/* 
  Roger Harbord 31oct2008
  do-file to produce output 
  in Stata Journal article "meta-regression in Stata"
*/

version 9.2
set scheme sj

/* Example output for simplest case 
   with one continuous covariate */
sjlog using chol1, replace
use cholesterol, clear
metareg logor cholreduc, wsse(selogor)
sjlog close, replace


/* "bubble plot" */
use cholesterol, clear
metareg logor cholreduc ,wsse(selogor) graph
graph export bubble.eps, replace

/* multiple covariates */
sjlog using xrcise, replace
use xrcise4deprsn, clear
metareg smd abstract-phd, wsse(sesmd)
sjlog close, replace

/* normal plot of standardized EB resids */
sjlog using qnorm, replace
use cholesterol,clear
qui metareg logor cholreduc ,wsse(selogor)
capture drop usta
predict usta, ustandard
qnorm usta, mlabel(id)
sjlog close, replace
graph export qnorm.eps, replace

/* confidence and prediction bands around fitted line for exercise-depression */
sjlog using bands, replace
use xrcise4deprsn, clear
metareg smd duration, wsse(sesmd)
predict fit
predict stdp, stdp
predict stdf, stdf
predict xbu, xbu
local t = invttail(e(df_r)-1, 0.025)
gen confl = fit - `t'*stdp
gen confu = fit + `t'*stdp
gen predl = fit - `t'*stdf
gen predu = fit + `t'*stdf
sort duration 
twoway rarea predl predu duration ///
	|| rarea confl confu duration ///
	|| line fit duration ///
	|| scatter smd duration [aw=1/sesmd^2], msymbol(Oh)  ///
	|| scatter xbu duration, msymbol(t) ///
	||, legend( label(1 "Prediction interval") label(2 "Confidence interval") )
sjlog close, replace
graph export bands.eps, replace

/* permutation tests on lawlor data */
sjlog using permutemulti, replace
use xrcise4deprsn, clear
set seed 15160401
metareg smd abstract-phd, wsse(sesmd) permute(20000)
sjlog close, replace

sjlog using permuteuni, replace
metareg smd abstract-phd, wsse(sesmd) permute(5000, univariable)
sjlog close, replace


/* permutation test with joint() sub-option on cholesterol data */
sjlog using joint, replace
use cholesterol, clear
tab ihdentry, gen(ihd)
metareg logor cholreduc ihd2 ihd3, wsse(selogor) ///
	permute(5000, joint(ihd2 ihd3))
sjlog close, replace  

exit



capture log close
clear
set more off
pause off

use magnes, clear
gen alive1=tot1-dead1
gen alive0=tot0-dead0

drop if trial==8
replace trial=trial-1 if trial>8

list trial trialnam year dead1 alive1 dead0 alive0, noobs

gen or=(dead1/alive1)/(dead0/alive0)
gen logor=log(or)
gen selogor=sqrt((1/dead1)+(1/alive1)+(1/dead0)+(1/alive0))

metan dead1 alive1 dead0 alive0, or
metan dead1 alive1 dead0 alive0, or label(namevar=trialnam)
gen log_ES=log(_ES)
list trial trialnam year logor selogor _ES log_ES _selogES, noobs

metafunnel logor selogor, xlab(.05 .1 .25 .5 1 2 4 8 16) ///
 xscale(log) xtitle(Odds ratio) eform subtitle( ) ///
 ytitle(Standard error of log OR) saving(sterne_fig2, replace)


metafunnel logor selogor, xtitle(Log odds ratio) ///
 ytitle(Standard error of log OR) egger saving(sterne_fig3, replace)

gen period=year
recode period 1980/1989=1 1990/1999=2
label define periodlab 1 "1980s" 2 "1990s"
label values period periodlab
tab period

metan dead1 alive1 dead0 alive0, or by(period) label(namevar=trialnam)

metafunnel logor selogor, xlab(.05 .1 .25 .5 1 2 4 8 16) ///
 xscale(log) xtitle(Odds ratio) eform subtitle( ) ///
 ytitle(Standard error of log OR) by(period) saving(sterne_fig4, replace)








